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Abstract
This paper introduces a new method that im-
proves the performance of Automatic speech
recognition (ASR) engines, e.g., Whisper in
practical cases. Different from prior methods
that usually require both speech data and its
transcription for decoding, our method only
uses jargon as the context for decoding. To
do that, the method first represents the jargon
in a trie tree structure for efficient storing and
traversing. The method next forces the decod-
ing of Whisper to more focus on the jargon
by adjusting the probability of generated to-
kens with the use of the trie tree. To further
improve the performance, the method utilizes
the prompting method that uses the jargon as
the context. Final tokens are generated based
on the combination of prompting and decoding.
Experimental results on Japanese and English
datasets show that the proposed method helps
to improve the performance of Whisper, spe-
cially for domain-specific data. The method is
simple but effective and can be deployed to any
encoder-decoder ASR engines in actual cases.
The code and data are also accessible.1

1 Introduction

Automatic speech recognition (ASR) is the task
of automatically transcribing input audio to output
text (Radford et al., 2023; O’Shaughnessy, 2024).
The output of ASR systems can be used in sev-
eral applications such as intelligent personal assis-
tants (McGraw et al., 2016; He et al., 2019), voice
searches (Chiu et al., 2018), or meeting analyses
(Yu et al., 2020; Song et al., 2020; Jung et al., 2023;
Li et al., 2023; Rennard et al., 2023). Recently, the
performance of end-to-end ASR models has been
improved by several approaches such as connec-
tionist temporal classification (Graves et al., 2006;
Graves and Jaitly, 2014), recurrent neural network
transducer (Graves, 2012), attention-based encoder-
decoder (Chorowski et al., 2015; Chan et al., 2016;

1https://shorturl.at/YiBUr

Dong et al., 2018) with strong ASR engines (Gu-
lati et al., 2020; Han et al., 2020). Among those,
Whisper has shown strong performance for speech
recognition (Radford et al., 2023). It was trained
with 680,000 hours of labeled audio data with mul-
titasking and multilingual learning.

Strong ASR engines such as Whisper have
achieved promising results in English, yet, we ob-
serve the decent accuracy of ASR engines applied
to actual business, especially for low-resource lan-
guages, e.g., Japanese. To fill the gap, there are two
possible solutions for domain adaptation. The first
well-known solution is to continuously fine-tune
ASR engines with domain-specific data (Huang
et al., 2021; Javed et al., 2022). However, creating
training corpora (including speech and text) data is
a non-trivial task that is time-consuming and labor-
expensive. In many cases, the creation requires
domain experts, especially for narrow specific do-
mains, e.g., high-pressure gas incidents. Also, fine-
tuning is a complex process that requires skilled
practitioners (Radford et al., 2023). The second
solution is to consider domain-specific data as a
context and inject the context into the decoding
phase of ASR engines (Pundak et al., 2018; Zhao
et al., 2019; Alon et al., 2019; Le et al., 2021b,a;
Sun et al., 2021; Han et al., 2022). Among them,
biasing methods are simple and potential to inject a
context into the ASR process. However, these meth-
ods are usually used with hybrid ASR (Pironkov
et al., 2020) or CTC end-to-end models (Graves
and Jaitly, 2014) which are behind the performance
of encoder-decoder ASR models such as Whisper.

This paper addresses the problem of improving
the performance of ARS engines by using jargon.
The problem comes from the fact that in practi-
cal cases, only jargon (domain-specific terms) is
provided by clients. The jargon only includes spe-
cific words and phrases without the availability of
speech data and domain-specific text. It challenges
pre-trained ASR models, e.g., Whisper, and cur-
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rent methods of contextual speech recognition that
usually require both speech and text data. To ad-
dress the problem, we introduce a new method that
injects domain-specific knowledge in the form of
jargon into the decoding phase of ASR engines. To
do that, the method uses Whisper as the backbone
and jargon represented as a trie tree as the domain-
specific context. By utilizing it as a form of the
tree to manipulate the beam search decoding pro-
cess and a prompt to give instructions to Whisper,
the method improves the performance on various
datasets and the appearance of jargon in the final
output. The method does not require speech data
for fine-tuning ASR models, so that facilitates the
deployment in actual cases. In summary, the paper
makes two main contributions as follows.

• It introduces a method that injects the jargon
into the beam search decoding by boosting the
score of the beam that includes tokens in the
jargon. The method is further supported by
the initial prompt method offered by Whisper.
The method is simple, effective, and easy to
adapt with any encoder-decoder ASR engines.

• It validates the efficiency of the method on
Japanese and English datasets. Experimental
results show that domain knowledge injection
helps to improve the quality of ASR engines.

2 Related Work

ASR The recent success of deep neural networks
has been contributed to improve the performance of
ASR. Approaches range from traditional methods
such as connectionist temporal classification (CTC)
(Graves et al., 2006; Graves and Jaitly, 2014), re-
current neural network transducer (Graves, 2012),
attention-based encoder-decoder (Chorowski et al.,
2015; Chan et al., 2016; Dong et al., 2018), to
sequence-to-sequence models (Chiu et al., 2018).
These approaches leverage the development of
strong ASR engines (Gulati et al., 2020; Han et al.,
2020; Radford et al., 2023) trained by the Trans-
former architecture (Vaswani et al., 2017) such as
SeamlessM4T (Barrault et al., 2023) or Whisper
(Radford et al., 2023). We used Whisper as the
main backbone of our method because of its effi-
ciency for ASR in domain-specific Japanese data.2

Context-aware ASR has recently been used to
improve the quality of ASR (Williams et al., 2018;

2Whisper gives better performance than SeamlessM4T for
domain-specific Japanese datasets in the internal testing.

Pundak et al., 2018; Zhao et al., 2019; Alon et al.,
2019; Le et al., 2021a,b; Han et al., 2022; Jung
et al., 2022). The context can be the text of testing
data (Han et al., 2022) or a list of biasing phrases
(Zhao et al., 2019; Alon et al., 2019; Pundak et al.,
2018). There are two main directions. The first
is to bias the decoding of ASR models by using
shallow fusion methods (Zhao et al., 2019; Le et al.,
2021b,a). The fusion methods create a finite state
transducer (FST) created from the list of biasing
phrases and use the FST to adjust the decoding
process without adding any neural networks. In
contrast, the second usually encodes the context
by using the encoder and then uses attention to
change the probability of tokens in the decoding
phase (Han et al., 2022). Between the two direc-
tions, TCPGen (Sun et al., 2021) introduced a tree-
constrained pointer generator that incorporates a
list of biasing words into both attention encoder-
decoder and transducer end-to-end ASR models.

The method of contextual speech recognition is
perhaps the most relevant to our work (Williams
et al., 2018). The method adjusts the output likeli-
hoods of a neural network at each step in the beam
search by a sequence probability computed from n-
grams. While sharing the idea of using shallow fu-
sion, our proposed method distinguishes two main
points. First, we consider a small dictionary rather
than using the text of testing data to create n-grams
language models (LMs) as Williams et al. (2018).
It makes our task to be more challenging. Second,
in the decoding phase, we modify the probability
of a token appearing in the jargon while Williams
et al. (2018) just simply used shallow fusion with
the probability of LMs. We follow the shallow fu-
sion approach because it is simple but effective and
is appropriate for ASR in business cases.

3 Proposed Method

3.1 Problem Statement

The problem is to improve the performance of an
encoder-decoder ASR engine, e.g., Whisper by tak-
ing into account jargon when doing decoding. We
define the jargon as a dictionary D that includes
domain-specific tokens used in actual businesses,
e.g., technical terms used in the high-pressure gas
incident domain. Precisely, given the jargon D, we
design a method that adjusts the decoding process
of Whisper to inject D for speech recognition.

Figure 1 (right) introduces the proposed decod-
ing method. The input speech is processed by an
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ASR engine. The decoder adjusts the probability
of tokens by considering the jargon represented
in a trie tree. The initial prompt method is also
combined to further improve the quality of ASR.

Figure 1: Whisper (left) and our proposed method
(right). The inclusion of "留分" increases our model
recognition. The Japanese sentence means "Part of dis-
tillation is the component that form the liquid mixture".

3.2 Whisper
There are several attention-based encode-decoder
models have been released recently and achieved
good results on various datasets, such as Seam-
less4MT (Barrault et al., 2023). While we use
Whisper (Radford et al., 2023) as the backbone
of our method, our method can be applicable to
all models within this family. We select Whisper
because of its strong performance of speech recog-
nition in many languages, especially in Japanese.
Whisper is a sequence-to-sequence model, based
on the Transformer architecture. It consists of
two transformers. As an encoder-decoder ASR
engine, the first transformer encodes audio infor-
mation and the second one encodes linguistic in-
formation. The model is jointly trained to predict
a sequence of tokens by the decoder for many dif-
ferent speech-processing tasks including multilin-
gual speech recognition, speech translation, spo-
ken language identification, and voice activity de-
tection. The decoder predicts each next token by
conditioning on previously processed tokens with
that token’s probability of the model. During in-
ference, Whisper generates a sequence of output
labels given an input speech that maximizes the
likelihood probability distribution.

y∗ = argmax
y

p(y|x) (1)

with p(y|x) being the output probability distribu-
tion from Whisper.

3.3 Jargon Injection

The strong performance of pre-trained attention-
based encoder-decoder ASR models, e.g., Whis-
per facilitates the deployment of ASR models, yet,
domain adaptation makes a challenge for the de-
ployment in actual cases. To fill this gap, a straight-
forward method is to fine-tune ASR models with
domain-specific data. However, this method re-
quires training data that includes both speech and
its transcription. In practical cases, creating this
training data is a time-consuming and non-trivial
task that requires domain experts. Therefore, we
come up with another direction that directly injects
domain-specific jargon for domain adaptation. This
section shows the proposal of injecting jargon into
the decoding process of Whisper.

Jargon representation In business cases, jargon
refers to a set of tokens that is uncommon with
out-domain people, causing difficulty for an ASR
model to recognize correctly or often be mistaken
with similar tokens, e.g., 留分 ("part of distilla-
tion") and 流分 (does not exist in Japanese dic-
tionary). In almost all cases, the jargon is usually
created by humans in specific domains.

To represent the jargon D for decoding, we use
the trie tree, which is one of most efficient meth-
ods for representing a collection of strings (Le
et al., 2021a). Each node in a tree is associated
with a character. The root node is associated with
an empty string and children of a node will share
a common prefix with its parent node. Figure 2
shows an example of a trie tree that represents "eat,
"can", "could", "count", and "card" tokens. Repre-

Figure 2: A trie sample made from "eat, "can", "could",
"count", and "card" words.

senting D as a trie allows our method to efficiently
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look up jargon during decoding. The trie stores a
pointer for each sequence. Whenever the decoding
method extends a sequence in the beam, it moves
this pointer down to the tree. If it encounters either
a leaf node or a node marked as jargon-boundary,
the method permanently adds a score to the total
score of that sequence using Eq. (4).

Contextual beam search The conventional
method in Eq. (1) provides a good way for de-
coding the next tokens, yet, encoder-decoder ASR
engines only support generating step-wise distri-
bution p(yn|yn−1, ...y0, x). If we brute-force this
formula, checking all possible sequences and com-
puting probabilities from them, it would take a
huge amount of time. That’s why, it’s more com-
mon to use beam search to approximate Eq. (1)
while limiting the search space. Beam search is
conducted as follows. Let k be the beam size, T is
the number of distinct tokens generated from ASR
engines, the beam search starts with one single
sequence that consists of <sos>-equivalent tokens
and its scores as p(<sos>|x). When decoding, the
beam search extends the sequence by appending
only top k tokens with the best scores among all
possible T tokens that ASR models can generate,
adding all k sequences back to our beam. Next,
these k sequences are again appended with the next
top k tokens, resulting k2 sequences in total. The
beams are sorted according to their probability to
retain only the best k sequences with the highest
probability. The decoding process ends when the
<eos>-equivalent token appears. This process is
repeated until all sequences in beams are locked.

We extend the original beam search to define our
contextual beam search. The idea is to adjust the
probability of generated tokens by using the jargon
D. In Eq. (1), the best sequence is only generated
based on the output probability distribution from
ASR. To take into account the additional context D
for the beam search, Eq. (1) is modified as follows.

y∗ = argmax
y

p(y|x)
pD(y)α

(2)

where pD(y) is a distribution calculated based on
the jargon D and α is a tunable hyperparameter
controlling the contribution of the context D. In
practice, running beam search decoding by using
Eq. (2) often causes numerical instability. There-
fore, we transform Eq. (2) by using the logarithm
version of the equation as follows.

y∗ = argmax
y

log(p(y|x))− αlog(pD(y)) (3)

Eq. (3) shows our decoding method. It includes
two main parts: one from the original ASR mod-
els and another from the jargon D. The main idea
of this equation is to boost the score of sequence
based on prior distribution pD(y). Since D is a list
of specific tokens, Eq. (3) cannot calculate prior
distribution by modeling it as a language model.
Instead, we artificially boost the output probabil-
ity whenever the process reaches the boundary of
jargon. As a result, Eq. (3) is written as follows.

y∗ = argmax
y

log(p(y|x))− αSD(y, x) (4)

with SD(y, x) is defined as follows.

SD(y, x) =
∑

0≤i≤j<n

j∑
k=i

log(p(yk|x)), if yi..j ∈ D

(5)
with n being the length of sequence y. In short,
SD(y, x) is calculated by summing the output prob-
ability of every possible jargon in D containing
in the sequence y. Therefore, all sequences that
contain the jargon will have their boosted scores,
increasing their chance of appearing in the final
beam of the beam search decoder. At each step of
decoding, calculating Eqs. (4) and (5) is computa-
tionally expensive because of storing and finding
candidate tokens in D. Therefore, we use the trie
data structure in Figure 2 for efficient string lookup.

Initial prompt The initial prompt is one of the
prominent features of Whisper. The prompt serves
as the previous context of the current speech frames.
By appending a context C before decoding, Whis-
per is indirectly biased into the prompt. The context
C is composed of two parts: an instruction and the
jargon. The detailed context is shown in Section
4.2. To use C, Eq. (1) is written as follows.

y∗ = argmax
y

log(p(y|x,C)) (6)

Combination Since context text C is appended
before decoding and does not change during the
beam search, we combine the initial prompt and
our method for the best result. The combination
offers a global optimization that takes into account
static information from the prompt (prefix) and
dynamic probabilities from our decoding method
(suffix). It forces Whisper to more focus on the
jargon. Therefore, Eq. (4) is written as follows.

y∗ = argmax
y

log(p(y|x,C))− αSD(y, x, C)

(7)
with SD(y, x, C) is defined similarly to Eq. (5).



494

4 Experimental Setup

4.1 Datasets
We validated the proposed method on three
Japanese datasets: two in-house corpora and two
benchmark dataset, and one English corpus.

HGP HGP is a smaller set of the original high-
gas incident corpus published in 2022 by the High-
Pressure Gas Safety Institute of Japan. From
18,171 incident cases, we extracted 1,500 incident
reports in three industries: "general chemistry",
"petrochemical", and "oil re- fining" (Inoue et al.,
2023). HGP’s dictionary was made by automati-
cally comparing the difference between the Whis-
per model output and the validation ground truth.
We took only tokens that exist at least one time
(or higher) in the Japanese dictionary. Due to the
term,3 we can not disclose the dataset.

GPT synthesis GPT synthesis is an in-house
dataset that consists of 200 audios imitating HGP
dataset’s style. Its content was both handcrafted
and assisted with OpenAI’s ChatGPT. The dictio-
nary was made manually by a domain expert, tar-
geting technical terms in the incident domain.

JNAS (Itou et al., 1999) is a public Japanese
dataset that consists of 16679 utterances, spoken by
306 speakers, with half of them are male (16,176 by
reading Mainichi Newspaper and 503 from ATR
503 PB-Sentences). The JNAS’s dictionary was
made with the same method as HGP. We compared
the difference between the output of Whisper with
the gold label of the validation dataset.

Table 1: Statistics of test sets of four databases. JA
stands for Japanese and EN is English.

Dataset Samples Jargon Domain Lang
HGP 1467 150 Incident JA
GPT-Syn 200 47 Incident JA
JNAS 2253 157 Newspaper JA
LibriSpeech 2620 146 Audiobook EN

LibriSpeech (Panayotov et al., 2015) is a pub-
lic English dataset that consists of approximately
1000 hours of audiobook recordings, mostly come
from Project Gutenberg collection. In this paper
we exclusively utilized the "clean" category of the
dataset, which includes recordings from 20 male
and 20 female speakers for both the "dev" and "test"

3https://shorturl.at/fnKNO

subsets. The dictionary was automatically con-
structed using the same method applied to the HGP
dataset, except that the comparison was performed
at word-level instead of token-level.

4.2 Baselines
We compared the proposed method to strong base-
lines. The original Whisper (Radford et al., 2023)
is the first baseline. It directly transcribes speech
data to text without using our inject method. We
used two versions: Whisper small (Whisper S)
and Whisper medium (Whisper M) as strong base-
lines. We did not report the performance of the
Whisper large model because of the tiny gap on
testing datasets. Initial prompt uses the prompt
as "はい、日本語で、token1、token2、..., to-
kenNの単語をすべて含むテキストを生成し
ます。" . ("Yes, it will generate a text contain-
ing all the words token1, token2, ..., tokenN in
Japanese") for decoding. BeamSearch + n-grams
LM (Williams et al., 2018) uses beam search de-
coding combined with a n−grams language model
for decoding. TCPGen (Sun et al., 2021) incor-
porates a list of biasing words into both attention
of encoder-decoder and transducer of ASR models.
The probability of generated tokens is computed by
using the probability distribution over a subset of
output subword units conditioned by a prefix tre.

4.3 Evaluation Metrics
Character and word error rate (CER and WER)
We used CER and WER (Rix et al., 2001; Hu and
Loizou, 2006), well-known metrics for evaluating
ASR models, as the main metrics for evaluation.
The CER was used for Japanese datasets and WER
was used for the English dataset.

Dictionary recognition rate The CER or WER
metrics can measure the improvement in terms
of corrected predicted tokens over the gold label.
However, the number of corrected characters is
small compared to the total number of characters
in a testing set. As a result, a small improvement
in CER or WER may not represent the efficiency
of the proposed method. We, therefore, define a
new metric called Dictionary Recognition Rate
(DRR) as follows.

DRR =
#words in dictionary correctly recognized
#words in dictionary should be recognized

4.4 Implementation
The α parameter was selected in the range of [0.1,
0.6] shown in Figure 3. The beam size was fixed
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at five. Whisper small and medium versions were
used as the main backbone for transcription. We
did not report the performance of the Whisper large
version due to very tiny improvements.

The method requires a single Tesla P100 GPU
for running the backbone ASR model.

5 Results and Discussion

Performance comparison Table 2 shows the
comparison of the proposed method to strong base-
lines. We can observe that the combination of our
decoding with the initial prompting method obtains
the best results in almost all cases on two evalu-
ation metrics. The improvement may come from
two possible reasons. First, our decoding method
forces Whisper to more focus on domain-specific
tokens in the dictionary. By adjusting the probabil-
ity of tokens generated by the decoder of Whisper,
the decoding process can replace generated tokens
with those in the dictionary, e.g., 流分 (does not
exist in Japanese dictionary) and留分 (part of dis-
tillation). Second, the initial prompt method also
provides a good indicator for the decoding. It uses
a prompt that includes a short instruction and a set
of tokens in the jargon for guiding the decoding
process. This prompt forces the decoder of Whis-
per to more focus on tokens in the prompt when
doing speech recognition. By using both methods,
the combination can achieve the best results.

An important point is that the performance of
initial prompting and our decoding methods is bet-
ter than Whisper, the strong baseline of ASR on
the four testing datasets. As mentioned, the ini-
tial prompt method directly embeds the jargon in
the prompt that serves as the prefix when decod-
ing audio segments. However, this method has a
main limitation. The prompt is short (less than 250
tokens) and faces a challenge with a long dictio-
nary in practical cases. In contrast, our decoding
method directly adjusts the decoding process by
using the trie tree representation. Tokens appear-
ing in the jargon receive higher probabilities than
those that are not in the jargon. As a result, our
decoding method is more general and can work
with any ASR engines and dictionaries. In addition,
the initial prompt method does not show the effi-
ciency on Librispeech. This is because this corpus
is public and already included in the pre-training
of Whisper, therefore, adding additional context in
form of a dictionary is not necessary. The inclu-
sion of Librispeech in the pre-training of Whisper

also results the high score of DRR on this dataset.
Despite the limitation, in actual cases, the initial
prompt method still can be used by using matching
or selection methods for dealing with a large dictio-
nary. For example, the selection method can select
relevant tokens given an input speech for recogni-
tion to reduce the number of tokens in the prompt.
In this case, the combination of our decoding and
initial prompt methods can retain promising results.
In the case that the initial prompt method is not
available, our method can still output competitive
scores. For example, it is the best on Librispeech
and the second best of DRR on HGP. It confirms
the efficiency of our proposed decoding method.

For the baselines, Whisper (small and medium
versions) obtains promising results. As mentioned,
by using a huge amount of data for pre-training,
Whisper can work well on various domains in the
multilingual setting. TCPGen does not show the
efficiency on GPT synthesis and JNAS datasets be-
cause these datasets have only testing sets while
TCPGen requires training data for adaptation. For
Japanese, only HGP provides both training and test-
ing sets. Therefore, we fine-tuned TCPGen on HPC
and directly used the model for GPT Synthesis and
JNAS testing sets. The Beam Seach+n-grams LM
method achieves competitive results even it is a
quite simple method. It shows the role of beam
search and language modeling for the contextual
basing task of ASR. However, the performance of
this method is still behind our methods.

Among the four datasets, the improvement on
the two in-house datasets is larger than JNAS and
Librispeech, two public corpora. There are two
possible reasons. First, the two in-house datasets
contain more domain-specific knowledge and terms
that may not appear in the training data of Whis-
per. This, therefore, challenges the transcription of
Whisper in domain-specific data. Second, JNAS
and Librispeech are benchmark datasets that are
easy to collect and use as the training data of Whis-
per. It explains the reason why Whisper operates
well on benchmark ASR corpora. The proposed
method is simple and effective. It does not increase
much the running time due to the efficient search-
ing method on a small dictionary using a trie tree.

Human vs. automatic dictionary creation Dic-
tionaries created by humans are good at biasing,
however, it’s creation is costly and requires domain
knowledge. We, therefore, investigated the behav-
ior of injection methods using dictionaries created
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Table 2: Performance comparison on three datasets. Bold text is the best and underline text is the second best. S
(small) and M (medium) stand for the two versions of Whisper. This notation is also used for Table 3.

Method
HGP GPT Synthesis JNAS LibriSpeech

CER DRR CER DRR CER DRR WER DRR
Beam Search+n-grams LM 14.98 78.76 15.61 16.95 9.92 28.19 2.92 98.85
TCPGen (Whisper S) 22.90 68.59 24.61 13.60 19.98 24.77 3.23 99.03
TCPGen (Whisper M) 19.02 78.89 15.55 16.80 15.17 29.15 2.92 98.30
Whisper (S) 23.50 66.42 23.08 13.22 17.27 23.52 3.67 98.19
Whisper (M) 14.97 78.82 15.60 16.95 9.92 28.35 2.82 99.25
Initial prompt (Whisper S) 23.18 66.60 20.67 51.86 19.34 32.40 3.48 98.45
Initial prompt (Whisper M) 12.05 81.09 13.09 59.32 9.22 39.56 3.34 98.77
Ours (Whisper S) 22.82 71.86 22.40 29.49 16.96 31.15 3.65 98.21
Combined (Whisper S) 22.40 71.91 20.40 79.66 20.24 41.31 3.49 98.45
Ours (Whisper M) 14.66 82.76 14.86 25.76 9.60 34.74 2.81 99.25
Combined (Whisper M) 11.57 85.08 12.24 82.37 9.06 46.26 3.34 98.77

by humans or automation. As mentioned in Section
3.3, the dictionaries used in the experiments were
created by humans. To assess the setting of using
automatic dictionary creation, we used a method as
follows. First, the speech data of testing sets of the
datasets were transcribed by using Whisper. The
transcription was then aligned with the gold texts
to obtain wrong words based on word segmentation
(we used Mecab4 for Japanese). Finally, common
words were removed by using Japanese or English
dictionaries. Note that we could not create the dic-
tionary by humans for Librispeech due to the large
number of testing samples. Therefore, we did not
report the observation on Librispeech.

Table 3 reports the scores of the injection meth-
ods using dictionaries created by humans or au-
tomation. The general trend shows that dictionar-
ies created by humans help to improve the per-
formance of ASR. For example, methods using
dictionaries created by humans output better per-
formance than those using dictionaries created au-
tomatically in four cases. It is easy to understand
that domain experts can create closer and more cor-
rect domain-specific words that the original Whis-
per models can not transcribe correctly. In this
sense, incorporating these words into the decoding
of Whisper can improve CER. In contrast, the au-
tomatic creation method may create wrong words
due to the accumulated error of ASR. It then affects
the final scores of the injection methods. An inter-
esting observation is that the gap between the two
setting is small. It suggest that we can reduce hu-
man effort in creating domain-specific dictionaries

4https://github.com/elisa-aleman/MeCab-python

by applying appropriate automatic methods.

Table 3: The performance of the injection methods us-
ing automatic dictionary creation or human-involved
dictionary creation. IP stands for Initial Prompt.

Method HGP GPT Syn JNAS Avg
Human creation

IP (S) 23.18 20.67 19.34 21.06
IP (M) 12.05 13.09 9.22 11.45
Ours (S) 22.82 22.40 16.96 20.72
Combined (S) 22.40 20.40 20.24 21.01
Ours (M) 14.66 14.86 9.60 13.04
Combined (M) 11.57 12.24 9.06 10.95

Automatic creation
IP (S) 21.20 21.13 19.86 20.73
IP (M) 16.01 14.28 15.99 15.42
Ours (S) 23.35 22.20 17.34 20.96
Combined (S) 21.33 20.34 20.22 20.63
Ours (M) 18.57 14.48 14.37 15.80
Combined (M) 12.60 13.08 14.79 13.49

Parameter fine-tuning Eqs. (4) and (7) use the
parameter α to control the contribution of the jar-
gon, so we investigated the behavior of the model
with different α values. To do that, we tuned the
parameter α in the range of [0.1, 0.2, 0.3, 0.4, 0.5,
0.6]. Figure 3 shows the performance with differ-
ent α values using the Whisper medium version.
We can observe that the CER slowly decreases un-
til 0.4 and then quickly increases. The reason is
that with a small value of α the contribution of
our decoding is tiny. When increasing α, the de-
coding process is hallucinated by the jargon that
leads to high CERs and WER. The change of per-
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formance on Librispeech is tiny compared to other
Japanese datasets. As mentioned, the Librispeech
corpus may be included in the pre-training of Whis-
per, that mitigates the contribution of our decoding
method. Based on the obversation, we therefore
selected α = 0.2 for HGP, JNAS, and Librispeech
corpora and α = 0.4 the GPT-Syn dataset.

Figure 3: Parameter tuning using Whisper medium.

Output observation Table 4 shows the output
observation of methods compared to the ground
truth (translated as "It is presumed that the cor-
rosion gap was made due to aging of refrigerant
piping") on the HGP dataset using the Whisper
medium version. 冷媒 means "refrigerant", and
腐食孔 means "corrosion gap". We did not show
the output of the Beam Search+n-grams LM and
TCPGen due to low CER and WER as in Table 2.

Table 4: The outputs from decoding methods. Blue text
is correct and red text denotes incorrect tokens.

Method Sample
Ground-truth 冷媒配管の経年劣化による腐食孔と推定
Whisper 霊媒配管の経年劣化による腐食効と推定
Initial prompt 例外配管の経年劣化による腐食孔と推定
Ours 冷媒配管の経年劣化による腐食効と推定
Combination 冷媒配管の経年劣化による腐食孔と推定

Whisper predicts two similar tokens marked by
red. This is because these terms are in the high-
pressure gas incident domain that does not appear
in the training of Whisper. Instead, it tries to gener-
ate similar tokens used in the training process. The
initial prompt can correctly recognize one token
due to the use of the jargon in the prompt. It is simi-
lar to our decoding method. The combined method
shows the best result that can correctly predict two
tokens. It supports the results in Table 2 in which
our methods output better scores than others.

6 Conclusion

This paper introduces a new method for improv-
ing the performance of ASR engines, i.e., Whis-
per by taking into account jargon. To do that, the
method considers the jargon as the context injected
into the decoding process. Domain-specific tokens
receive more attention by adjusting the score of
tokens in the beam search. Experimental results
on three Japanese and one English datasets con-
firm two important points. First, the jargon can
provide useful domain knowledge to improve the
quality of Whisper. It shows that the improvement
on domain-specific corpora is higher than public
datasets due to the lack of domain knowledge of
Whisper. Second, the combination of our decoding
and the initial prompt methods achieves the best
results. The proposed method provides a simple
but effective way for domain adaptation of Whisper
without accessing speech data for fine-tuning ASR
models. Future work will confirm the efficiency
of the method on other datasets and improve the
decoding process using graph neural networks.

Limitations

Even achieving promising results, the proposed
method has some limitations. First, it can fail to
correct tokens even if they are included in the jar-
gon. The possible reason comes from the fact that
the beam that contains these tokens receives a low
score. Even boosting the score of these tokens, the
beam could not receive the highest probability. Sec-
ond, the initial prompt method helps to improve the
overall performance. In this case, if this method is
not available (ASR models to not offer it) or the
number of biasing words is larger than 244 tokens,
it may challenge our proposed method.

Ethics Statement

All datasets and baseline models experimented with
in this work have no unethical applications or risky
broader impacts. The evaluation uses one public
dataset that is widely used for ASR. For the HGP
dataset, we followed the term that we could not
publish the data. We really acknowledge the un-
derstanding of audiences for data publication. The
dataset does not include any confidential or per-
sonal information of workers or companies. The
baseline methods used for evaluation can be pub-
licly accessed with GitHub links. There is no bias
for the re-implementation or parameter selection
that can affect the final results.
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