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Abstract

We use Gaussian Process Regression to pre-
dict different types of ratings provided by users
after interacting with various task-oriented di-
alogue systems. We compare the performance
of domain-independent dialogue features (e.g.,
duration, number of filled slots, number of con-
firmed slots, word error rate) with pre-trained
dialogue embeddings. These pre-trained di-
alogue embeddings are computed by averag-
ing over sentence embeddings in a dialogue.
Sentence embeddings are created using var-
ious models based on sentence transformers
(appearing on the Hugging Face Massive Text
Embedding Benchmark leaderboard) or by av-
eraging over BERT word embeddings (vary-
ing the BERT layers used). We also com-
pare pre-trained embeddings extracted from
human transcriptions with pre-trained embed-
dings extracted from speech recognition out-
puts, to determine the robustness of these mod-
els to errors. Our results show that over-
all, for most types of user satisfaction rat-
ings and advanced/recent (or sometimes less
advanced/recent) pre-trained embedding mod-
els, using only pre-trained embeddings outper-
forms using only domain-independent features.
However, this pattern varies depending on the
type of rating and the embedding model used.
Also, pre-trained embeddings are found to be
robust to speech recognition errors, more ad-
vanced/recent embedding models do not always
perform better than less advanced/recent ones,
and larger models do not necessarily outper-
form smaller ones. The best prediction per-
formance is achieved by combining pre-trained
embeddings with domain-independent features.

1 Introduction

The quality of a human-machine dialogue interac-
tion can be influenced by various factors, such as
the domain/genre of dialogue, the dialogue system
capabilities, and the user expertise and expecta-
tions. This makes it very difficult to define what a

successful dialogue should look like, and evaluate
system performance and predict user satisfaction.
Thus, despite many years of research, dialogue
evaluation still remains an unsolved problem.

In this paper, our focus is on task-oriented dia-
logue, and specifically on predicting user satisfac-
tion after their interaction with the dialogue system.
We use the Communicator corpus (Walker et al.,
2001a, 2002) containing the logs of user interac-
tions with 8 spoken dialogue systems. The user’s
task is to book a flight and in some cases also make
hotel or car-rental arrangements. Each dialogue log
is accompanied by user ratings after their interac-
tion with the system. An example dialogue excerpt
is shown in Figure 1 in the Appendix.

The original Communicator corpus contains sys-
tem and user utterances (both human transcriptions
and speech recognition outputs), timing informa-
tion, and speech act and task annotations for the
system’s side of the conversation. An extended ver-
sion of this corpus was developed by Georgila et al.
(2005b, 2009) via automatic annotation. Georgila
et al. (2005b, 2009) added speech act and task anno-
tations for the user’s side of the conversation, and
dialogue context annotations, e.g., filled slots, filled
slots values, grounded slots, speech acts history.

In this paper, we use Gaussian Process Regres-
sion for predicting user satisfaction ratings, be-
cause in our recent work (Georgila, 2022) it was
shown to perform better than other regression meth-
ods, for this task and corpus. In our previous
work (Georgila, 2022), we considered only domain-
independent features (e.g., duration, number of
filled slots, number of confirmed slots, word er-
ror rate). These features were domain-independent
because they were just based on counts, and no
lexical, semantic, or specific to the task informa-
tion was used. Here, in addition to these domain-
independent features, we also use pre-trained dia-
logue embeddings extracted from system and user
utterances.
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Our pre-trained dialogue embeddings are com-
puted by averaging over sentence embeddings for
each dialogue. Sentence embeddings are created
using various models based on sentence transform-
ers (Reimers and Gurevych, 2019) (appearing on
the Hugging Face Massive Text Embedding Bench-
mark leaderboard), or by averaging over BERT
word embeddings (Wieting et al., 2016; Coates
and Bollegala, 2018) (varying the BERT layers
used). By definition, these embeddings are domain-
dependent because they encode lexical and seman-
tic information about the domain. Also, we com-
pare pre-trained embeddings extracted from human
transcriptions versus pre-trained embeddings ex-
tracted from automatic speech recognition (ASR)
outputs, to determine the robustness of these mod-
els to errors, which is an understudied research
question (Mousavi et al., 2024). We investigate
what level of performance can be achieved just
by relying on the words of the system and user
utterances from which we compute pre-trained di-
alogue embeddings, whether using only embed-
dings outperforms using only domain-independent
features, and whether combining embeddings and
domain-independent features can result in perfor-
mance gains. We also examine the impact on per-
formance of different feature combinations.

To our knowledge, our work is one of a few
studies (if not the first) to compare such a large
variety of pre-trained embeddings (including the
most recent embedding models by OpenAI) under
the same conditions, and the first study to do so for
predicting user ratings in task-oriented dialogue.
This is also the first work to compare all these dif-
ferent types of pre-trained embeddings with various
domain-independent features for user ratings’ pre-
diction in task-oriented dialogue. Last, but not least,
this is one of a very limited number of studies com-
paring the performance of pre-trained embeddings
on human transcriptions versus ASR outputs, and
the first study to do so for user ratings’ prediction.

2 Related Work

Despite many years of research, dialogue evalu-
ation still remains an unsolved problem (Hastie,
2012; Deriu et al., 2021; Mehri et al., 2022). For
task-oriented dialogue there are subjective evalu-
ation metrics, such as user satisfaction, computed
using information from surveys (Hone and Graham,
2000; Paksima et al., 2009), and objective metrics,
such as task completion and dialogue length, com-

puted using information from interaction logs.
PARADISE (Walker et al., 2000) is the most

well-known framework for automatic evaluation of
task-oriented dialogue. The goal of PARADISE
is to optimize user satisfaction (or another desired
quality) by formulating it as a linear combination of
various factors, such as task success and dialogue
cost (e.g., dialogue length, ASR errors). Weights
calculated via linear regression determine the con-
tribution of each factor. PARADISE can be used
to predict user satisfaction at the end of the dia-
logue, but can also be applied to any point in the
dialogue prior to completion. Generally it is useful
to be able to evaluate on the fly how the dialogue
is unfolding, so that appropriate measures can be
taken (e.g., transfer to a human operator), if a di-
alogue is problematic. Based on this idea, much
work has been done on estimating user satisfaction
at the system-user exchange level rather than rat-
ing the whole dialogue (Engelbrecht et al., 2009;
Higashinaka et al., 2010; Ultes and Minker, 2014;
Schmitt and Ultes, 2015).

For chatbots and other non-task-oriented dia-
logue systems it is not clear what success means,
and it is common to use subjective evaluations of
system responses (e.g., coherence, engagingness)
given some context, or use word-overlap similarity
metrics (e.g., BLEU, ROUGE) even though such
metrics do not correlate well with human judg-
ments of dialogue quality (Liu et al., 2016). Re-
cently, new evaluation metrics have been proposed
for open-domain dialogue leveraging pre-trained
language models such as BERT and DialoGPT
(Mehri and Eskenazi, 2020a,b; Ghazarian et al.,
2020), and commonsense knowledge bases (Ghaz-
arian et al., 2023).

In this paper, we focus on predicting user sat-
isfaction ratings for the whole dialogue. We use
Gaussian Process Regression (GPR) for predict-
ing user satisfaction ratings, because in our recent
work (Georgila, 2022) it was shown to perform bet-
ter than other regression methods, for this task and
corpus. In our previous work (Georgila, 2022), we
only used domain-independent features, but here
we also use pre-trained dialogue embeddings ex-
tracted from system and user utterances.

Linear regression has been used before for dia-
logue evaluation (Walker et al., 2000, 2001b; Cer-
vone et al., 2018; Georgila et al., 2019, 2020;
Georgila, 2022). Also, Support Vector Regression
has been used before for dialogue evaluation (Cer-
vone et al., 2018; Georgila, 2022).
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We use GPR for our experiments because mod-
ern regression methods are a natural evolution of
the PARADISE framework. Furthermore, we do
not have many data points for data-hungry methods
such as neural networks. As we will see in sec-
tion 3, we only have 500 data points in the training
data and 506 data points in the test data.

3 Data and Features

We use the Communicator corpus (Walker et al.,
2001a, 2002) because it has been used before for
this task, but also because it is one of a few task-
oriented dialogue corpora that include user rat-
ings. Other popular corpora, such as MultiWOZ
(Budzianowski et al., 2018; Eric et al., 2020), do
not include user ratings or ASR outputs.

The original Communicator corpus contains sys-
tem and user utterances (both human transcriptions
and ASR outputs), timing information, and speech
act and task annotations for the system’s side of the
conversation based on the DATE scheme (Walker
and Passoneau, 2001). An extended version of this
corpus was developed by Georgila et al. (2005b,
2009) via automatic annotation. Based on the ASR
outputs, speech act and task annotations for the
user’s side of the conversation were added, as well
as dialogue context annotations, e.g., filled slots,
filled slots values. Basically these extended anno-
tations are the kind of information one would get
by deploying a dialogue system, but because the
original corpus did not include such information,
Georgila et al. (2005b, 2009) reconstructed it.

Georgila et al. (2009) verified the validity and
reliability of these automatic annotations by eval-
uating them with respect to the task completion
metrics of the original corpus and in comparison
to manually annotated data. The utility of these
extended annotations has been demonstrated by
their use by various researchers for different pur-
poses, such as learning dialogue policies (Hen-
derson et al., 2005; Frampton and Lemon, 2006;
Henderson et al., 2008; McLeod et al., 2019) and
building simulated users (Schatzmann et al., 2005;
Georgila et al., 2005a, 2006).

In the Appendix, Figure 1 shows an example di-
alogue excerpt including speech act and task anno-
tations, and Figure 2 depicts an example dialogue
state.

These extended dialogue context annotations are
divided into two broad categories: logs of the cur-
rent status of the slots (‘FilledSlotsStatus’, ‘Filled-

SlotsValuesStatus’, ‘GroundedSlotsStatus’), and
logs containing information about how the status
of the slots has changed over time through the di-
alogue (‘FilledSlotsHist’, ‘FilledSlotsValuesHist’,
‘GroundedSlotsHist’). The former inform us about
the current status of the slots, and may only contain
one instance per slot. The latter provide informa-
tion about the order in which slots have been filled
or confirmed, and may contain several instances
of the same slot. The annotations also include the
history of speech acts and tasks.

For our experiments we use the 2001 collec-
tion, which consists of 1,683 dialogues between
human users and 8 dialogue systems. These sys-
tems vary in their dialogue policies, e.g., some
of them request multiple pieces of information at
the same time, others request explicit confirmation,
others request implicit confirmation, etc. Overall
there are 78,718 turns (39,419 system turns and
39,299 user turns). Similarly to Georgila (2022),
for our experiments we only used dialogues for
which all user ratings were available: ATT (157
dialogues), BBN (137 dialogues), CMU (69 dia-
logues), COLORADO (157 dialogues), IBM (77
dialogues), LUCENT (140 dialogues), MIT (166
dialogues), and SRI (103 dialogues). The first half
of the dialogues from each system is used for train-
ing (500 dialogues in total) and the rest for testing
(506 dialogues in total).

So our task is to predict the following user sat-
isfaction ratings on a Likert scale (1-5, higher is
better): ease of the tasks the user had to accomplish
(‘Task-Ease’), whether it was easy or not to un-
derstand the system (‘System-Comprehend-Ease’),
the user’s expertise (‘User-Expertise’), whether the
system behaved as expected (‘System-Behaved-As-
Expected’), and if the user would use the system
again in the future (‘System-Future-Use’). We use
the same domain-independent features as Georgila
(2022), with the addition of the number of times
the user requested a ‘start-over’. Our 17 domain-
independent features are divided into 4 categories:

• duration-related features (9): overall dura-
tion, duration of the system talking part, dura-
tion of the user talking part, overall average
duration per utterance, average duration per
system utterance, average duration per user ut-
terance, number of overall speech acts, num-
ber of system speech acts, number of user
speech acts;

• slots-related features (6): number of filled
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slots, number of filled slots without any ‘null’
values, number of grounded slots, number of
filled slots in the dialogue history, number of
filled slots without any ‘null’ values in the
dialogue history, number of grounded slots
in the dialogue history (all at the end of the
dialogue) – we distinguish between slots filled
with normal versus ‘null’ values as an extra
piece of information;

• word error rate (WER) (1): calculated as
the edit distance between the ASR output and
the transcription of the user utterance (this
information was included in the original Com-
municator corpus);

• start-over feature (1): number of ‘start-over’
requests by the user extracted from the human
transcription or the ASR output.

All these features are automatically extracted
from the data. Feature values are replaced with
z-scores by subtracting from each feature value
the mean for that feature and then dividing by the
standard deviation for that feature. For each feature,
the mean and standard deviation are calculated on
the training data.

We use 4 variations of these feature combina-
tions: ‘orig-man’ (original corpus with features
from manual annotations such as human transcrip-
tions of speech plus fully automatic annotations),
‘orig-auto’ (original corpus with fully automatic
annotations), ‘ext-man’ (extended corpus with fea-
tures from manual annotations plus fully automatic
annotations), and ‘ext-auto’ (extended corpus with
fully automatic annotations). So ‘ext-man’ is a su-
per set of ‘orig-man’, and ‘ext-auto’ is a super set
of ‘orig-auto’, because the extended corpus con-
tains all the annotations of the original corpus plus
new annotations (note that, as mentioned above,
these new annotations are automatically generated).
Also, ‘orig-man’ and ‘ext-man’ include both man-
ual and automatic annotations, whereas ‘orig-auto’
and ‘ext-auto’ include only automatic annotations.

For duration, the number of user speech acts
is only used in ‘ext-man’ and ‘ext-auto’, because
(as discussed above) the original corpus did not
include annotations of the user’s side of the con-
versation. Likewise, slots-related features are only
part of the extended corpus (‘ext-man’ and ‘ext-
auto’). Information about WER is only part of the
manual annotations because it can be computed
only when human transcriptions are available.

orig orig ext ext-
-man -auto -man auto

duration x x x x
slots x x
WER x x
start-over x x x x

Table 1: Categories of feature combinations; x means
that a feature category is included.

For clarity, Table 1 shows exactly which features
are used in each category.

We also compute pre-trained dialogue embed-
dings by averaging over sentence embeddings for
each dialogue. Sentence embeddings are created
using various models based on sentence transform-
ers (appearing on the Hugging Face MTEB leader-
board), or by averaging over BERT word embed-
dings (varying the BERT layers used). We do not
calculate z-scores for the embeddings.

We use the following types of embeddings from
Hugging Face and OpenAI, and in parentheses we
can see the sizes of the vectors they produce:

• ‘glove-6B-300d’ (300) (Pennington et al.,
2014),

• ‘all-distilroberta-v1’ (768),

• ‘all-mpnet-base-v2’ (768),

• ‘all-MiniLM-L6’ (384),

• ‘all-MiniLM-L12’ (384),

• ‘e5-small-v2’ (384),

• ‘e5-base-v2’ (768),

• ‘e5-large-v2’ (1024) (Wang et al., 2024),

• ‘gte-small’ (384),

• ‘gte-base’ (768),

• ‘gte-large’ (1024),

• ‘bge-small-en-v1.5’ (384),

• ‘bge-base-en-v1.5’ (768),

• ‘bge-large-en-v1.5’ (1024),

• OpenAI’s ‘text-embedding-3-small’ (1536),

• OpenAI’s ‘text-embedding-3-large’ (3072).
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The latest models of OpenAI have a new feature
that allows selecting the size of the generated vector.
According to OpenAI, this compressed vector re-
tains its concept-representing properties. For ‘text-
embedding-3-small’ we experimented with 3 vec-
tor sizes (50, 256, 1536) and for ‘text-embedding-
3-large’ with 3 vector sizes (50, 512, 3072).

Because we only have 500 data points in the
training data and 506 data points in the test data,
and large vector sizes, we also applied Principal
Component Analysis (PCA) for dimensionality re-
duction, with “whitening” to ensure that the re-
sulting features are less correlated with each other.
Huang et al. (2021) and Su et al. (2021) have found
that “whitening” can enhance the isotropy of sen-
tence embeddings, with the additional advantage
of reducing their dimensionality.

We generated results with different numbers of
PCA components, and we show results with a value
of 50 which performed well for all models (better
e.g., than 75 or 100). Of course, when we generated
vectors of size 50 from OpenAI, we did not apply
PCA. Note that we apply PCA only to the embed-
ding vectors (the domain-independent features are
not affected by PCA).

4 Experiments and Results

In our previous work (Georgila, 2022), we com-
pared several state-of-the-art regression methods,
and showed that GPR with an exponential kernel
or a rational quadratic kernel performed the best.
Thus, here we use GPR with an exponential kernel.
Also, by performing more experiments, we verified
again that GPR outperforms other regression meth-
ods, and that using an exponential kernel produces
competitive results for different types of embed-
dings. For all GPR experiments we vary the length
scale, and we report results for length scale equal
to 1 (higher length scale values indicate smoother
learned functions). Varying the length scale did not
produce significant differences. GPR is considered
as the state-of-the-art for regression, and has been
used before in the NLP community for machine
translation quality estimation (Cohn and Specia,
2013) and emotion prediction (Beck et al., 2014).
For all our experiments we use the GPy library1,
and GPR is applied after PCA.

To evaluate our models, for each of the 5 rat-
ings, we calculate the Root Mean Square Error
(RMSE). RMSE measures the average error be-

1https://gpy.readthedocs.io/en/deploy/

tween the model predictions and the ground truth
(the ratings in the test data). Its value varies from
0 to 4, given that user ratings are on a scale from 1
to 5. Lower RMSE values are better.

4.1 Using Only Pre-Trained Embeddings
Table 2 shows results in terms of RMSE when using
only our embedding models (not including domain-
independent features), based on human transcrip-
tions (‘man’) and ASR outputs (‘auto’).

For BERT, we experimented with various layer
combinations, and we report the best results. We
found that it helps to use the first layer (L1) to-
gether with the last layers (L10, L11, L12). Other
researchers have also looked into the impact of dif-
ferent BERT layers, reporting that sometimes it is
better not to use the last layer, as it is largely fine-
tuned to the specific task (Li et al., 2020; Huang
et al., 2021; Su et al., 2021). Although differ-
ences were small, the best layer combination was
L1-10-11 which means that the vectors of layers
L1, L10, and L11 were averaged. Layer L1 alone
also produced competitive results. We hypothesize
that layer L1 is important for our task because it
encodes lexical information rather than semantic
meaning, and for dialogue evaluation some words
such as “start-over” or “no” can be quite predictive.

For each BERT layer, we also compared aver-
aging of word embeddings versus using the out-
put of the [CLS] token, and averaging performed
better. Thus, here we only present results with
averaging (see Table 5 in the Appendix for a com-
parison between averaging and using the output of
the [CLS] token). Reimers and Gurevych (2019)
showed that averaging of BERT word embeddings
or using the output of the [CLS] token produces
rather poor sentence embeddings, often worse than
averaging GloVe word embeddings (even though
BERT word embeddings are generally considered
superior to GloVe word embeddings). However,
this was not the case in our experiments where
BERT most times (depending on the layer combi-
nation) worked better than GloVe.

Overall, ‘glove-6B-300d’, ‘all-distil-roberta-v1’,
‘all-mpnet-base-v2’, ‘all-MiniLM-L6’, and ‘all-
MiniLM-L12’ did not perform well compared to
the rest of the models. For ‘e5’, ‘gte’, and ‘bge’,
the small versions performed well, and that was
the case also for the large version of ‘bge’. This is
interesting because it shows that larger models do
not necessarily perform better than smaller models.
The question that arises is whether larger models

https://gpy.readthedocs.io/en/deploy/
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TaskEase SysComEase UserExp SysBehExp SysFutUse
man auto man auto man auto man auto man auto

bert-L1 1.259 1.28 1.163 1.174 1.287 1.303 1.291 1.324 1.363 1.379
bert-L1-10-11 1.254 1.256 1.173 1.167 1.302 1.289 1.283 1.285 1.366 1.371
bert-L1-11-12 1.255 1.256 1.174 1.173 1.302 1.298 1.288 1.287 1.364 1.373
bert-L1-10-11-12 1.255 1.253 1.173 1.169 1.305 1.291 1.285 1.28 1.367 1.37
glove-6B-300d 1.294 1.286 1.177 1.176 1.296 1.294 1.33 1.321 1.385 1.389
all-distilroberta-v1 1.28 1.296 1.171 1.174 1.306 1.309 1.317 1.325 1.388 1.392
all-mpnet-base-v2 1.271 1.278 1.179 1.181 1.29 1.289 1.305 1.317 1.377 1.379
all-MiniLM-L6 1.276 1.282 1.172 1.174 1.287 1.295 1.312 1.318 1.381 1.387
all-MiniLM-L12 1.273 1.282 1.188 1.187 1.287 1.291 1.318 1.321 1.389 1.388
e5-small-v2 1.254 1.272 1.175 1.183 1.285 1.286 1.311 1.316 1.376 1.38
e5-base-v2 1.281 1.291 1.195 1.192 1.303 1.29 1.32 1.333 1.39 1.387
e5-large-v2 1.27 1.271 1.176 1.181 1.293 1.302 1.299 1.308 1.378 1.375
gte-small 1.26 1.264 1.168 1.175 1.285 1.283 1.303 1.306 1.37 1.373
gte-base 1.284 1.294 1.186 1.189 1.3 1.302 1.323 1.326 1.385 1.387
gte-large 1.265 1.27 1.172 1.178 1.29 1.286 1.299 1.3 1.374 1.369
bge-small-en-v1.5 1.262 1.261 1.181 1.185 1.296 1.29 1.299 1.31 1.374 1.372
bge-base-en-v1.5 1.281 1.283 1.186 1.186 1.308 1.304 1.315 1.311 1.392 1.386
bge-large-en-v1.5 1.262 1.271 1.168 1.175 1.284 1.282 1.285 1.292 1.363 1.367
openai-small-50 1.323 1.32 1.191 1.191 1.305 1.306 1.35 1.344 1.399 1.398
openai-small-256 1.31 1.297 1.183 1.183 1.302 1.299 1.347 1.326 1.396 1.387
openai-small-1536 1.263 1.268 1.161 1.163 1.285 1.284 1.313 1.312 1.38 1.374
openai-large-50 1.27 1.286 1.149 1.158 1.303 1.298 1.3 1.308 1.37 1.379
openai-large-512 1.258 1.266 1.161 1.165 1.283 1.285 1.303 1.312 1.362 1.361
openai-large-3072 1.264 1.268 1.164 1.166 1.297 1.29 1.31 1.317 1.36 1.36

Table 2: RMSE values when using only pre-trained embeddings (not including domain-independent features),
based on the human transcriptions (‘man’) and the ASR outputs (‘auto’). For each block, the best value for each
column is shown in a different color (specific to that block) and in bold. The best value for each column across all
blocks is shown in black and in bold.

were negatively affected by being compressed more
than smaller models, given that we used only 50
PCA components. However, as we see with the
OpenAI models, this is not the case. The ‘openai-
large-3072’ model was significantly compressed
and yet performed well. When we experimented
with different numbers of components the trends
were the same, i.e., the small versions of ‘e5’,
‘gte’, and ‘bge’ still worked better than their base
and large counterparts, with the exception of ‘bge’
where the large version also performed well.

For the OpenAI models, we can see that the
models based on ‘text-embedding-3-large’ worked
better than the models based on ‘text-embedding-3-
small’. Interestingly, ‘openai-large-50’ works very
well. Note that this is the model where the com-
pression was done by OpenAI (not by our using
of PCA). It is not clear what kind of dimension-
ality reduction algorithm OpenAI uses. For some
ratings, we can see that applying PCA on ‘openai-

large-512’ and ‘openai-large-3072’ works better
than ‘openai-large-50’.

Overall, differences in results across models are
small, but there are trends:

• Larger models are not necessarily better than
smaller models.

• More advanced/recent models do not always
perform the best.

• Pre-trained embeddings are quite robust to
ASR errors for our task, given that differences
in RMSE values between corresponding ‘man’
and ‘auto’ models are small.

4.2 Comparing Pre-Trained Embeddings and
Domain-Independent Features

Table 3 shows the full results for the best perform-
ing embedding models from Table 2. So, for exam-
ple, ‘orig-em-man’ means manual and automatic
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bert bert- e5- gte- bge- bge- openai- openai- openai-
-L1 L1-10 small small small- large- large large large

-11 -v2 en-v1.5 en-v1.5 -50 -512 -3072
Task-Ease

orig-man: 1.292 ext-man: 1.276 orig-auto: 1.311 ext-auto: 1.284
em-man 1.259 1.254† 1.254† 1.26 1.262 1.262 1.27 1.258 1.264
orig-em-man 1.236 1.242 1.235† 1.238 1.24 1.249 1.244 1.241 1.246
ext-em-man 1.235 1.241 1.233† 1.237 1.239 1.249 1.245 1.241 1.245
em-auto 1.28 1.256‡ 1.272 1.264 1.261 1.271 1.286 1.266 1.268
orig-em-auto 1.253 1.245 1.248 1.236‡ 1.237 1.258 1.256 1.248 1.25
ext-em-auto 1.252 1.244 1.244 1.233‡ 1.235 1.257 1.256 1.247 1.248

System-Comprehend-Ease
orig-man: 1.174 ext-man: 1.156 orig-auto: 1.178 ext-auto: 1.158

em-man 1.163 1.173 1.175 1.168 1.181 1.168 1.149† 1.161 1.164
orig-em-man 1.138 1.152 1.15 1.141 1.152 1.149 1.134† 1.143 1.147
ext-em-man 1.136 1.151 1.148 1.14 1.15 1.148 1.133† 1.143 1.147
em-auto 1.174 1.167 1.183 1.175 1.185 1.175 1.158‡ 1.165 1.166
orig-em-auto 1.148 1.15 1.16 1.149 1.154 1.155 1.14‡ 1.149 1.15
ext-em-auto 1.147 1.149 1.157 1.148 1.152 1.153 1.139‡ 1.15 1.15

User-Expertise
orig-man: 1.286 ext-man: 1.295 orig-auto: 1.286 ext-auto: 1.293

em-man 1.287 1.302 1.285 1.285 1.296 1.284 1.303 1.283 1.297
orig-em-man 1.276 1.296 1.274 1.268† 1.278 1.272 1.284 1.269 1.281
ext-em-man 1.282 1.305 1.278 1.274† 1.284 1.279 1.289 1.274† 1.286
em-auto 1.303 1.289 1.286 1.283 1.29 1.282 1.298 1.285 1.29
orig-em-auto 1.288 1.283 1.27 1.262‡ 1.269 1.268 1.28 1.271 1.275
ext-em-auto 1.294 1.288 1.272 1.266‡ 1.273 1.273 1.286 1.275 1.279

System-Behaved-As-Expected
orig-man: 1.301 ext-man: 1.278 orig-auto: 1.33 ext-auto: 1.286

em-man 1.291 1.283 1.311 1.303 1.299 1.285 1.3 1.303 1.31
orig-em-man 1.268 1.269 1.282 1.271 1.27 1.267† 1.267† 1.282 1.288
ext-em-man 1.262 1.262 1.273 1.264 1.263 1.259† 1.26 1.274 1.279
em-auto 1.324 1.285‡ 1.316 1.306 1.31 1.292 1.308 1.312 1.317
orig-em-auto 1.291 1.266‡ 1.287 1.274 1.277 1.273 1.273 1.29 1.294
ext-em-auto 1.282 1.259‡ 1.278 1.265 1.267 1.265 1.266 1.281 1.284

System-Future-Use
orig-man: 1.397 ext-man: 1.394 orig-auto: 1.41 ext-auto: 1.395

em-man 1.363 1.366 1.376 1.37 1.374 1.363 1.37 1.362 1.36†

orig-em-man 1.339† 1.353 1.357 1.345 1.35 1.346 1.36 1.344 1.342
ext-em-man 1.337† 1.348 1.351 1.341 1.347 1.344 1.36 1.339 1.339
em-auto 1.379 1.371 1.38 1.373 1.372 1.367 1.379 1.361 1.36‡

orig-em-auto 1.358 1.355 1.36 1.346 1.347 1.351 1.362 1.344 1.343‡

ext-em-auto 1.354 1.35 1.354 1.341 1.34‡ 1.347 1.362 1.34‡ 1.34‡

Table 3: RMSE values for different combinations of embedding models and features. The best value for each
row (i.e., best model) is shown in a color specific to that rating and in bold. The best value for each rating is
shown in black and in bold; † means that ‘em-man’, ‘orig-em-man’, or ‘ext-em-man’ are significantly better
than either ‘orig-man’ or ‘ext-man’ (p < 0.05 or better); ‡ means that ‘em-auto’, ‘orig-em-auto’, or ‘ext-em-auto’
are significantly better than either ‘orig-auto’ or ‘ext-auto’ (p < 0.05 or better). Also, ‘em-auto’ means only
embeddings from ASR outputs, ‘ext-em-man’ means manual and automatic annotations from the extended corpus
plus embeddings from human transcriptions, etc.
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annotations from the original corpus (‘orig-man’)
plus embeddings extracted from human transcrip-
tions, ‘ext-em-auto’ means only automatic anno-
tations from the extended corpus (‘ext-auto’) plus
embeddings extracted from ASR outputs, ‘em-man’
means only embeddings extracted from human tran-
scriptions, etc. Here, for each rating, we also see
results using only the domain-independent features
without embeddings; these results are slightly dif-
ferent from the results reported by Georgila (2022)
because we additionally use the ‘start-over’ feature.

For all ratings, we measure statistical signifi-
cance between the best values of ‘em-man/orig-
em-man/ext-em-man’, and either ‘orig-man’ or
‘ext-man’. Sometimes, the difference between
‘em-man/orig-em-man/ext-em-man’ and ‘orig-man’
is significant, but the difference between ‘em-
man/orig-em-man/ext-em-man’ and ‘ext-man’ is
not significant (or vice versa). In this case, we still
mark the difference as significant in Table 3 (to
avoid over-crowding Table 3 with too many differ-
ent markings). We also measure statistical signifi-
cance between the best values of ‘em-auto/orig-em-
auto/ext-em-auto’, and either ‘orig-auto’ or ‘ext-
auto’. We mark differences as significant in the
same way as explained above.

For all statistical significance calculations, for
comparing models, we use the squared error val-
ues and the Wilcoxon signed-rank test with Holm-
Bonferroni correction for repeated measures. We
did not test for significance all combinations, but
roughly a difference in the RMSE values of 0.02
or larger is likely to be significant at p < 0.05 or
better (depending on the variance of course).

For ‘Task-Ease’ the best models are ‘bert-L1-
10-11’, ‘e5-small-v2’, and ‘gte-small’. Using em-
beddings (with or without domain-independent
features), based on human transcriptions (‘man’)
or ASR outputs (‘auto’), outperforms using only
domain-independent features.

For ‘System-Comprehend-Ease’, the best model
is ‘openai-large-50’ for all feature combinations.
There are significant differences between the
RMSE values of this model and the RMSE val-
ues of the domain-independent features.

For ‘User-Expertise’, the best models are ‘gte-
small’, ‘bge-large-en-v1.5’, and ‘openai-large-512’.
Here differences between using only domain-
independent features and using only embeddings
are small and not significant, but they become sig-
nificant once we combine domain-independent fea-
tures and embeddings.

Bas 3 Bas maj BM
Task-Ease 1.471 1.721 1.233
Sys-Compr-Ease 1.421 1.285 1.133
User-Expertise 1.431 1.41 1.262
Sys-Behave-Exp 1.433 1.705 1.259
Sys-Future-Use 1.516 2.321 1.337

Table 4: RMSE values for the baseline always predict-
ing score 3 (Bas 3) and the majority baseline (Bas maj),
and the best of our models (BM). The best value for
each row is shown in bold.

For ‘System-Behaved-As-Expected’, the best
models are ‘bert-L1-10-11’, ‘bge-large-en-v1.5’,
and ‘openai-large-50’. For the best model
(‘bert-L1-10-11’) and for ‘auto’ using only em-
beddings significantly outperforms using only
domain-independent features. Combining domain-
independent features and embeddings results in
significant differences for both ‘man’ and ‘auto’.

For ‘System-Future-Use’, the best models are
‘bert-L1’, ‘bge-small-en-v1.5’, ‘openai-large-512’,
and ‘openai-large-3072’. Using only embeddings
performs much better than using only domain-
independent features (p < 0.01 for ‘man’ and p <
0.001 for ‘auto’). Combining domain-independent
features and embeddings further improves perfor-
mance (p < 0.001 for both ‘man’ and ‘auto’).

Similarly to Georgila (2022), we also imple-
mented simple baselines. Table 4 shows results
for RMSE for each type of rating, for the baseline
that always predicts score 3, the majority baseline,
and the best result of our models taken from Table 3.
As expected, our models significantly outperform
the baselines (p < 0.001).

Below we summarize our findings from com-
paring pre-trained embeddings with domain-
independent features:

• For most types of user satisfaction ratings
and advanced/recent pre-trained embedding
models, using only pre-trained dialogue em-
beddings outperforms using only domain-
independent features.

• Combining pre-trained embeddings and
domain-independent features is better than
just using pre-trained embeddings.

• Differences between corresponding ‘man’ and
‘auto’ models are small, and thus, we conclude
that pre-trained dialogue embeddings are quite
robust to ASR errors for our task.
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• Using domain-independent features from the
extended annotations sometimes helps, but
overall, performance is similar to using fea-
tures from the original annotations.

5 Conclusions and Discussion

We used GPR for predicting user satisfaction rat-
ings. We used both domain-independent features
and pre-trained dialogue embeddings extracted
from system and user utterances. Our pre-trained
dialogue embeddings were computed by averag-
ing over sentence embeddings for each dialogue.
Sentence embeddings were created using various
models based on sentence transformers (appearing
on the Hugging Face MTEB leaderboard) or by
averaging over BERT word embeddings (varying
the BERT layers used).

Our results showed that overall, for most types
of user satisfaction ratings and advanced/recent
pre-trained embedding models, using only pre-
trained dialogue embeddings outperforms using
only domain-independent features. This is very
interesting, because it shows that we can do quite
well relying only on information from words and
system and user utterances, without any additional
features. Combining embeddings and domain-
independent features performed the best. This is
also very interesting and could potentially revive
interest in using domain-independent features. Al-
though overall extracting domain-independent fea-
tures from the extended annotations helped, perfor-
mance was similar to using domain-independent
features from the original annotations.

Interestingly, some simpler models (e.g., ‘bert-
L1’) performed better than more complex and more
recent models. Also, larger models did not nec-
essarily outperform smaller ones. Because dif-
ferences between corresponding ‘man’ and ‘auto’
models were small, we conclude that pre-trained
embeddings are quite robust to ASR errors for our
task. Overall, RMSE values ranged roughly from
1.1 to 1.4 depending on the model and feature com-
bination.

Our overall contributions are as follows:

• To our knowledge, our work is one of a few
studies (if not the first) to compare such a
large variety of pre-trained embeddings (in-
cluding the most recent embedding models by
OpenAI) under the same conditions.

• Our work is the first study to compare such

a large variety of pre-trained embeddings (in-
cluding the most recent embedding models by
OpenAI) under the same conditions for pre-
dicting user ratings in task-oriented dialogue.

• Our work is also the first study to compare
all these different types of pre-trained em-
beddings and various domain-independent
features for user ratings’ prediction in task-
oriented dialogue.

• Finally, this is one of a very limited number
of studies comparing the performance of pre-
trained embeddings on human transcriptions
versus ASR outputs, and the first study to do
so for user ratings’ prediction.

Throughout our experiments, to construct di-
alogue embeddings we used averaging (Wieting
et al., 2016; Coates and Bollegala, 2018), but the
problem with averaging is that it can result in loss
of important conversational information (Reimers
and Gurevych, 2019). For example, not all parts of
a dialogue are of equal importance, and by trying
to encode everything we may end up compressing
too much information from parts that really matter.

Very little work has been done on constructing
dialogue embeddings using techniques different
from averaging. A notable recent attempt to con-
struct dialogue embeddings is Dial2vec (Liu et al.,
2022). Dial2vec uses self-guided contrastive learn-
ing (leveraging both positive and negative exam-
ples) and considers a dialogue as an information
exchange process between two interlocutors. It
learns embeddings for both interlocutors with the
help of each other, and then the dialogue embed-
ding is obtained by an aggregation of embeddings
of the interlocutors. Dial2vec was used to con-
struct dialogue embeddings for the tasks of domain
categorization, semantic relatedness, and dialogue
retrieval. Based on the idea of Dial2vec, an interest-
ing future research direction would be to learn dia-
logue embeddings for the interlocutors (system and
user) participating in successful versus unsuccess-
ful dialogues, and by aggregating the embeddings
of the interlocutors learn in turn dialogue embed-
dings for successful versus unsuccessful dialogues.
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Appendix

SYSTEM UTTERANCE 1
System output what trip would you like to take?
System speech act request_info
System task top_level_trip
USER UTTERANCE 1
ASR output i’d like to go from atlanta georgia to london england
User transcription i’d like to go from atlanta georgia to london england
User speech act [provide_info,provide_info]
User task [orig_city,dest_city]
SYSTEM UTTERANCE 2
System output flying from atlanta to london
System speech act implicit_confirm
System task orig_dest_city
SYSTEM UTTERANCE 3
System output what day are you leaving atlanta?
System speech act request_info
System task depart_arrive_date
USER UTTERANCE 2
ASR output september twenty fourth
User transcription september twenty fourth
User speech act [provide_info]
User task [depart_date]
SYSTEM UTTERANCE 4
System output om monday, september twenty fourth
System speech act implicit_confirm
System task depart_arrive_date
SYSTEM UTTERANCE 5
System output about what time do you want to leave?
System speech act request_info
System task depart_arrive_time
USER UTTERANCE 3
ASR output early evening
User transcription early evening
User speech act [provide_info]
User task [depart_time]
SYSTEM UTTERANCE 6
System output leaving in the early evening
System speech act implicit_confirm
System task depart_arrive_time
SYSTEM UTTERANCE 7
System output please stand by while i look up the flight schedules on the web
System speech act status_report
System task retrieval
SYSTEM UTTERANCE 8
System output ok, got them
System speech act status_report
System task retrieval
SYSTEM UTTERANCE 9
System output i can only get you a flight in the early evening on united
System speech act present_info
System task flight

Figure 1: An example dialogue excerpt showing both the ASR output and the transcription of the user’s speech, and
speech act and task annotations for both the system and the user. User speech act and task annotations, and dialogue
context information are computed from the ASR output.
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DIALOGUE LEVEL
Turn: user
TurnStartTime: 990207520.875
TurnEndTime: 990207525.562
TurnNumber: 3
Speaker: user
UtteranceStartTime: 990207520.875
UtteranceEndTime: 990207525.562
UtteranceNumber: 3
DialogueActType: user
ConvDomain: about_task
SpeechAct: [provide_info]
AsrInput: <date_time>early evening</date_time>
TransInput: <date_time>early evening</date_time>
Output:
TASK LEVEL
Task: [depart_time]
FilledSlot: [depart_time]
FilledSlotValue: [early evening]
GroundedSlot: [depart_date]
LOW LEVEL
WordErrorRatenoins: 0.00
WordErrorRate: 0.00
SentenceErrorRate: 0.00
KeyWordErrorRate: 0.0
ComputeErrorRatesReturnValue: 0
HISTORY LEVEL
FilledSlotsStatus: [dest_city],[orig_city],[depart_date],[depart_time]
FilledSlotsValuesStatus: [london england],[atlanta georgia],[september twenty fourth],[early evening]
GroundedSlotsStatus: [],[dest_city],[orig_city],[depart_date]
SpeechActsHist: request_info,[provide_info,provide_info],implicit_confirm,request_info,[provide_info],implicit_confirm,
request_info,[provide_info]
TasksHist: top_level_trip,[orig_city,dest_city],orig_dest_city,depart_arrive_date,[depart_date],depart_arrive_date,
depart_arrive_time,[depart_time]
FilledSlotsHist: [orig_city,dest_city],[depart_date],[depart_time]
FilledSlotsValuesHist: [atlanta georgia,london england],[september twenty fourth],[early evening]
GroundedSlotsHist: [],[orig_city,dest_city],[depart_date]

Figure 2: An example dialogue state generated after user utterance 3 in Figure 1. Empty (‘[]’) values or ‘null’ values
(not seen here) do not affect the accuracy of the slot values.

TaskEase SysComEase UserExp SysBehExp SysFutUse
man auto man auto man auto man auto man auto

Average of Word Embeddings
bert-L1 1.259 1.28 1.163 1.174 1.287 1.303 1.291 1.324 1.363 1.379
bert-L1-10-11 1.254 1.256 1.173 1.167 1.302 1.289 1.283 1.285 1.366 1.371
bert-L1-11-12 1.255 1.256 1.174 1.173 1.302 1.298 1.288 1.287 1.364 1.373
bert-L1-10-11-12 1.255 1.253 1.173 1.169 1.305 1.291 1.285 1.28 1.367 1.37

Output of [CLS] Token
bert-L1 1.276 1.289 1.184 1.201 1.305 1.303 1.296 1.323 1.375 1.394
bert-L1-10-11 1.291 1.294 1.184 1.178 1.312 1.306 1.312 1.326 1.389 1.399
bert-L1-11-12 1.282 1.287 1.178 1.176 1.313 1.302 1.307 1.304 1.376 1.384
bert-L1-10-11-12 1.285 1.287 1.182 1.177 1.305 1.303 1.311 1.315 1.384 1.396

Table 5: RMSE values when calculating sentence embeddings as an average of BERT word embeddings versus
using the output of the [CLS] token, based on the human transcriptions (‘man’) and the ASR outputs (‘auto’).
Domain-independent features are not included. The best value for each column for the output of the [CLS] token is
shown in red and in bold. The average of BERT word embeddings always outperforms the output of the [CLS]
token. The best value for each column across both types of models is shown in black and in bold.
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