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Abstract

In today’s industrial landscape, seamless col-
laboration between humans and machines is
essential and requires a shared knowledge of
the operational domain. In this framework, the
technical knowledge for operator assistance has
traditionally been derived from static sources
such as technical documents. However, experi-
enced operators hold invaluable know-how that
can significantly contribute to support other op-
erators. This work focuses on enhancing the
operator assistance tasks in the manufacturing
industry by leveraging spoken natural language
interaction. More specifically, a Human-in-
the-Loop (HIL) incremental learning approach
is proposed to integrate this expertise into a
domain knowledge graph (KG) dynamically,
along with the use of in-context learning for
Large Language Models (LLMs) to benefit
other capabilities of the system. Preliminary
results of the experimentation carried out in an
industrial scenario, where the graph size was
increased in a 25%, demonstrate that the in-
cremental enhancing of the KG benefits the
dialogue system’s performance.

1 Introduction

Human-Machine Interaction (HMI) is revolutioniz-
ing traditional industrial processes. Smart manufac-
turing relies on the collaboration between highly ad-
vanced machinery and the knowledge and decision-
making abilities of human operators. The industry
of the near future requires qualified personnel spe-
cialized in technologies such as robotics and artifi-
cial intelligence (AI), capable of making informed
decisions based on these factors. In this context, a
human-centered approach positions operators as a
crucial element in new industrial plants. Thanks to
the latest technological advances, voice interaction
between operators and industrial manufacturing
systems or machines is now feasible. Moreover,
these technologies are hands-free and eyes-free,

enabling operators to perform physical tasks, sup-
port natural language communication that requires
minimal training, and are highly flexible, allowing
communication at various levels of detail. Conse-
quently, there has been an increase in the number of
prototypes and systems exploring the use of voice
as a natural interaction interface between operators
and machines in industrial environments in recent
years. Additionally, dialogue modeling and man-
agement have drastically changed due to the recent
success of large language models (LLMs). How-
ever, any application based on LLMs needs reliable
and up-to-date knowledge sources. In particular,
industrial scenarios require robust models capable
of handling very technical and precise knowledge,
which is necessary for tasks shared by humans and
machines.

Traditionally, HMI has relied on rule-based sys-
tems to represent knowledge and actions, ensuring
everything remains under control. As a result, these
interaction systems are static, failing to capture the
expert human knowledge of the factory that is not
documented or included in the system’s knowledge
base. This limitation can be addressed through the
concept of Human in the Loop (HIL), also known
as Operator in the Loop (OIL) in industrial contexts.
These AI systems facilitate collaboration between
humans and machines to enhance results and ac-
celerate the learning process. The HIL paradigm
involves continuous interaction throughout all post-
deployment stages of AI models. As illustrated in
Figure 1, in the industrial sector, the OIL paradigm
enables the integration of expert knowledge into
HMI interfaces by providing feedback using natu-
ral language. This approach allows voice interac-
tion systems to evolve over time, adapting to the
unique dynamics of each factory and incorporating
the expertise that operators develop.

In this work, an OIL incremental learning
approach to manage knowledge-grounded, task-
oriented dialogue (TOD) systems in industrial set-
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Figure 1: Operator in the Loop paradigm.

tings is proposed, being its main contributions (1)
extending a previously defined ontology to support
the management and storage of new knowledge
provided by experts; (2) developing online learn-
ing capabilities to collect user feedback, thereby
updating and expanding a knowledge graph and
(3) developing an LLM-based natural language un-
derstanding (NLU) system that queries a KG to
constrain it within the task. Preliminary evalua-
tions show promising results in NLU performance
and KG grounding.

The rest of the paper is structured as follows:
Section 2 presents the related work. The proposed
knowledge graph-based incremental dialogue sys-
tem with the detailed description of each of its
modules is described in Section 3, and the initial
validation results in Section 4. Finally, conclusions
of this work are shown in Section 5.

2 Related work

The current state of the art considers knowledge
graphs as a useful asset in industrial settings and,
more specifically in human-centric approaches
(Abonyi et al., 2024), such as robot interaction and
collaborative manufacturing (Nagy et al., 2024). In
this line, approaches such as the one proposed by
Nagy et al. (2024) are observed, in which knowl-
edge graphs are used to model factors related to
the operator and their conditions, such as move-
ments or collaboration with machines. Moreover,
knowledge graphs have been used in this scenario
for task-oriented dialogue, which enable operators
to communicate to industrial systems in a more
natural way. In this context, knowledge graphs
have been traditionally used to model the domain
of the use case, providing a detailed representation

of the scenario and reducing ambiguity between the
agents involved (Sidi Yakoub et al., 2015). How-
ever, more modern approaches also make use of
knowledge graphs for dialogue management (Teix-
eira et al., 2021; Aceta et al., 2022)

Of course, this process also has an impact
on dialogue management, since one of the most
widespread techniques is to obtain this information
from users. To do this, dialogues are generated
dynamically to be able to obtain the necessary in-
formation for the system to learn, as well as the
appropriate moment for it, based on a strategy (Liu
and Mazumder, 2021). Some approaches also base
these interactions on the feedback obtained from
the user taking into account, for example, evalua-
tions such as “it’s not what I wanted” or “you didn’t
understand me well” (Veron et al., 2021).

In the field of Natural Language Processing
(NLP), there’s a clear surge in leveraging state-
of-the-art strategies across multiple applications,
particularly through the deployment of pre-trained
Large Language Models (LLMs) in dialogue sys-
tems. Ozdemir (2023) describes these models as
AI models that often, though not exclusively, stem
from the Transformer architecture. They are crafted
to understand and generate human language, code,
and beyond. Also, they are trained on immense
troves of text, and they can tackle a vast array of
language-related tasks, from simple text classifica-
tion to elaborate text generation. As highlighted by
this author, the LLMs available in the market (like
various versions of GPT, Gemini, Llama, among
others) have been pre-trained on extensive datasets
from diverse sources using distinct methodologies.
Thus, not all LLMs perform equally, and their train-
ing processes significantly influence their perfor-
mance in specific applications.

Therefore, to optimize pre-trained language
models for task-oriented dialogue systems, differ-
ent works employ models like Alpaca, GPT-Neo,
BART, T5, Llama 2 and GPT-3.5 (Hudeček and
Dušek, 2023; Andreas et al., 2022; Li et al., 2022;
Hu et al., 2024); among others. Also, different
authors adopt various approaches for constructing
these dialogue systems. Prominent among these
is fine-tuning pre-trained language models using
methods like LoRA (Low Rank Adaptation) (An-
dreas et al., 2022; Li et al., 2022), prompt tun-
ing (Cao, 2023; Hudeček and Dušek, 2023) and
Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022), among others. This
indicates a clear trend in using LLMs in TOD sys-
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tems and various optimization strategies. However,
many of these methods demand substantial specific
data for training as they are data-driven, which may
not be available for certain industrial use cases.

To address this issue and avoid the need for hand-
crafted rules, in-context learning approaches are
becoming increasingly popular. These approaches
involve designing prompts using snippets of ex-
ample dialogues, the user’s goal, and the dialogue
history (Sekulić et al., 2024). This optimization
method, known as prompt tuning, allows adapt-
ing the model to task requirements without requir-
ing a corpus or extensive training, just relying on
natural language instructions to guide the model’s
behaviour.

3 Knowledge-Grounded Incremental
Task-oriented Dialogue System

Two of the most common applications of TOD
systems in industrial scenarios are to provide as-
sistance through processes and to deliver tasks to
a certain industrial intelligent system. Therefore,
the expected interactions from the user can mainly
be classified as navigation instructions through pro-
cesses and action requests to industrial systems,
respectively. The TOD system’s responses, on the
other side, must be in the form of steps of the pro-
cesses on which the user will request assistance
for the former, and the corresponding machine-
readable action for the latter.

So, in this type of scenarios, towards an incre-
mental approach, feedback may be useful in these
two situations, mainly: (1) the content presented
does not meet the needs of the user or (2) the inter-
pretation of the interaction indicates that what the
user wants to do next or deliver to the system is not
appropriate.

This work presents the extension and adapta-
tion of KIDE4I, presented in Aceta et al. (2022)
and based on the TODO Ontology (Aceta et al.,
2021), to provide it with feedback-capturing and
management capabilities. The aim of such task
is to achieve a system that is capable of learning
from interactions with users over time and, thus,
improve its interpretation and dialogue capacities,
as well as adapting to the users’ needs. To this end,
the following aspects have been addressed:

1. Extension of the TODO ontology to support
the management and storage of new knowl-
edge based on feedback (described in Section
3.1).

2. New functionalities to generate dialogues
aimed at collecting feedback and to update
knowledge extracted from it (described in Sec-
tion 3.2) .

Likewise, and towards assessing the benefits
when updating KIDE4I with the most recent
technologies, in-context learning (ICL) of LLMs
through prompt-tuning has been explored and im-
plemented in the natural language understanding
(NLU) module, as detailed in Section 3.3. This task
has allowed to compare more traditional strategies,
such as rule-based ones, with the most disruptive
one nowadays: the use of LLMs in scenarios with
limited resources (in terms of training corpus), such
as industrial ones.

3.1 Industrial-Assistance-Oriented
Incremental Knowledge Graph

By definition, a knowledge graph focuses on rep-
resenting relationships and capturing real-world
connections, ideally based on an ontology that pro-
vides the formal framework for defining the terms
and concepts used in that representation.

As described previously, the focus of this work is
developing a knowledge-graph-based TOD system
for industrial scenarios which is based on technical
documentation and expert knowledge that can be
extended over time through, for instance, feedback
gathering. To achieve such a system it is neces-
sary to construct a knowledge graph that formally
represents all this information, relying on a agreed
ontology that allows an incremental learning ap-
proach.

The core ontology for developing the knowledge
graph in the context of this work is TODO (Ac-
eta et al., 2021), the main modules of which can
be seen in Figure 2. This modular ontology is de-
signed to enable task-oriented dialogue systems to
interact naturally with users at both understanding
and communication levels by distinguishing two
main areas of knowledge: domain (TODODom)
and dialogue (TODODial), respectively. It can be
readily adapted to various industrial settings, thus
minimizing the time and cost of adaptation. Addi-
tionally, it supports the storage and reproduction
of the dialogue process, allowing for learning from
new interactions. However, this tracing capability,
although being a good starting point for supporting
an incremental learning approach, does not support
the generation and management of user feedback.
In order to solve this gap, the TODO ontology has
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been extended.

Figure 2: TODO ontology (Aceta et al., 2021)

In that extension and adaptation task, new
classes and relationships that allow representing
the key concepts aimed at collecting feedback have
been added. More precisely, 2 classes (C) and 4
object properties (OP) have been created in the
TODODom module and 2 classes in TODODM,
which are listed below, by module.

TODODom (domain)

• DefinitiveLexicalUnit (C), to depict lexical
units (i.e., variants) that have not been added
through feedback (i.e. manually or in a su-
pervised way) or lexical units that have been
added through feedback several times.

• ProvisionalLexicalUnit (C), to depict lexical
units that have been added through feedback
but the confidence to consider them as defini-
tive is still low.

• hasDefinitiveLexicalUnit (OP), to relate frame
heads (i.e., generic terms to agglutinate differ-
ent variants) to their corresponding definitive
lexical units.

• hasProvisionalLexicalUnit (OP), to relate
frame heads to their corresponding provi-
sional lexical units.

• isDefinitiveLexicalUnitOf (OP). Inverse prop-
erty of hasDefinitiveLexicalUnit.

• isProvisionalLexicalUnitOf (OP). Inverse
property of hasProvisionalLexicalUnit.

TODODM (dialogue management)

• NewLexicalUnitConfirmationRequest (C), to
request the user for confirmation to relate a
lexical unit to a specific frame head.

• ActionDetectedResponse (C), to inform the
user that it has detected an action (for which
the command includes a new reference to po-
tentially be added to the graph).

These classes and properties have been added by
following the LOT methodology (Poveda-Villalón
et al., 2019), which makes sure that knowledge
is modelled into the ontology ensuring its quality.
Therefore, the quality of the ontology (compared
to the results obtained in Aceta et al. (2021)), has
not been affected.

With the ontology ready, a manual instantiation
of the newly-modelled, dialogue-related classes
has been carried out, in order to offer the dialogue
manager variations to interact with the user and di-
rect the dialogue to capture feedback, such as “Can
you confirm that {item} is a related word?”. The
rest of the dialogue-related instantiations have been
reused from the generic instantiation of TODODial
(Aceta et al., 2022).

As for the domain section of the knowledge
graph, it is instantiated automatically. First of all,
the relevant procedures have been defined by the
experts by using an interface designed to simplify
the instantiation process. In a nutshell, this inter-
face, once a procedure is defined, generates, first
of all, a JSON file. This JSON file, by following
an Extract, transform and load (ETL) process, is
transformed into RDF and uploaded to the RDF
store, which, in this case, has been Virtuoso 8.3.
An example snippet of an instantiated procedure
can be found in Appendix A.

This first graph version enables the system to be
ready to be used and its knowledge to be extended
through user feedback in subsequent interactions.

3.2 Dialogue Management Supporting
Incremental Approach

Once the ontology is extended and the dialogue
instances for collecting feedback are ready, as re-
ported in Section 3.1, it is necessary to add to the
dialogue manager the capability to extract the new
knowledge to be included in the system.

As described previously, the two situations that
may require feedback gathering would be when the
system is not capable of correctly interpreting an
user request and when the information provided by
the system is not accurate.

To respond to the first situation, the dialogue
manager has been extended so that, instead of ask-
ing the user to reformulate the request because they
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Figure 3: System workflow, including feedback management (left), along with an interaction example that requires
feedback and follows the aforementioned flow (right).

are not able to understand it, the system enters feed-
back mode. The main goal of this mode is that
the system is able to link new key elements to an
action or action slot in subsequent interactions. For
that, a clarifying request for the user, as a question,
is triggered, in an intent to link the key element(s)
extracted from the interpretation module with some
of the classes/instances of the semantic repository.
When the user responds to said system request, it
is interpreted and the dialogue status is checked. If
the status is feedback mode, once the user confirms
the interpretation, the system launches a request to
update the knowledge graph. This update, which
has been automated by developing a REST API
service, represents the extension of the base knowl-
edge of the system. However, since it is an auto-
mated process, and to achieve controlled growth,
this new knowledge is marked as obtained from
feedback in the base (provisional, in accordance
with what has been established in the adaptation of
the TODO ontology, depicted in Section 3.1). Fig-
ure 3 visually summarizes the system’s dialogue
flow, with the new feedback management capabili-
ties to learn based on interactions with the user and
update knowledge dynamically.

When it comes to the second case, in which the
user’s disapproval of a system response is due to
the fact that the content does not cover their needs,
this feedback must trigger an action by an expert
to review the system’s knowledge and update it if
appropriate. For this case, a graphical interface
has been developed so that it enables the user to
indicate their disagreement with the content and the

expert to edit the content of the processes described
in the repository when necessary. By the time this
edition occurs, a functionality has been developed
in the dialogue manager, which allows updating
the knowledge graph with the new content. This
new revised and improved data is what the system
will use onwards as part of the extended knowledge
graph.

3.3 Natural Language Understanding

The functions of the Natural Language Understand-
ing (NLU) component are, first, to determine if a
transcribed user voice command is classified as a
polar interaction (e.g. “yes”, “no”). If it is, it is
in charge of determining whether it is positive or
negative. If no polarity is detected, a key element
extraction (KEE) component is raised to extract the
relevant information from the command, as shown
in Figure 4.

Figure 4: NLU pipeline
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For the present work, two different approaches
have been tested for the polarity interpreter. The
first relies on the KIDE4I implementation, using a
sentiment analysis algorithm. As for the second, an
LLM-based approach has been implemented. More
specifically, the GPT-3.5 Turbo model has been
adapted through the in-context learning prompting
strategy.

For the rest of interactions, namely non-
polarized interactions, the KEE module intervenes
fulfilling a slot-filling task. Similarly to the polar-
ity interpreter, two different implementations have
been used. For the first, again, the KIDE4I rule-
based approach has been followed, whereas, for the
second, the same LLM approach as above has been
used. In this case, within the prompt, its function
and the slots to be filled are indicated.

After detecting the slot values, it is essential
to verify that these values correspond to recogniz-
able world elements within the target system. This
process involves querying the knowledge graph
and comparing the detected slot values with those
stored in the graph. If the key elements identified
by the NLU are found, they are retained in the
component’s final result. Otherwise, the unrecog-
nized values are discarded, asking for the missing
information later on.

4 Initial Results

The extended TOD system with feedback capabili-
ties has been tested and validated in an experimen-
tation task. In this particular case, the system’s
function was to provide support through the differ-
ent phases for manufacturing a piece using CNC
programming on a milling machine. When given
instructions, the users that were not satisfied with
the answer given by the assistant would mark the
response as inadequate. Some initial results related
to this experimentation, mainly regarding the im-
pact of those iterations in the knowledge graph, are
presented in Section 4.1.

In terms of incrementing knowledge through
feedback, the assistance scenario is suitable for
evaluation. However, the variability in the inter-
actions (e.g. “Show me the next step”, “I need
more information”) is limited. Due to this, and
in order to provide more insights, the LLM-based
and rule-based NLU components have been tested
in a collaborative bin-picking scenario, which is
richer in terms of references to key elements in
user commands. The obtained results for both have

been compared in order to determine if the LLM-
based approach, which makes the task of adapting
the dialogue system easier, is able to maintain or
improve the accuracy of the rule-based approach.
The experimental setup, as well as the benchmark
results, are presented in Section 4.2.

4.1 Incremental TOD System in Use

The proposed validation scenario, as noted previ-
ously, is about CNC programming to manufacture
a piece on an IKASMAK 5.1 milling machine. To
do so, 15 users were requested to be assisted by
the assistant described in Section 3 and to give in-
sights about different procedures along the different
phases of the programming process upon a given
user request. The language used in this scenario
was Spanish.

Furthermore, while the user is interacting with
the system, if it does not present the desired infor-
mation or does not perform as expected, the user
can vote negatively the answer. This vote triggers a
review alert for the expert, who will review the dia-
logue flow and, if necessary, update the knowledge
graph to try to solve the gap, as shown in Figure 5.

This expert review, then, improves and, some
times, even increases the information in the knowl-
edge graph, and so, the accuracy of the system in
further uses. The following subsection shows the
evolution of the graph after the experimentation
where, at some point within the dialogues, 22 of
the total of 551 turns were marked as the response
from the system was not valid, which triggered an
expert review. Although it could sound like a high
number, the time required for the review and update
of the knowledge graph has not exceeded 5 hours,
a process that would have taken much longer if
done through other methods (e.g. manual instantia-
tion) and would have required an ontology expert
to perform it.

4.1.1 Impact on the Knowledge Graph and
Initial Analysis

So as to show the evolution of the graph before
and after the expert review process, Tables 1 and 2,
respectively, are depicted below.

In the case of Table 1, the average and total
number of the different instances for each relevant
class in procedure definition can be seen, out of a
total of 341 total instances.

Thanks to the user feedback and expert review
process, and as it can be seen in Table 2, the number
of total instances has increased. More specifically,
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Figure 5: User discontent triggering expert review requirement

Proc AP P Met Task Step PSI
10 14.9 1 1.3 1.3 6.9 8.7

Total 149 10 13 13 69 87

Table 1: Number of procedures (“Proc”) and average
and total number of activation phrases (“AP”), proce-
dures (“P”), methods (“Met”), tasks, steps and addi-
tional information (“PSI”), in the moment of the experi-
mentation.

Proc AP P Met Task Step PSI
12 14.6 1 1.6 1.6 8 9.2

Total 175 12 19 19 96 110

Table 2: Number of procedures (“Proc”) and average
and total number of activation phrases (“AP”), proce-
dures (“P”), methods (“Met”), tasks, steps and addi-
tional information (“PSI”), after the user feedback and
expert review.

90 more instances have been added, making a total
of 431 (that is, a 25% more knowledge). Among
these instances, new activation phrases have been
added for the existing procedures and, furthermore,
two new procedures have been included: “Detener
un programa” (“Stop a program”) and “Configurar
el avance” (“Configure the advance”). These two
procedures have been added following the same
format as the rest of procedures, an example of
which can be found in Appendix A.

4.2 Natural Language Understanding:
Benchmarking

The scenario used for the NLU component valida-
tion is a classification task, in which a bin-picking
collaborative robot is able to classify cartridges by
depositing them in different boxes, according to

user commands in Spanish. More specifically, the
robot can pick up different ink cartridges from a
table, identify their color and brand, and sort them
into two separate containers, based on the opera-
tor’s instructions. The operator must use natural
communication to inform the robot about the type
of cartridge and the designated box. This communi-
cation involves not only voice commands but also
gestures to indicate the destination. Consequently,
the key element extraction module must identify
actions and targets related to brands, colors (of the
cartridges), and containers. Additionally, it must
detect references to gestures indicated by phrases
like “here” or “this”, which enhance the verbal in-
structions and provide supplementary information.

4.2.1 In-context Learning LLM vs Rule-based

In order to evaluate the behaviour of NLU in the dif-
ferent systems (rule-based and LLM-based), simi-
lar dialogues have been established with the same
start of dialogue and the same end goal. In this way,
they can be compared in number of turns and the
performance of the NLU can be analysed. There-
fore, based on these dialogues, the results of the
KEE have been analysed for each turn.

A total of 74 dialogues were established with
a total of 12 different users. However, the num-
ber of dialogue turns (159 for the rule-based and
176 for the LLM-based) and total KEE module in-
tervention (130 and 108, respectively) varies due
to the structure of the dialogue –which is slightly
different for each system– and the performance of
the different modules. The performance of both
approaches can be observed in Table 3. In order
to have a better approximation of the results, they
have been classified between “fully detected”, “par-
tially detected” and “not detected” to refer to when
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Fully detected Partially detected Not detected Out-of-scope errors

% # % # % # % #

Rule-based 64.61 84 17.69 23 13.07 17 4.61 6
LLM-based 98.14 106 0.92 1 0 0 0.92 1

Table 3: KEE results. Results are represented in percentages (%) and absolute numbers (#).

all, some, or none of the elements to be identi-
fied have been detected, respectively. Finally, it is
worth mentioning that, due to out-of-scope causes,
in both systems there have been elements that have
been erroneously sent as input to the KEE, also
presented in Table 3. These interactions, despite
having had an output from the KEE, have not been
taken into account in this analysis as NLU as they
are caused by external errors.

All in all, we can observe a better performance
of the LLM-based approach for key element ex-
traction. More specifically, the LLM-based method
outperforms the rule-based approach by a 33.5% in
terms of fully detected key elements. Furthermore,
the rule-based approach is more prone to partially
detected and not detected elements, a situation with
is rare in the LLM-based approach, with an only
case of the former and no cases in the latter, which
emphasises the capacity of these methods in this
type of tasks.

As for the polarity component, the results have
reported a 100% accuracy in both approaches.

5 Conclusions

This work introduces a knowledge graph-based
method for managing the knowledge base of a
task-oriented dialogue system for industrial set-
tings, in which the knowledge graph is in charge
of storing both domain and dialogue-management-
related knowledge. This dialogue system features
incremental learning capabilities that, by using
the HIL/OIL paradigms, allows, on the one hand,
for users to give feedback regarding the output
of the system and, on the other hand, for experts
to improve the knowledge included in the knowl-
edge graph according to operators’ feedback. For
this, the ontology used in the knowledge graph,
which originates from an existing ontology for task-
oriented dialogue systems, has been extended to
cover the addition of knowledge and the generation
of additional dialogues for that end.

Furthermore, for the natural language under-
standing (NLU) module, which originally was de-

signed by following a rule-based approach, has
been implemented by using Large Language Mod-
els (LLMs) to improve both the system’s mainte-
nance and the quality of the interpretations obtained
by it.

The system has been evaluated in two real-world
industrial settings: a bin-picking scenario, in which
the NLU component was implemented by using
LLMs, and a manufacturing scenario, in which
the incremental learning capabilities of the system
have been tested. For the first scenario, the results
show that the performance of LLM-based NLU is
higher than the rule-based approach by 16%, which
is a significant improvement, especially for the fact
that LLMs are easier to adapt to other scenarios
than rules. For the second scenario, the addition
of feedback interfaces has allowed to improve the
existing knowledge graph of the system. The result
of this is the addition of more explanations to exist-
ing procedures and even two new procedures; all in
all, this translates into 25% more knowledge than
at the time of the experimentation. This is expected
to impact positively in the system’s performance
from now on, which will be evaluated in a new
experimentation task as part of future work.

These results show that the use of knowledge
graphs for managing the knowledge base of task-
oriented dialogue systems in industrial settings is
a promising approach, especially when combined
with incremental learning capabilities, and that the
use of LLMs for other modules of the system leads
to systems that are easy to maintain over time and
to adapt to new scenarios.
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A Example procedure

Listing 1: Snippet of the instances in the “Editar o modificar un programa” (“Edit or modify a procedure”) procedure.
This example is presented in TTL format for readability.

1 [ . . . ]
2

3 ### h t t p s : / / w3id . o rg / t odo / tododw − ekin − i n s t #
↪→ Method0_Procedure_65113d9f5d9c3075571719b5

4 : Method0_Procedure_65113d9f5d9c3075571719b5 r d f : t y p e owl : Na medInd iv idua l ,
5 tododwHowto : Method ;
6 v a r : h a s F i r s t S e g m e n t : Task0_Method0_Procedure_65113d9f5d9c3075571719b5 ;
7 v a r : isMadeOf : Task0_Method0_Procedure_65113d9f5d9c3075571719b5 ;
8 v a r : p r o c e s s S e g m e n t I d " 0 " .
9

10 ### h t t p s : / / w3id . o rg / t odo / tododw − ekin − i n s t #
↪→ PSI0_Step1_Task0_Method0_Procedure_65113d9f5d9c3075571719b5

11 : PSI0_Step1_Task0_Method0_Procedure_65113d9f5d9c3075571719b5 r d f : t y p e owl :
↪→ NamedInd iv idua l ,

12 < h t t p : / / www. mesa . o rg / xml /B2MML−V0600# P r o c e s s S e g m e n t I n f o r m a t i o n > ;
13 v a r : r e l a t e d T o P r o c e s s S e g m e n t :

↪→ Step1_Task0_Method0_Procedure_65113d9f5d9c3075571719b5 ;
14 v a r : t a s k I m a g e " h t t p s : / / s e r v e r / e d i t a r − programa / Metodo1 −Paso2 . png " ;
15 tododwHowto : i n d e x " 0 " .
16

17 ### h t t p s : / / w3id . o rg / t odo / tododw − ekin − i n s t # Procedure_65113d9f5d9c3075571719b5
18 : P rocedure_65113d9f5d9c3075571719b5 r d f : t y p e owl : Nam edInd iv idua l ,
19 tododwHowto : P r o c e d u r e ;
20 v a r : d e s c r i p t i o n " E d i t a r o m o d i f i c a r un programa " ;
21 v a r : h a s F i r s t S e g m e n t : Method0_Procedure_65113d9f5d9c3075571719b5 ;
22 v a r : isMadeOf : Method0_Procedure_65113d9f5d9c3075571719b5 ;
23 v a r : p r o c e s s S e g m e n t I d " 65113 d9f5d9c3075571719b5 " .
24

25 ### h t t p s : / / w3id . o rg / t odo / tododw − ekin − i n s t #
↪→ Step0_Task0_Method0_Procedure_65113d9f5d9c3075571719b5

26 : S tep0_Task0_Method0_Procedure_65113d9f5d9c3075571719b5 r d f : t y p e owl : NamedInd iv idua l
↪→ ,

27 tododwHowto : S t ep ;
28 v a r : d e s c r i p t i o n " A b r i r e l programa deseado . " ;
29 v a r : i s P r e v i o u s : S tep1_Task0_Method0_Procedure_65113d9f5d9c3075571719b5 ;
30 v a r : p r o c e s s S e g m e n t I d " 0 " ;
31 tododwHowto : h a s A s s o c i a t e d P r o c e d u r e : Procedure_65113a0c5d9c3075571719b2 .
32

33 ### h t t p s : / / w3id . o rg / t odo / tododw − ekin − i n s t #
↪→ Step1_Task0_Method0_Procedure_65113d9f5d9c3075571719b5

34 : S tep1_Task0_Method0_Procedure_65113d9f5d9c3075571719b5 r d f : t y p e owl : Na medInd iv idua l
↪→ ,

35 tododwHowto : S t ep ;
36 v a r : d e s c r i p t i o n " Con e l programa en p a n t a l l a , t a l y como se m u e s t r a en l a

↪→ s i g u i e n t e imagen , se podr á comenzar a m o d i f i c a r o e x t e n d e r e l c ó d igo G
↪→ p a r a p rog ramar l a p i e z a . " ;

37 v a r : h a s R e l a t e d I n f o r m a t i o n :
↪→ PSI0_Step1_Task0_Method0_Procedure_65113d9f5d9c3075571719b5 ;

38 v a r : i s N e x t : S tep0_Task0_Method0_Procedure_65113d9f5d9c3075571719b5 ;
39 v a r : i s P r e v i o u s : S tep2_Task0_Method0_Procedure_65113d9f5d9c3075571719b5 ;
40 v a r : p r o c e s s S e g m e n t I d " 1 " .
41

42

43 ### h t t p s : / / w3id . o rg / t odo / tododw − ekin − i n s t #
↪→ Step2_Task0_Method0_Procedure_65113d9f5d9c3075571719b5

44 : S tep2_Task0_Method0_Procedure_65113d9f5d9c3075571719b5 r d f : t y p e owl : Na medInd iv idua l
↪→ ,

45 tododwHowto : S t ep ;
46 v a r : d e s c r i p t i o n " Pa ra g u a r d a r l o s cambios , no es n e c e s a r i a n inguna a c c i ón e s p e c í

↪→ f i c a : s e g u a r da autom á t i c a m e n t e . " ;
47 v a r : i s N e x t : S tep1_Task0_Method0_Procedure_65113d9f5d9c3075571719b5 ;
48 v a r : p r o c e s s S e g m e n t I d " 2 " .
49

50

51
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52

53 ### h t t p s : / / w3id . o rg / t odo / tododw − ekin − i n s t #
↪→ Task0_Method0_Procedure_65113d9f5d9c3075571719b5

54 : Task0_Method0_Procedure_65113d9f5d9c3075571719b5 r d f : t y p e owl : Na medInd iv idua l ,
55 tododwHowto : Task ;
56 v a r : h a s F i r s t S e g m e n t : S tep0_Task0_Method0_Procedure_65113d9f5d9c3075571719b5 ;
57 v a r : isMadeOf : S tep0_Task0_Method0_Procedure_65113d9f5d9c3075571719b5 ,
58 : S tep1_Task0_Method0_Procedure_65113d9f5d9c3075571719b5 ,
59 : S tep2_Task0_Method0_Procedure_65113d9f5d9c3075571719b5 ;
60 v a r : p r o c e s s S e g m e n t I d " 0 " .
61

62 [ . . . ]
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