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Abstract

In task-oriented dialogue systems, intent
classification is crucial for accurately under-
standing user queries and providing appro-
priate services. This study explores the use
of intent descriptions with large language
models for unseen domain intent classifi-
cation. By examining the effects of de-
scription quality, quantity, and input length
management, we identify practical guide-
lines for optimizing performance. Our ex-
periments using FLAN-T5 3B demonstrate
that 1) high-quality descriptions for both
training and testing significantly improve
accuracy, 2) diversity in training descrip-
tions doesn’t greatly affect performance,
and 3) off-the-shelf rankers selecting around
ten intent options reduce input length with-
out compromising performance. We empha-
size that high-quality testing descriptions
have a greater impact on accuracy than
training descriptions. These findings pro-
vide practical guidelines for using intent
descriptions with large language models to
achieve effective and efficient intent classifi-
cation in low-resource settings.

1 Introduction

In task-oriented dialogue systems, mapping
user utterances to a predefined set of intents is
crucial and is known as ‘intent classification.’
This process is essential because it helps deter-
mine the service that the user requires, making
it the foundational step in fulfilling the user’s
goal via a chatbot (Bang et al., 2023; Sung
et al., 2023; Zhang et al., 2021a, 2022). Due
to the vast range of domains where chatbots
can be utilized and the limited availability of
intent classification data, research on transfer-
ring intent classifiers to unseen domains under
low-resource conditions is very active (Zhang
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Figure 1: An example of an intent classification
input for a large language model that includes intent
descriptions. The figure was adopted from Parikh
et al. (2023).

et al., 2021b; Mueller et al., 2022; Kuo and
Chen, 2023).

Parikh et al. (2023) proposed an in-context
learning classification method using large lan-
guage models to classify intents in unseen do-
mains. They provided detailed intent descrip-
tions as inputs to compensate for the lack of
user query examples for each intent. Figure 1
illustrates how descriptions are included in the
in-context learning input. Provided descrip-
tions can capture the subtle semantic nuances
and exceptions that are challenging to address
with intent names alone. However, the paper
does not clarify the quality or quantity of de-
scriptions that should be used for training or
inference, leaving practitioners without con-
crete guidelines. This paper aims to provide
specific guidelines on the effective and efficient
use of intent descriptions during training and
testing for intent classification with large lan-
guage models in unseen domains.

This study specifically explores how to
utilize intent descriptions in large language
models through the following aspects: 1)
Effect of description quality: Using Chat-
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GPT (OpenAI, 2023), the study collects in-
tent descriptions for the CLINC150 (Larson
et al., 2019), HWU64 (Liu et al., 2021),
and BANKING77 (Casanueva et al., 2020)
datasets. Three sets of descriptions are col-
lected: dependent descriptions, which con-
sider semantic differences between intents,
independent descriptions, generated with-
out considering semantic differences, and
cleansed descriptions manually filtered to
address the subtle semantics. The impact of
description quality on training and testing is
investigated. 2) Impact of description quantity:
The study examines the effect of increasing the
number of descriptions used for training on
intent classification accuracy. 3) Input length
Management: Usage of off-the-shelf rankers, se-
lecting the most probable intent options based
on the similarity between the user query and
descriptions, is examined to address the input
length issue caused by descriptions. The op-
timal number of intent options to select that
balances the trade-off between input length
and performance is investigated. The study
uses FLAN-T5 3B (Chung et al., 2022) which
is an instruction-tuned model of T5 3B model
(Raffel et al., 2019).

Our findings and contributions can be sum-
marized as follows:

• Fine-tuning is required for effective under-
standing of descriptions in large language
models and high-quality descriptions im-
prove classification accuracy for both train-
ing and testing.

• Enhancing the quality of test descriptions
has a more significant impact on accuracy
than improving those used for training.

• Using a ranker to reduce to around ten
classification achieves similar performance
to using all options.

2 Method for Analysis
2.1 Quality-varied Description

Generation and Filtering
To investigate the impact of description quality
on intent classification using large language
models, three different qualities of descriptions
were collected using ChatGPT (gpt-3.5-turbo)
via the OpenAI API. Prompts used for the

https://openai.com/index/openai-api

Figure 2: An off-the-shelf ranker scores the simi-
larity between the user query and each description,
selecting the top ‘k’ intent options for intent classi-
fication input.

API calls can be found in the Appendix A.

Independent Description Generation
The nuanced differences between distinct
intents pose challenges for intent classifi-
cation. For independent descriptions,
prompts were crafted to include only a sin-
gle intent and three user query examples spe-
cific to that intent, excluding other intents.
Consequently, the collected description may
lack comparative context, resulting in relatively
lower quality. Prompts for each intent was
called seven times to collect a total of seven
independent descriptions per intent.

Dependent Description Generation In
contrast, dependent descriptions include
all possible intents within the prompt to en-
sure that the generated description uniquely
distinguishes itself from others. Thus, these de-
scriptions are considered relatively higher qual-
ity. For each intent, seven unique dependent
descriptions was collected using API call.

Human-Cleansed Description Since the
automatically collected descriptions may not
fully capture differences between intents, man-
ual review was added. One description per
intent was carefully filtered to ensure clear dis-
tinction from other intents. This final filtering
aimed to produce highest quality descriptions
among our control-group for description qual-
ity. Henceforth, we will refer to this type of
description as a cleansed description.

2.2 Description-Based Intent Option
Ranker

Including intent descriptions increases the in-
put length proportionate to the number of in-
tent options. Given a model with a maximum
length of 1024 tokens, descriptions of just ten
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words per intent for 100 intents would exceed
this limit. To address this, a description-based
ranker was used to optimize input length. The
off-the-shelf mpnet-base-v2 (Song et al., 2020;
Reimers and Gurevych, 2019) model was em-
ployed. Figure 2 shows how this ranker inte-
grates into the intent classification architecture.
It calculates the similarity between user queries
and intent descriptions, sorts intent options by
similarity, and passes the top-k intents to the
intent classifier. This paper experimentally
determines the optimal k to maintain high per-
formance while reducing input length.

2.3 Fine-Tuning Large Language
Models for Intent Classification

Consider the user’s utterance of i-th instance
as ui and intent options as {oi1, oi2, . . . , oin}.
Descriptions for each intent are denoted as
{di1, di2, . . . , din}. All intent options are orga-
nized as

‘1. o1: d1,
2. o2: d2,

...
n. on: dn’.

Replacing this option text with a predefined in-
struction template forms the input INST . The
training objective for FLAN-T5 and Llama-2-
Chat is defined as:

L(θ) = −
N∑
i

log p(yi|INST ; θ), (1)

where yi is the correct intent index mapped
to the i-th instance, N is the total number
of instances, and θ represents model parame-
ters. An example of an input as an instruction
format, INST , can be found in Appendix E.

3 Experiments
3.1 Datasets
We used the publicly recognized intent clas-
sification datasets CLINC150, HWU64, and
BANKING77. For training, we divided ten
domains of the CLINC150 dataset in half and
trained on 75 intents from five domains. The
remaining 75 intents from the other five do-
mains were reserved for testing. This domain
split simulates an unseen domain scenario for
the intent classification test. Detailed statistics
for the datasets are provided in Appendix F.

https://sbert.net/

Table 1: Rows lower in the table represent higher
description quality used during training. Similarly,
columns further to the right indicate higher descrip-
tion quality used during testing. The accuracy for
CLINC dataset is reported.

Types of Descriptions Used in Testing
without

descriptions
independent
descriptions

dependent
descriptions

Types of
Descriptions

Used in Training

without
descriptions 84.28%±3.95% 84.15%±3.67% 90.55%±2.16%
independent
descriptions 81.93%±4.05% 85.64%±3.53% 90.97%±1.45%

dependent
descriptions 82.1%±3.56% 86.99%±3.09% 91.75%±1.91%

3.2 Impact of Description Quality on
Intent Classification Training and
Testing

Table 1 examines how description quality af-
fects training and testing in intent classifi-
cation models. When testing without de-
scriptions, model trained without descriptions
achieves the highest performance at 84.28%,
while the performances of models trained with
independent and dependent descriptions
drop by 2.35% and 2.18% absolute points, re-
spectively. However, when models trained with
descriptions are tested with descriptions (specif-
ically, independent descriptions), scores
improve by 1.49% and 2.84% over the model
trained without descriptions, respectively. This
indicates that descriptions not only help mod-
els understand the detailed semantics of intents
to improve classification accuracy but that fine-
tuning models to understand descriptions en-
hances their ability to leverage them in testing.

The score improvements of the model
trained with dependent descriptions
over the model trained with independent
descriptions demonstrate that fine-tuning
with higher-quality descriptions optimizes
their effective use in classification. This
result supports the premise of this research
that improving description quality is crucial
and should not be left to random selection.
In testing, higher-quality descriptions can
boost performance, and their influence is
more significant than in training. The
model trained with dependent descriptions
starts at 82.1% when tested without descrip-
tions, improves by 4.89% when tested with
independent descriptions, and achieves
an additional 4.76% increase when tested
with dependent descriptions. The improve-
ment in testing quality has a larger impact
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Table 2: The middle row shows models trained
using a single type of dependent description
per intent. In contrast, the top row represents
models trained using five different dependent
descriptions per intent, alternating during train-
ing. The bottom row shows models trained with a
single manually filtered cleansed description.

Types of Descriptions Used in Testing
1 dependent
description

1 cleansed
description

Types of
Descriptions

Used in Training

5 dependent
descriptions 82.05%±3.15% 85.28%±1.69%
1 dependent
description 82.52%±2.44% 85.71%±1.61%
1 cleansed

description 83.4%±3.71% 85.79%±1.69%

than that in training. Notably, a model
trained with independent descriptions but
tested with dependent descriptions scored
90.97%, while one trained with dependent
descriptions but tested with independent
descriptions scored only 86.99%. This
clearly shows that testing is particularly
sensitive to description quality.

3.3 Impact of Description Quantity on
Intent Classification Training

This experiment evaluates the effect of the
quantity and quality of descriptions on model
training. The result is shown in Table 2.
The results reveal little to no difference be-
tween models trained with multiple descrip-
tions and those trained with just a single de-
scription. In fact, performance tends to de-
cline with the inclusion of varied descriptions.
However, training with higher-quality descrip-
tions – cleansed descriptions – resulted in
the highest performance. This highlights the
importance of training with a higher-quality de-
scription, even if only one, rather than relying
on multiple descriptions of varying quality.

3.4 Optimizing ‘k’ for Efficient Intent
Classification with Ranker

This experiment investigates the optimal value
of ‘k’ for a ranker, determining the number of
intent options to include in the intent classifi-
cation input. Figure 3 demonstrates the per-
formance trends as k increases. In the CLINC
dataset, starting at approximately 44.21% ac-
curacy with k set to 1, performance improves
consistently as k increases, peaking at around
90% when k reaches around 13.

These results indicate that using a descrip-

Figure 3: Graph depicts the intent classification
accuracy on CLINC dataset converges as k becomes
near 10.

tion ranker with the top k around 10 intent op-
tions provides near-optimal performance. The
CLINC dataset, with 75 intent options and
descriptions of 10 to 20 tokens each, requires
around 1,200 to 1,300 tokens in total. By re-
trieving only the top 10 descriptions, the re-
quired input length drops to 300 to 400 tokens,
reducing the input size by roughly 75%. This
demonstrates that the approach proposed in
this study significantly optimizes instruction-
tuned models, enhancing their efficiency by
minimizing the input length required for classi-
fication. For the HWU and BANKING dataset,
the similar trend is shown and it can be found
in Appendix B.

4 Conclusions

This paper thoroughly explored the impact of
intent description quality and quantity on zero-
shot intent classification using large language
models while addressing the challenges of in-
creased input length. The results show that
fine-tuned models with descriptions are more
effective for intent classification with descrip-
tions. Additionally, higher-quality descriptions
for both training and testing enhance perfor-
mance, particularly during testing. Using an
off-the-shelf ranker to reduce input length by
selecting the top ten intent options minimizes
input length without significant trade-offs in
performance. Overall, this study provides prac-
tical guidelines for leveraging intent descrip-
tions with large language models to address
intent classification in low-resource settings.
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Appendix

A Prompt for Description
Generation using ChatGPT

Prompt for Independent Description
Generation The independent description
generation prompt is illustrated as follows:

Independent-Description Generation Prompt

Intent Name: {intent name}
Few-Shot Queries: {q1}, {q2}, {q3}
Instruction:
The above is the list of intents and their examples.
Now, I want you to create unique descriptions for
the intent. Make the description of the intent,
’intent name’. Here, make the description that
encompasses the provided few-shot queries. Also,
don’t use the given use cases examples of intent for
the description. Make the descriptions no longer
than 10 words. I want you to return the result as
following format of json:

List({
“{intent}”: “description”
})
DO NOT return any words other except for the
requested format of the result.

Prompt for Dependent Description Gen-
eration Dependent description generation
prompt has the following format:

Dependent-Description Generation Prompt
Example

Intent Name: {intent name}
Few-Shot Queries: {q1}, {q2}, {q3}
...
Intent Name: {intent name}
Few-Shot Queries: {q1}, {q2}, {q3}

Instruction:
The above is the list of intents and their examples.
Now, I want you to create unique descriptions for
each intent. This time, please make the description
of the intent, ’{intent}’. Here, the most important
thing is that each description of intents is distinct
and separate to each other. Don’t make one
description of intent to be inclusive to another. For
example, if you have an intent, ’find restaurant’,
’restaurant’, don’t make the description of each
of them to be ’Find a available restaurant’ and
’every acts related to restaurant’ so that the former
one is inclusive to the latter one. Also, don’t use
the given use cases examples of intent for the
description. Make the descriptions longer than 10
words. Generate as long as possible. I want you to
return the result as following format of json:
List({
“{intent}”: “description”
})
DO NOT return any words other except for the
requested format of the result.
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B Optimizing ‘k’ for Efficient Intent
Classification with Intent Option
Ranker in HWU and BANKING
datasets

For HWU, initial accuracy is 26.51 points with
k set to 1, rising to almost maximum of 80
points around k equals 15. Lastly, in the
BANKING dataset, the accuracy begins at
50.83 points and reaches around 80 points near
the optimal k value of 10.

Figure 4: The graph shows that intent classifica-
tion accuracy on the HWU dataset converges as k
approaches near 15.

Figure 5: The Graph depicts the intent classifica-
tion accuracy on BANKING dataset converges as
k approaches near 10.

C Baseline Experiments

In Table 3, we compare our model, labeled as
FLAN-T5-ranker (ours), with state-of-the-art
models presented by Sung et al. (2023), which
performed intent classification on the CLINC,

Table 3: Out-domain intent classification accuracy
compared to state-of-the-art models and baselines.
Zero and few-shot accuracy results are reported as
percentages. The datasets had 50, 25, and 27 intent
options for CLINC, HWU, and BANKING datasets
respectively. We followed the same configuration
but trained on CLINC data only outside the 50 test
set intents.

CLINCN=50 HWUN=25 BANKINGN=27
K=0 K=1 K=0 K=1 K=0 K=1

L-BERTT AP T (Gururanganet al., 2020) 79.5 86.5 63.1 69.4 70.1 78.5
L-SBERTP arapharse(Maet al., 2022) 84.5 90.9 67.5 75.5 77.4 82.8
L-PIE (Sung et al., 2023) 86.5 91.8 70.6 77.4 77.6 82.9
FLAN-T5 (ours) 97.58 97.62 87.92 87.22 84.72 85.52
FLAN-T5-ranker (ours) 96.46 96.26 86.23 85.92 84.88 85.34
Llama-2-Alpaca (ours) 96.38 96.91 85.92 86.07 83.61 84.10
Llama-2-Alpaca-ranker (ours) 96.15 96.24 85.71 86.01 83.95 84.44

HWU, and BANKING datasets. Please refer to
the original paper for details on the baselines:
L-BERTTAPT, L-SBERTParaphrase, and L-PIE.

Using the FLAN-T5 3B model fine-
tuned with dependent descriptions and
tested with the top-10 ranked cleansed
descriptions per option, our zero-shot ap-
proach outperformed L-PIE by 9.96, 15.63, and
7.28 points for the CLINC, HWU, and BANK-
ING datasets, respectively. When trained on
one sample per intent (one-shot learning), our
model showed improvements of 4.44, 8.61, and
1.54 points over L-PIE for those datasets. The
significant gap between our model and the
state-of-the-art may be attributed to size differ-
ences, but these results demonstrate the objec-
tivity of our findings and the model’s superior
performance over existing models.

Our model without the ranker, labeled
FLAN-T5 (ours), shows slightly better per-
formance than the version using a ranker, but
the difference is minimal.

We also trained another well-known
instruction-tuned model, Meta’s Llama-2-Chat
7B (Touvron et al., 2023). This model was
initially instruction-tuned with the Stanford
Alpaca dataset (Taori et al., 2023) and further
fine-tuned using intent classification data. Our
model, referred to as Llama-2-Alpaca-ranker
(ours), achieved accuracy comparable to our
state-of-the-art FLAN-T5 model. Notably, our
proposed method of using a ranker did not
negatively impact performance and even pro-
vided slight improvements on the BANKING
dataset. This confirms that using a ranker can
not only reduce the burden of handling long
inputs but also maintain effective performance
in zero-shot intent classification.
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D Training Detail

We use the HuggingFace implementation for
fine-tuning FLAN-T5 models. In training
FLAN-T5 model, AdamW optimizer with the
learning rate 2e − 5 is used in training. The
learning rate is gradually decayed during train-
ing with a cosine scheduler. The model is
trained for 2 epochs and the batch size is 64.
Every FLAN-T5 model performance reported
in this work is the model of the final epoch. We
run experiments with 4 NVIDIA A100 GPUs.

E Instruction Input Example

The Figure 6 shows an example of an input to
the model for fine-tuning intent classification
task. We manually crafted ten instruction tem-
plates following the FLAN v2 format (Chung
et al., 2022) for the intent classification task.
The input consists of a section that instructs
the model to classify the given intent, a sec-
tion with the user query, and another with the
intent options.

Figure 6: An input example of an instruction for-
mat.

F Dataset Statistics

The Table 4 provides statistics for the train-
ing and testing datasets of CLINC, HWU, and
BANKING. For the CLINC and HWU datasets,
the domains were split in half for different seeds,

https://huggingface.co/

while for the BANKING dataset, all intents
were split in half. The numbers below the
dashed line represent the number of instances
for each seed. The ’Seen domain’ column cor-
responds to the training data, and the ’Unseen
domain’ column corresponds to the testing in-
stances.

Table 4: The statistics for the training and testing
datasets of CLINC, HWU, and BANKING.

Seen
domain

Unseen domain

seed CLINC CLINC HWU BANKING
42 credit

cards,
banking,
auto
and com-
mute,
meta,
utility

home,
travel,
work,
kitchen
and
dining,
small
talk

music,
recom-
men-
dation,
news,
email,
general,
iot,
trans-
port, qa,
date-
time

banking

7,500 2,250 669 1,560
52 auto

and com-
mute,
banking,
work,
utility,
kitchen
and
dining

home,
meta,
travel,
credit
cards,
small
talk

music,
cooking,
iot, play,
trans-
port, qa,
date-
time,
social,
weather

banking

7,500 2,250 524 1,560
62 meta,

kitchen
and
dining,
credit
cards,
utility,
work

home,
travel,
auto
and com-
mute,
banking,
small
talk

alarm,
music,
audio,
recom-
men-
dation,
general,
play,
lists, qa,
cooking

banking

7,500 2,250 621 1,560
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