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Abstract

In the development of dialog systems the dis-
covery of the set of target intents to identify
is a crucial first step that is often overlooked.
Most intent detection works assume that a la-
belled dataset already exists, however creating
these datasets is no trivial task and usually re-
quires humans to manually analyse, decide on
intent labels and tag accordingly. The field of
Open Intent Discovery (OID) addresses this
problem by automating the process of group-
ing utterances and providing the user with the
discovered intents. Our OID framework allows
for the user to choose from a range of different
techniques for each step in the discovery pro-
cess, including the ability to extend previous
works with a human-readable label generation
stage. We also provide an analysis of the rela-
tionship between dataset features and optimal
combination of techniques for each step to help
others choose without having to explore every
possible combination for their unlabelled data.

1 Introduction

A major first task for a goal-oriented dialogue sys-
tem is to identify the intent behind the user’s ut-
terance using a Natural Language Understanding
module. This module is often implemented as a
classifier, trained on a set of pre-defined intent la-
bels (Chen et al., 2013; Coucke et al., 2018; Goo
et al., 2018; Kim et al., 2016; Liu and Lane, 2016;
Zhong and Li, 2019). Discovering these intents
in real-world systems can be a laborious and time-
consuming task involving a domain expert explor-
ing the dataset and curating a representative set of
labels. This task will also need to be repeated regu-
larly as new intents emerge through time. The field
of OID seeks to automatically discover unknown
intents in a set of unlabelled/partially labelled ut-
terances without requiring such manual effort.

There exists an issue in the current literature in
that many works focus only on the development
of clustering algorithms to identify utterances of

Figure 1: An example of the automated discovery
and labelling of intents in an given dataset of unla-
belled/partially labelled text utterances. First, the ut-
terances are clustered for similar semantic intent, then
human-readable labels are generated for each identified
cluster.

similar intent, without progressing to label the clus-
ter with a human-readable intent label (Perkins and
Yang, 2019; Lin et al., 2019; Zhang et al., 2021b;
Shen et al., 2021; Kumar et al., 2022). In order for
downstream systems to make full use of the new
intents, a human would be required to analyse the
cluster manually, decide on its meaning and label
it accordingly.

Evaluation methods are also inconsistent across
the field. Some works report on classification or
clustering metrics while others evaluate quality of
generated labels, but rarely are these reported for
the same datasets. There are also differences in the
definition of ‘intent’ and the features of the datasets
used for evaluation. Some works consider intents
in the abstract such as ‘CustomerService’ or ‘Bag-
gage’ in the air travel domain. Other works take a
much stricter definition e.g. only an Action(verb)-
Object(noun) pair. Some datasets contain a mixture
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of these intent types. These issues make it difficult
to identify a truly state-of-the-art (SOTA) technique
for different domains and features of dataset.

We present an OID framework which views OID
as a two stage process: Semantic Clustering, and
Intent Label Generation (see Figure 1). We focus
on the generation of high quality labels for an unla-
belled/partially labelled dataset, produced by com-
bining a semantic representation method, clustering
algorithm, candidate extraction method and a label
selection method. We evaluate 20 combinations of
representation/clustering/extraction/selection meth-
ods on 9 datasets. Our key contributions include:
(1) We introduce our novel OID framework pro-
viding a choice of a number of different tech-
niques at every step in the process.1 (2) We extend
previous OID work to include a human-readable
intent stage. (3) A rigorous investigation into
instantiating choice of representation/clustering
model/extraction/selection which reveals the op-
timal settings for datasets and target intents.

2 Related Work

State-of-the-art OID techniques utilise semi-
supervised learning such as in DSSCC (Deep Semi-
Supervised Contrastive Clustering) (Kumar et al.,
2022) and DeepAligned (Zhang et al., 2021b). A
portion of intents are known in advance and these
are used to aid the clustering stage in discovering
both the known intent clusters and estimate a num-
ber of new, unknown intents. Shen et al. (2021)
take a different approach, by pre-training a repre-
sentation model with a labelled dataset from the
same domain as the target unlabelled dataset and
then using unsupervised KMeans clustering on the
target dataset to discover intents.

There are several works which attempt to solve
the problem in an unsupervised fashion. Chatter-
jee and Sengupta (2020) adapted the DBSCAN
clustering algorithm (Ester et al., 1996) in an at-
tempt to handle discovering new intents in datasets
with unbalanced distributions, while others such
as Liu et al. (2021) use simple KMeans clustering.
Liu et al. (2021) are one of the few OID works
which include a label generation stage. Each clus-
ter has candidate intent labels extracted using a de-
pendency parser to find Action(verb)-Object(noun)
pairs within the utterances and the most com-
mon pair is assigned as an auto-generated, human-
readable label for the cluster. Their technique

1https://github.com/GAnderson01/open-intent-discovery

discovered the correct number of clusters for the
SNIPS dataset and produced labels which were
clearly semantically similar to the ground-truth in-
tents, however no quantitative evaluation was con-
ducted. A more challenging dataset would prove
more difficult both to cluster and to evaluate by
manual inspection. Vedula et al. (2020) looked at
intent discovery as a sequence tagging task. A neu-
ral model sequence tagger is trained to tag action
and object words in text utterances. This technique
differs in that it will produce an intent for every
text utterance and may produce many distinct pairs
that express the same intent.

In our concurrent work, we presented experi-
mental results for different combinations of candi-
date extraction and intent label selection techniques
against a large generative PLM (Anderson et al.,
2024). In order to produce fine-grained intents, we
also proposed an extension to the Action-Object
extraction method used in Liu et al. (2021) which
captures more detail from the utterances by includ-
ing compound nouns or adjectives that are related
to the Object, and negations related to the Action.

Zhang et al. (2021a) introduced a platform for
open intent recognition. They combine the related
tasks of open intent detection and discovery to both
identify the known intents and discover new ones.
The detection module identifies known intent sam-
ples and groups unknown samples into a single
class of open intent. The discovery module then
performs clustering to group the unknown samples
and present them as new intents. Our framework
differs in that we focus only on discovery and not
detection. We also include a human-readable label
generation stage while TEXTOIR provides key-
words to represent their discovered intents. These
keywords are helpful, however, out of context they
would be difficult to fully understand without fur-
ther analysing the utterances themselves.

3 Methods

Many current OID techniques can fit into the same
two stage pattern (see Figure 2). Stage 1 consists of
semantic clustering and is split into two steps. First,
semantic representations are obtained for each ut-
terance, then these are grouped with a clustering
algorithm to identify semantically similar intents.
Stage 2 involves the generation of a natural lan-
guage label for each cluster. First, candidate labels
are extracted or generated for each cluster, finally,
a label is chosen from these candidates.
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Figure 2: The Open Intent Discovery Framework is split into two main stages. In Stage 1, utterances are clustered
for semantic similarity and in Stage 2, a human-readable label is produced for each cluster.

At each step in the process there are many dif-
ferent options for a researcher to choose from. At
the Semantic Representation step, choices include
using BERT, Universal Sentence Encoder or one
of many other embedding options. For clustering,
one could choose KMeans, DBSCAN etc. When
looking for candidate labels, possibilities include
an extraction method, such as the Action-Object
extraction used by Liu et al. (2021), or a label could
be generated by prompting a Pre-trained Language
Model (PLM) such as ChatGPT or T0pp. Finally,
a label must be chosen from the candidates e.g.
by choosing the most frequent candidate or even
by prompting a PLM, specifying the candidates
to choose from. Our framework allows for any
combination of options to be evaluated. Table 1
displays the different options we explored for each
step in the framework. We refer to a combination
of semantic representation, clustering, candidate
extraction and intent label selection techniques as
a configuration.

Most related works do not progress to Stage 2,
and simply present the clusters of semantically sim-
ilar texts as the found intents. Using the framework,
we are able to extend these with Stage 2 techniques
allowing us to evaluate the quality of the final nat-
ural language labels for clusters found by all OID
techniques. For each cluster, we measure both the
cosine similarity and the BARTScore between the
most common ground truth label in the cluster and
the generated label.

One of the goals of this work is to find common
patterns in the configurations for datasets with sim-
ilar features. It is hoped that this will help others to
choose the best configuration for their own datasets

rather than having to perform a brute force search,
or best guess.

The framework implements each step as a
python module. Each can be run individually pro-
vided they are given any input required. When
chained together, they execute the entire OID pro-
cess end-to-end.

3.1 Stage 1: Semantic Clustering

The first stage is to collect the text utterances into
groups of semantically similar intent. To achieve
this, we first need to obtain good semantic repre-
sentations of the utterances via some embedding
model, then provide these to a clustering algorithm.

Semantic Representation Using PLMs to ob-
tain embeddings for text utterances before applying
these in a downstream NLP task has been repeat-
edly shown to perform well. However, the question
of which PLM to use for a particular problem and
dataset can be unclear. The semantic representa-
tion module supports any huggingface, sentence-
transformers or tensorflow-hub based PLM embed-
ding models. We use three PLMs to obtain seman-
tic representations for the utterances in order to
cluster for intent. These are as follows: bert-base-
uncased (Devlin et al., 2018), all-mpnet-base-v2
(Reimers and Gurevych, 2019) and Universal Sen-
tence Encoder (Cer et al., 2018). These PLMs have
been shown to perform well in previous OID works
(Zhang et al., 2021b; Kumar et al., 2022; Liu et al.,
2021; Chatterjee and Sengupta, 2020).

Clustering The optimal clustering algorithm to
use for a given dataset depends on the features of
the dataset. For example, KMeans is more suited to
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Stage 1: Semantic Clustering Stage 2: Intent Label Generation

Semantic Representation Clustering Algorithm Candidate Extraction Intent Label Selection

all-mpnet KMeans Action-Object Pairs Most Frequent
BERT DBSCAN T0pp Prompting T0pp Prompting
Universal Sentence Encoder ITER_DBSCAN

DeepAligned

Table 1: Evaluated choices at each step of the framework

finding clusters of similar sizes (a balanced dataset),
and a flat geometry, while density based meth-
ods such as DBSCAN can handle uneven cluster
sizes (an imbalanced dataset) and non-flat geome-
try. We explore both unsupervised (KMeans, DB-
SCAN and ITER_DBSCAN) and semi-supervised
(DeepAligned) intent clustering algorithms. Both
ITER_DBSCAN and DeepAligned are intent dis-
covery techniques which do not involve creating hu-
man readable labels, and so our framework extends
them with the Stage 2 label generation techniques.

Most clustering algorithms require some hyper-
parameters to be set e.g. KMeans requires the tar-
get number of clusters (k). However in many cases
these hyperparameters are unknown and so a tuning
exercise is required. In order to find optimal hy-
perparameters, a search across the hyperparameter
space must be conducted and each clustering result
evaluated against some metric. This metric, is one
of the choices that can be set in the framework.

3.2 Stage 2: Intent Label Generation
The second stage is to choose or generate a nat-
ural language label to represent the cluster as an
intent. First, candidates are found from the clus-
ter either using a dependency parser or prompt-
ing a PLM, then one of the candidates is selected
by some method such as most frequent, or, again,
prompting a PLM.

Candidate Label Extraction We implement two
techniques to extract candidates intents for the iden-
tified clusters. The first finds Action-Object pairs
in utterances as in (Liu et al., 2021). An Action-
Object pair consists of a verb/infinitive (the Action)
and it’s target, a noun or subject (the Object). e.g.
“schedule a meeting for tomorrow” contains the
Action-Object pair schedule-meeting. If either an
action or object is not present in an utterance, then
the candidate contains ‘NONE’ in it’s place. This
technique assumes a very strict definition of intent
and as such, could never produce a more abstract

intent such as ‘query’ or ‘confirmation’. Therefore,
we also experiment with PLM Prompting, to allow
for more freedom in the candidate intents.

To produce a candidate with a PLM, we obtain
the response when it is given the below prompt:

“Given the following utterance: [utter-
ance]. The intent was to”

Intent Label Selection The final step in the
framework is to choose an intent label for every
cluster from one of the candidates identified. We
experiment with two techniques. As in Liu et al.
(2021), we choose the most frequent candidate.
Where Action-Object extraction was used we ig-
nore incomplete pairs by not considering any with
the word ‘NONE’. If a cluster produced no candi-
dates, then no label will be generated. The second
selection technique also prompts a PLM using the
following:

“Given these utterances: [clus-
ter_utterances]. What is the best fitting
intent, if any, among the following:
[top_3_candidates]”

where [cluster_utterances] is all of the utterances
present in the cluster and [top_3_candidates] are
the three most common candidates in the cluster.
This prompt was crafted to provide the PLM with
some options for a suitable label while still leaving
it with the possibility of generating something new.

4 Datasets

We intentionally select a group of datasets with
different features to analyse the correlation be-
tween features and optimal configurations. SNIPS
(Coucke et al., 2018), AskUbuntuCorpus and We-
bApplications Corpus (Braun et al., 2017) all con-
tain the Action-Object format of intents and are
queries/commands in conversational style. DB-
Pedia14 Sampled and StackOverflow (Xu et al.,
2015) are labelled for Topic. DBPedia14_Sampled
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Dataset Intent Type Number of Samples Number of Intents Intent Balance Average Number of Words Vocabulary Size

AskUbuntu Action-Object Small (162) Small (5) Imbalanced (7.13) Short (7.94) Small (474)
SNIPS Action-Object Large (13784) Small (7) Slightly Imbalanced (1.03) Short (9.15) Large (13418)

WebApplications Action-Object Small (89) Small (8) Imbalanced (23.00) Short (8.01) Small (300)

Banking77 Mixed Large (13083) Large (77) Imbalanced (3.03) Short (11.71) Medium (3027)
ChatbotCorpus Mixed Small (206) Small (2) Slightly Imbalanced (1.64) Short (7.70) Small (173)

CLINC Mixed Large (22500) Large (150) Balanced (1.00) Short (8.31) Medium (6420)
PersonalAssistant Mixed Large (20735) Medium (46) Imbalanced (247.96) Short (6.84) Medium (7896)

DBPedia14 Sampled Topic Large (14000) Medium (14) Balanced (1.00) Long (46.29) XLarge (75214)
StackOverflow Topic Large (20000) Medium (20) Balanced (1.00) Short (8.32) Large (16773)

Table 2: Features of Each Dataset

Feature Categories

Intent Type Action-Object, Topic, Mixed

Size Small (<250), Large (>= 250)

Number of Intents
Small (<10), Medium (>=10, <50)
Large (>=50)

Intent Balance
Balanced (IR = 1.00),
Slightly Imbalanced (IR >1, <2),
Imbalanced (IR >= 2)

Average Number of Words Short (<20), Long (>=20)

Vocabulary Size
Small (<500), Medium (>=500, <10,000)
Large (>=10,000,<50,000),
XLarge (>=50,000)

Table 3: Categorisations of Dataset Features

contains a sample of 14,000 entries from the DBPe-
dia14 dataset (Lehmann et al., 2014). Banking77
(Casanueva et al., 2020), ChatbotCorpus (Braun
et al., 2017), CLINC (Larson et al., 2019) and
PersonalAssistant (Liu et al., 2019) contain a mix
of both Action-Object and Topic form of intents.
See Table 2 for full details of the features of each
dataset.

4.1 Dataset Feature Definitions

We categorise the datasets by intent type, size, num-
ber of intents, whether the intents are balanced, av-
erage number of words and vocabulary size (see
Table 3).

Intent Type Many works differ in their definition
of intent, whether explicitly in their method or im-
plicitly in their choice of dataset. Liu et al. (2021)
define an intent as an Action(verb)-Object(noun)
pair in an utterance e.g. “can you reschedule my de-
livery” has the pair ‘reschedule-delivery’. Vedula
et al. (2020) also use this definition, naming these
‘actionable intents’. Other datasets have more ab-
stract labels that are closer to topics. In these cases,
methods like Action-Object extraction are unlikely
to produce intents which reflect the ground-truths
and so another extraction method would likely pro-
duce better results. Finally, a dataset can be mixed

such that it contains both Action-Object pairs and
abstract labels like topics. Therefore, we cate-
gorise all datasets used in our experiments as one
of Action-Object, Topic or Mixed.

Number of Samples We use a selection of
datasets of varying sizes. The smallest dataset hav-
ing less than 100 samples, while the largest has
almost 22.5k. We categorise the datasets as either
small or large where small is defined as having less
than 250 samples and large has anything over 250.

Number of Intents The number of ground-truth
intent labels in a dataset can be considered the
‘ideal’ number of clusters that should be found by
the clustering algorithm. The datasets we use range
from 2 to 150 intents and we categorise this feature
as small, medium and large where small is defined
as having less than 10 intents, medium has between
10 and 50 and anything over 50 is large.

Intent Balance The ground-truth label distribu-
tion is also a defining feature of datasets. We use
the Imbalance Ratio (IR) as a measure of imbal-
ance. This is simply the number of majority label
samples over the number of minority label samples.
An IR of 1.00 represents a completely balanced
dataset with equal samples for every ground-truth
label. Anything above this represents an increas-
ing magnitude of imbalance. The datasets used
range from balanced to an IR of 247.96 (the major-
ity label has almost 250 times the samples of the
minority label). We categorise this feature as bal-
anced, slightly imbalanced and imbalanced where
balanced has an IR of 1.00, slightly imbalanced has
IR greater than 1 but less than 2 and imbalanced
has an IR of 2 and above.

Average Number of Words The majority of the
datasets used are dialogue utterances and have rel-
atively low average number of words of less than
12 while only one exceeds this at 46.29. We there-
fore categorise this feature as short and long where
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short is less than 20 and long is 20 and over.

Vocabulary Size The final dataset feature we ex-
plore is the number of unique words across all
utterances in the dataset i.e. the vocabulary size.
There is quite a spread across the datasets we use in
our experiments and so we categorise this as small
(with less than 500), medium (from 500 to 10,000),
large (10,000 to 50,000) and xlarge (over 50,000).

5 Experiments

5.1 Experimental Setup

We evaluate all possible combinations of the
choices in Table 1, with the only exceptions being
for the previous OID works ITER_DBSCAN and
DeepAligned where we use the Semantic Repre-
sentation model from the original works (Universal
Sentence Encoder and BERT respectively). This
results in 20 configurations for each dataset for the
framework to execute.

Each configuration involves a clustering algo-
rithm and clustering measure for conducting hy-
perparameter tuning. Clustering is attempted for a
range of hyperparameter values and evaluated us-
ing the specified measure (we use silhouette score
for our experiments). The hyperparameters with
the best score according to the chosen clustering
measure are used for the configuration. For kmeans,
we must estimate the optimal number of clusters
k. We therefore conduct clustering for k between 2
and 200 or the number of utterances in the dataset,
whichever is lower. We use the scikit-learn imple-
mentation of kmeans. For DBSCAN, there are at
least two parameters to be set. eps is the maximum
distance that can be between two samples to con-
sider them as being in the same neighbourhood and
min_samples is the minimum number of samples
in a neighbourhood for a sample to be considered a
‘core’ sample. To keep hyperparameter tuning com-
pute time down, we focus on tuning eps only, while
min_samples is set to 5. We cluster for eps between
0.1 and 1.0 with increments of 0.01. Again, we use
the scikit-learn implementation for DBSCAN. For
ITER-DBSCAN, there are five hyperparameters
to be tuned. In addition to eps and min_samples,
there is also the change in these value for each
iteration, delta_eps and delta_min_samples and fi-
nally, the maximum number of iterations to run
max_iteration. An exhaustive search across these
hyperparameters for every ITER-DBSCAN con-
figuration and every dataset would be unfeasible.

We therefore generate 20 random sets of hyperpa-
rameters and cluster with these for every relevant
configuration. We use the implementation of ITER-
DBSCAN from the original work (Chatterjee and
Sengupta, 2020). For the semi-supervised tech-
nique, DeepAligned, we use the implemnetation
provided by the authors with their default values
(Zhang et al., 2021b).

For configurations involving PLM prompting,
we chose T0pp as it is open-source, small enough
to deploy on accessible hardware and has produced
impressive results (Sanh et al., 2021). We utilised
AWS Sagemaker Notebook to run our experiments.
A g4dn.12xlarge instance was used with any con-
figuration with T0pp prompting and a g4dn.xlarge
for the others.

5.2 Evaluation

We use two automated metrics (average cosine sim-
ilarity and average BARTScore (Yuan et al., 2021))
to evaluate the quality of the final generated labels
compared to the ground truth intents. Both the gen-
erated and ground truth label sets are normalised by
converting to lower case, splitting on Pascal/snake
case and removing hyphens and embeddings ob-
tained using Universal Sentence Encoder.

For each unique ground-truth (gt) label, we de-
fine C∗ as the subset of clusters where the most
common ground-truth (mcgt) equals gt. The sim-
ilarity score for each gt is then the average of
the similarity between the generated label and the
mcgt for each cluster in C∗ (sim(c)). If none of
the identified clusters is assigned gt then the score
is 0 (see Equation 1).

avg_label_sim(gt) =

{∑
c∈C∗ sim(c)

NC∗ , if NC∗ > 0

0 , if NC∗ = 0

(1)

where NC∗ is the number of clusters in C∗.
The final average similarity score for the config-

uration is calculated as in Equation 2.

config_score =

∑
gt∈GT avg_label_sim(gt)

NGT

(2)

where GT is the set of all ground-truth intents and
NGT is the number of ground-truth intents.

The optimal configuration for each dataset
is the configuration which produces the high-
est config_score. Collecting these results from
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Dataset Semantic
Representation

Clustering
Algorithm

Candidate
Extraction

Label
Selection No. Clusters Avg. Cosine

Similarity
Avg.
BART Score

AskUbuntu use KMeans Action-Object T0pp Prompting 6(+1) 0.4661 -5.7580
SNIPS use KMeans Action-Object T0pp Prompting 8(+1) 0.6163 -3.9832
WebApplications all-mpnet KMeans Action-Object T0pp Prompting 6(-2) 0.4993 -5.4204

Banking77 all-mpnet KMeans Action-Object Most Frequent 196(+119) 0.4678 -5.4880
ChatbotCorpus use KMeans T0pp Prompting Most Frequent 4(+2) 0.4384 -4.9715

CLINC
use/
all-mpnet

KMeans Action-Object
T0pp Prompting/
Most Frequent

163(+13)/
155(+5)

0.5050/
0.5044

-4.7101/
-4.5701

PersonalAssistant all-mpnet KMeans Action-Object T0pp Prompting 60(+14) 0.3843 -5.2462

DBPedia14 Sampled
use/
all-mpnet

KMeans T0pp Prompting Most Frequent
11(-3)/
10(-4)

0.3378/
0.3091

-5.3313/
-5.3169

StackOverflow
use/
all-mpnet

KMeans Action-Object T0pp Prompting
23(+3) /
21(+1)

0.4861/
0.3922

-5.2722/
-5.2692

Table 4: Unsupervised configurations producing the optimal labels for each dataset. The difference in number of
clusters and ground-truth intents in shown in brackets. Where the evaluation metrics disagree on a configuration
choice, both are reported as (cosine similarity score/BART score)

datasets of different features allows us to analyse
the optimal configurations alongside the features
in order to infer any dependencies between them.

6 Results and Analysis

6.1 Unsupervised Clustering

Table 4 shows the optimal configurations together
with the average scores that they achieved in the un-
supervised clustering setting. Table 5 shows a sam-
ple of the final labels generated with unsupervised
clustering for each dataset. Many of these labels are
of high quality and would be useful in downstream
systems. In all unsupervised settings, KMeans pro-
duced the clusters for the optimal configuration.
In most cases, the number of clusters exceeded
the number of ground-truth intents. This results
in some clusters being assigned the same mcgt.
The labels are however, highly semantically similar
with their ground-truth counterparts. It appears that
the configurations using ITER_DBSCAN have pro-
duced a great overestimation of the number of clus-
ters e.g. for SNIPS, the best performing configura-
tion using ITER_DBSCAN produced 39 clusters.
The generated labels are still semantically similar
to their ground-truths, however there is more vari-
ety per ground-truth label due to the finer-grained
clusters generating different final labels, resulting
in lower performance according to the evaluation
metrics.

Where Action-Object candidate extraction was
used it has resulted in some generated labels being
less descriptive than would perhaps be desired, e.g.
in SNIPS find-schedule for SearchScreeningEvent
is too generic. The samples for this intent are look-

Ground Truth Generated Label

SNIPS
AddToPlaylist add-song
BookRestaurant book-restaurant
GetWeather give-forecast
PlayMusic play-music/find-soundtrack
RateBook rate-novel
SearchCreativeWork find-show
SearchScreeningEvent find-schedule

Banking77
card_arrival received-card/track-card
edit_personal_details edit-details?/change-address.
exchange_charge exchange-currencies/exchanging-currencies?
getting_virtual_card get-card?
passcode_forgotten reset-password?/reset-passcode?
request_refund get-refund/give-refund
verify_my_identity verify-identify?
verify_source_of_funds get-funds/verify-source

CLINC
how_old_are_you ask-age/tell-birthday
improve_credit_score improve-score
oil_change_when change-oil
plug_type need-converter
schedule_meeting reserve-room/set-meeting
text tell-text
transactions show-transactions
who_do_you_work_for tell-brand

StackOverflow
apache redirect-requests/using-proxy
cocoa Cocoa/converting-string
hibernate Hibernate
linq using-linq
qt Qt: How to end line with QTextEdit [Qt] [C++],
spring Spring
wordpress get-posts
visual-studio Visual Studio 2008

Table 5: Sample labels produced by the optimal config-
urations. Where multiple clusters are assigned the same
mcgt, we report two sample generated labels.
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Figure 3: Average BART Scores for the optimal unsu-
pervised configs vs optimal semi-supervised configs for
each dataset. Closer to zero is better.

ing for the movie schedules at cinemas and often
ask for “the movie schedule”. Also, there are many
fine-grained intents in Banking77 which require
more detail to be immediately useful e.g. a ground-
truth intent such as get_disposable_virtual_card
could not be produced using Action-Object extrac-
tion as in (Liu et al., 2021). It would therefore, be
useful to extend the Action-Object candidate ex-
traction to include compound nouns and adjectives
to capture further details in the candidates.

6.2 Semi-supervised Clustering
Figure 3 shows the difference in BART Score
for the optimal configurations using unsupervised
clustering vs the optimal config that used the
semi-supervised clustering method DeepAligned.
The quality of the generated labels mostly out-
perform their unsupervised counterparts. How-
ever, DeepAligned produces poorer results for both
Banking77 and Personal Assistant. These datasets
are both large in size and imbalanced which may
cause the DeepAligned model to overfit to the ma-
jority samples. DeepAligned also failed to com-
plete for the small datasets, possibly due to a lack
of training samples to complete an optimizer step.

6.3 Mapping Features to Configuration
Table 6 shows how the various dataset features af-
fect the optimal unsupervised configuration when
evaluating using the BART Score. Each value
represents the most commonly used option for a
given dataset feature and step in the framework,
e.g. for datasets with Action-Object as the target
intent type, Universal Sentence Encoder was the
majority optimal choice for Semantic Representa-

Feature Semantic
Representation

Clustering
Algorithm

Extraction
Method

Selection
Method

Intent Type
Action-Object use KMeans Action-Object T0pp Prompting
Topic all-mpnet KMeans No Majority No Majority
Mixed all-mpnet KMeans Action-Object Most Frequent

Size
Small use KMeans Action-Object T0pp Prompting
Large all-mpnet KMeans Action-Object No Majority

Num. Intents
Small use KMeans Action-Object T0pp Prompting
Medium all-mpnet KMeans Action-Object T0pp Prompting
Large all-mpnet KMeans Action-Object Most Frequent

Imbalance
Balanced all-mpnet KMeans Action-Object Most Frequent
Slightly Imbalanced use KMeans No Majority No Majority
Imbalanced all-mpnet KMeans Action-Object T0pp Prompting

Avg. Num. Words
Short all-mpnet KMeans Action-Object T0pp Prompting
Long all-mpnet KMeans T0pp Prompting Most Frequent

Vocab. Size
Small use KMeans Action-Object T0pp Prompting
Medium all-mpnet KMeans Action-Object Most Frequent
Large No Majority KMeans Action-Object T0pp Prompting
XLarge all-mpnet KMeans T0pp Prompting Most Frequent

Table 6: Most common options by dataset features when
evaluating using BART Score

tion. This table can act as an aid in the choice of
config for a new, unlabelled dataset. For exam-
ple, if we consider CLINC to be our unlabelled set,
we could choose our configuration from this table
rather than at random (to make this a fair exam-
ple, we remove CLINC’s results from the table).
With little domain knowledge, we can infer that
the CLINC utterances contain Mixed intents (both
Action-Object and Topics) and estimate that there
are a Large number of intents (more than 50). A
clustering algorithm could be used to estimate the
IR, showing that it is a Balanced set. The dataset
size is Large, containing 22,500 utterances which
are made up of Short sentences of less than 20
words with a total vocabulary size of 6420 words
(Medium). For these features, the table agrees on
all-mpnet, KMeans and Action-Object on every
feature. There is a disagreement on the Selection
Method and so we choose Most Frequent as it is
less compute intensive. As shown in Table 4, this
is the optimal configuration for CLINC when eval-
uating on BART Score. Were we to naively choose
T0pp Prompting for both Candidate Extraction and
Label Selection, in the belief that a more flexible
approach would be best, the final labels produced
would be of lower quality overall (average BART
of -5.0281 compared to -4.5701). Many of the la-
bels generated by this configuration are simply ‘ask
a question’ or in one case ‘Yes’ for a cluster with
mcgt ingredient_substitution. Such issues could
be overcome with further prompt tuning, however
we can already obtain high quality labels from sim-
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pler, less hardware and time expensive methods.

7 Conclusions and Future Work

We have shown that our framework for OID can
produce high quality labels for many datasets of
differing intent type. The modular nature of the
framework allows for further improvements to be
utilised when new techniques are discovered for
each step. We have evaluated a number of config-
urations based on the final generated label quality,
including extending previous OID works which
originally do not generate a human-readable intent
label. We have also presented an initial analysis
of the mapping between dataset features and the
optimal configuration to use for a new, unlabelled
dataset which can help reduce the initial effort re-
quired to choose the combination of techniques.
In future work, we plan to add our Action-Object
Extension technique (proposed in Anderson et al.
(2024)) to the framework and update the optimal
configuration results. We also hope to curate more
intent datasets of varying features in order to de-
velop a model for predicting a ‘best guess’ configu-
ration, given a new dataset’s features, rather than
having to try every one in turn.

Limitations

Our work is limited to the set of techniques cho-
sen for each step in the framework. There exists
many other appropriate semantic representation
models, clustering algorithms, candidate extrac-
tion and selection methods which could possibly
produce higher quality labels. Also, the evaluation
of the intent labels is based on semantic similarity
to the ground-truth labels. This has the implicit
assumption that the ground-truth labels are the best
representation for the intent which may not neces-
sarily be the case.
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