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Abstract

We present a solution to the problem of
exemplar-based language production from
variable-duration tokens, leveraging al-
gorithms from the domain of time-series
clustering and classification. Our model
stores and outputs tokens of phonetically
rich and temporally variable representations
of recorded speech. We show qualitatively
and quantitatively that model outputs retain
essential acoustic/phonetic characteristics
despite the noise introduced by averaging,
and also demonstrate the effects of similarity
and indexical information as constraints on
exemplar cloud selection.

1 Introduction
We present here an exemplar production model
that implements solutions to the challenges of mea-
suring between-exemplar distance (i.e. alignment)
and fostering phonetic generalization over speech
tokens of variable duration (Pierrehumbert, 2002;
Kirchner et al., 2010).1 Our model, MNEMORPHON,
makes use of algorithms for alignment and av-
eraging the domain of time-series clustering and
classification. We show qualitatively by direct in-
spection of model outputs and quantitatively via
statistical classification that MNEMORPHON’s out-
puts retain essential acoustic/phonetic characteris-
tics, despite noise introduced by averaging, and
also demonstrate the effects constraining exemplar
cloud composition by means of similarity weight-
ing and indexical information.

We begin with an overview of exemplar-based
approaches to phonetics and phonology, highlight-
ing the core production challenges of temporal
variability and generalization. We then introduce

1Here and below, “length”, “duration”, “variability”, etc.
specifically refer to temporal extent, rather than e.g. number
of phones/segments. Where we discuss discrete sequences,
it is assumed that sequence coordinates represent a fixed and
constant temporal duration.

Figure 1: Dynamic time warping alignment of wave-
forms of two tokens of the Turkish word kuşları
(“birds”), highlighting temporal variability.

MNEMORPHON and present our experiments and re-
sults, and finish with some discussion of planned
work and future directions.2

2 Exemplar-based phonetics and
phonology

Exemplar-based theories of categorization propose
that humans classify percepts by direct compari-
son to memorized exemplars of previous experi-
ences (Semon, 1923; Medin and Schaffer, 1978;
Hintzman, 1986; Nosofsky, 1986), whereas lin-
guistic theories have traditionally been couched in
terms of symbolic categories that abstract away
from details of usage and experience. When ex-
periments in speech perception suggested that hu-
man word recognition is facilitated by fine details
of remembered experiential episodes, e.g. speak-
ers’ voices (Goldinger, 1996, 1998), phoneticians
began to explore the possibilities of memory-based
approaches. Johnson (1997a,b) presented a pair
of exemplar models of phonetic perception that

2Code for the model, experiments, and evaluations de-
scribed below will be made available at https://github.
com/calicolab/mnemorphon.
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provided elegant and novel accounts of speaker
normalization and speech segmentation. Soon af-
ter Pierrehumbert (2001) published the first im-
plemented model of exemplar-based phonologi-
cal production, in the context of a production-
perception feedback-loop model of sound change.

These initial investigations ushered in a flurry
of subsequent research in exemplar-theoretic pho-
netics and phonology in areas as diverse as sound
change, categorical emergence and entrenchment,
sociophonetic variation, frequency effects in pro-
ductivity, the status of abstract phonetic cate-
gories, and the induction of morphophonological
alternations (Bybee, 2001; Pierrehumbert, 2001;
Hawkins, 2003; Wedel, 2006; Gahl and Yu, 2006;
Johnson, 2006; Ettlinger, 2007; Kirchner et al.,
2010; Mailhot, 2010a).

Goldrick and Cole (2023) provide a recent
overview of the theoretical and empirical suc-
cesses, along with some outstanding potential chal-
lenges, of exemplar-based approaches to produc-
tion. The core theoretical challenges faced by
exemplar-based models of production are handling
input variability, particularly with respect to tem-
poral variation, and the need for a mechanism for
robust generalization from prior experiences. Be-
low we discuss the first of these, showing how it
can be surmounted with a 50 year old approach to
speech recognition, and later we address the latter,
introducing a 21st century algorithm for averaging
time series.

2.1 The problem of temporal variability
It is well-known that distinct utterances of human
speech3 categories such as words can vary signifi-
cantly in duration, both within and across speakers
(see e.g. Figure 1). This temporal variability is
one of the core challenges for any exemplar model.
These models typically compute a distance or sim-
ilarity function over exemplars; we therefore re-
quire a means of computing such a measure that is
robust to length-wise variation. Fortunately, such
an algorithm already exists and is well-known in
the speech recognition and time series analysis lit-
eratures.

Dynamic time warping (DTW) (Vintsyuk, 1968;
Sakoe and Chiba, 1978; Mueen and Keogh,
2016, for a recent overview) is an algorithm
for computing a distance measure between se-

3We focus on speech here and below, but believe the ap-
proach developed here applies, mutatis mutandis, to signed
languages as well.

quences of potentially differing lengths. Given
a pair of sequences X,Y with coordinates4

[x0, ..., xn], [y0, ..., ym] embedded in a shared para-
metric space Dk and a distance function d(xi, yj),
DTW finds the best alignment between X and Y
via the following optimization:

DTW (X,Y ) = min
π

√ ∑

(i,j)∈π
d(xi, yj)2 (1)

Here π is an alignment or warping path between
X and Y ; a sequence of pairs ((i1, j1), ..., (ik, jk))
each of whose elements respectively indexes posi-
tions in X and Y , with the following properties: (i)
π1 = (1, 1) and πk = (n,m), that is, the start and
end of X and Y are aligned, (ii) π increases mono-
tonically in i and j, and (iii) each i ∈ [1, ..., n]
and j ∈ [1, ...,m] appears at least once in π. The
DTW distance between X and Y is the minimized
sum of coordinate-wise distances over all possible
alignments.

We note here that we are not the first to realize
that DTW provides a solution to the problem of
temporal alignment in exemplar production; Kirch-
ner et al.’s (2010) PEBLS incorporates it in model-
ing a phonological generalization on toy data using
speech tokens. Their approaches requires ad-hoc
modifications to the DTW algorithm, along with
an additional hierarchical clustering step to miti-
gate the problem of spurious generalizations (see
Appendix A for a more detailed overview). Below
we examine a more principled approach to the lat-
ter problem.

2.2 Generalizing production from exemplar
knowledge

As alluded to above, a remaining challenge for pro-
duction exemplar models is accounting for the hu-
man capacity to “go beyond the data” and general-
ize over prior experiences, a hallmark of cognition.
In exemplar models of perception/comprehension,
a distance measure and simple nearest-neighbour
search are sufficient to enable generalization; given
an input form, the listener finds the previously
stored form that is closest to it in the representa-
tional space, and assigns that form’s category to
the input form, then stores them together.

4We borrow this term from Petitjean et al. (2011) for in-
dividual (possibly multidimensional) elements of sequences
and use it throughout.
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In production, the speaker has a given cate-
gory and must produce an output for it. The sim-
plest means of doing so is to select a previously-
memorized token from within that category and
directly produce it. This method effectively turns
the model into a look-up table, making it in-
principle incapable of generalizing beyond the in-
put to which it has been exposed (consider whether
this approach could handle e.g. a “wug” test
Berko Gleason, 1958). We turn now to one means
of surmounting this obstacle.

Pierrehumbert (2001) presents a model of
phonological production that implements general-
ization via a simple but ingenious method of ex-
emplar composition. The model’s exemplars are
points in (F1, F2, F3) formant space, represent-
ing vowel steady-state measurements, paired with
vowel category labels. For a given vowel category
C, generation of an output exemplar cout proceeds
in three steps: (i) a single seed token cin is ran-
domly selected from all stored exemplars associ-
ated with C, (ii) an analogical set or exemplar cloud
— Cin is constructed by considering all exemplars
within a fixed Euclidean distance of cin in formant
space, and finally (iii) an output token cout is pro-
duced by computing a similarity-weighted average
of the exemplar cloud, with similarity computed as
an inverse exponential function of distance.

Many phonetic and phonological insights have
been derived from exemplar models that take in-
spiration from this approach, averaging over point-
like data in low-dimensional spaces (e.g. Wedel,
2006; Ettlinger and Johnson, 2010, inter alia).
This approach can be straightforwardly extended
to handle parametric spaces of higher dimensional-
ity e.g. encoding richer acoustic information with
spectral frames, or sociophonetic context such as
interlocutor identity, etc. However, it is unclear
how it might be extended to incorporate the dy-
namic nature of human language, which unfolds
in time and cannot be reduced to point measures.
That is, the problem of straightforwardly accom-
modating the temporal variability and generaliza-
tion of human speech in implemented production
models remains underexplored.5

5To our knowledge Kirchner et al. (2010)is the only extant
model to address it to date.

3 MNEMORPHON: A bit of progress in
exemplar-based production6

Any implemented exemplar model must minimally
include tokens of some primitive linguistic unit en-
coded in a suitable representational format, asso-
ciated category labels, and a means of computing
analogically relevant similarity between exemplars
(Johnson, 2007). For Pierrehumbert’s model dis-
cussed above, these are segments (specifically vow-
els), the space defined by tuples of the first three
formants, and inverse Euclidean distance in for-
mant space. For MNEMORPHON these architectural
parameters are as follows:

• Units: tokens are complete words, with no
representation of sub-lexical linguistic cate-
gories (syllables, segments, etc.)

• Representation: exemplars are encoded
as mel-scaled spectrograms (Deng and
O’Shaughnessy, 2003)

• Categories: each exemplar is associated to a
discrete “lexical” label encoded as a pseudo-
phonemic character string for mnemonic con-
venience, roughly corresponding to a word
meaning

• Similarity: similarity between tokens is com-
puted as an inverse function of DTW distance
(see below for details)

Our general task can now be framed as follows:
given a seed exemplar and a cloud of tokens of pos-
sibly varying lengths from a given category, we
seek a procedure by which we can generate an out-
put exemplar as an “average” of the cloud.

As it happens, exactly computing the sample
mean of a set of sequences with potentially dif-
fering lengths corresponds to solving the problem
of multiple sequence alignment, which is known
to be computationally intractable (Elias, 2006).
Notwithstanding this, there are tractable approx-
imation methods that are theoretically justifiable
and empirically suitable; Petitjean et al. (2011) in-
troduce one such approach, DTW barycenter aver-
aging (DBA).

3.1 Computing averages of variable-length
sequences

DBA is an algorithm that takes as input a set of
sequences and iteratively converges to an average
sequence that is locally optimal, in the sense of

6With apologies to Goodman (2001).
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Algorithm 1 DBA (adapted from Petitjean et al.,
2011)
Require: S the sequences to average
Require: ŝ = [ŝ1...ŝk] initial barycenter

converged← False
assocTbl← table of length k
while converged ̸= True do

for all s ∈ S do
π← DTW(ŝ, s)
for all (i, j) ∈ π do

assocTab[i]← assocTab[i] ∪ sj

for all ŝi ∈ ŝ do
ŝi← BARYCENTER(assocTab(i))

CHECKCONVERGENCEreturn ŝ

minimizing a quantity analogous to inertia in k-
means clustering (i.e. “within-cluster variance”
MacQueen, 1967):

ŝ∗ = min
ŝ

∑

si∈S
DTW (ŝ, si)

2 (2)

The sequence ŝ∗ is called the barycenter of the
set of sequences S , by analogy with the use of
that term for center of mass, a dynamical physical
points which need not equal or intersect with any
of the points it averages over.

Given a set of sequences S and an initial “best-
guess” barycenter ŝ (typically randomly generated
or sampled directly from S), DBA iterates over two
phases (see Algorithm 1):

• Align: compute DTW alignments for ŝ and
each s ∈ S , and for each coordinate ŝi of the
barycenter, store the set of all coordinates it
was aligned with for each s

• Update: update each coordinate ŝi of ŝ to
be the barycenter of its associated coordinates
found in the alignment phase

The algorithm halts after a predetermined num-
ber of iterations, or when the difference in inertia
across iterations falls below a preset convergence
threshold. At each iteration, the update either
moves the barycenter’s coordinates to be closer to
their aligned cloud elements, or else a lower-cost
DTW alignment is found. In either case, the inertia
stays the same or decreases, hence DBA is guaran-
teed to converge.

Algorithm 2 MNEMORPHON output generation
Require: Λ a lexicon of categories and associated

exemplars
Require: λ ∈ Λ the category for which

MNEMORPHON must generate an output
Sin← GETALLEXEMPLARS(λ)
si ← RandomSelectOne(Cin) ▷ the seed
Cin← CONSTRUCTCLOUD(Sin)
ŝ∗← DBA(Cin, si)) return ŝ∗

Figure 2: Spectrograms of a token of kuşları (“birds”),
as created with our parameters versus Praat’s default
values.

3.2 Generating outputs
With its representations and averaging procedure
in place, MNEMORPHON’s basic algorithm for ex-
emplar output generation is straightforward (see
Algorithm 2):

1. Given a set of stored (exemplar, category)
pairs, and a target output production category

2. select a seed exemplar associated with the tar-
get category

3. construct an analogical set or cloud from the
remaining exemplars in the target category

4. output the mean of the cloud, computed via
DBA7

We leave the cloud construction step in 3 unspec-
ified here; Pierrehumbert uses a fixed-radius neigh-
bourhood of the seed, but alternatives are possible,
e.g. a fixed number of seed neighbours. Below
we partially address this question; ultimately it is a
model parameter to be tuned empirically.

4 Data
For the experiments described below our raw data
set is an audio corpus of Turkish speech, consist-
ing of microphone recordings (16KHz sample rate)

7MNEMORPHON uses the implementation of DBA available
in the tslearn Python package (Tavenard et al., 2020).
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Figure 3: Output spectrogram of seed token of belki (“maybe”), along with spectrograms generated from 2, 5, and
20 tokens. Cloud size correlates with noisy outputs.

from 120 speakers (balanced across binarized gen-
der categories; age 19–50 years, mean=23.9) who
each read 40 sentences sampled from a triphone-
balanced set of 2462 Turkish sentences (Özgül
Salor et al., 2006). Metadata for each speaker
includes (binarized) gender, dates of birth and
recording, places of birth and residence, and level
of education. Inspection revealed a subset (n=23)
of the speakers in the corpus to have mismatches
between audio and transcript files. These were fil-
tered out, leaving 97 speakers (m=49, f=48) for all
experiments described below.

Each recorded sentence is transcribed in stan-
dard Turkish orthography as well as an ASCII-
compatible phonemic orthography derived from
SAMPA (Wells, 1997), called METUbet (Özgül
Salor et al., 2002). The corpus also includes word-
level, phone-level, and HMM state alignments,
computed with an HMM-GMM acoustic model
trained on a subset of the full set of sentences.

As with most linguistic corpora, word frequen-
cies follow a roughly Zipfian distribution. There
are 7412 words in our dataset, the most frequent
of which, bir (“one/a”), occurs approximately 897
times, whereas there are 2423 words which occur
only once.

4.1 Model inputs
As mentioned, MNEMORPHON’s inputs are words;
these are segmented from the corpus speech files
using the provided word-level alignments. Each
segmented word is stored with its METUbet
string representation as category label, along with
speaker ID, gender marker, and a within-speaker
token index. The segmented word audios are then
encoded as mel-scaled spectrograms, with the fol-
lowing parameters:

• window length: 46ms

• hop length: 12ms

• 80 mel bands

As illustrated in Figure 2, these spectrogram
parameters generate comparatively coarse narrow-
band spectrograms, unlike e.g. Praat’s default val-
ues which have finer temporal resolution and are
perhaps better suited to visual presentation. Our
choice of spectrogram parameters was constrained
by our evaluation methodologies, discussed below.

5 Experiment 1: cloud composition
In our initial experiments we explore the effect
of cloud composition on MNEMORPHON’s outputs.
We begin with a maximally unconstrained ap-
proach, conditioning cloud selection solely on
word category membership. For each of the word
categories (i.e. distinct METUbet strings) repre-
sented in our corpus, we uniform randomly select
one token as the seed exemplar and sample pro-
gressively larger uniform random subsets of the
remaining tokens from the category as the cloud
from which MNEMORPHON computes a barycen-
ter. We illustrate the outcome here in Figures
3 and 4 for a representative example, the form
belki (gloss: “maybe”, corpus freq: 40, rank: 43).
We plot full spectrograms and a selection of mel
bands, respectively, for the seed token along with
from MNEMORPHON’s output barycenter for vary-
ing cloud sizes.

Figure 3 shows clearly that increasing the num-
ber of tokens included in the cloud results in
MNEMORPHON’s output spectrograms becoming
“blurrier”, losing most of the fine structure present
in individual tokens, particularly with respect
to frequency information. Notwithstanding this
noise, the individual mel bands plotted in Figure
4 show that MNEMORPHON’s generation algorithm
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Figure 4: Mel bands 16, 32, 48, 64 of seed spectrogram, with DBA spectrograms from cloud size 2, and 10, for
seed token belki.

does find meaningful averages for temporally vari-
able signals, locating and aligning the major peaks
and troughs in the energy for each band along the
temporal dimension.

The relation between output noise and increas-
ing numbers of cloud exemplars found here is not
solely due to cloud size, but rather that the clouds’
tokens are dispersed in the parametric space. To
confirm this we generate outputs from the same
seed, this time with two small clouds of the same
size (N=3), constrained to contain the maximally
similar and dissimilar tokens in the category, re-
spectively. The outputs, shown in Figure 5, con-
firm that dispersion plays a key role in the quality
of MNEMORPHON’s generated forms. This in turn
raises the question of latent categorical structure or
organization within exemplars clouds.8

As discussed in Section 2, some of the early mo-
tivation for exploration of exemplar-based speech
processing was the apparent storage and use of non-
linguistic information, for example indexical infor-
mation. The results above suggest that constrain-
ing MNEMORPHON’s cloud selection by using any
such additional contextually available information
would likely serve to further reduce the output vari-
ance, resulting in cleaner, and in a sense more rep-
resentative, output spectrograms. To test this we
re-ran the same experiment as above, with the same
seed token, this time constraining MNEMORPHON’s
clouds by using the (binarized) gender information
that is available in our corpus. We used the out-
put from our initial, unconstrained, experiment for
a cloud size N = 10, and then used ten uniform
randomly selected tokens from the relevant cate-
gory that were tagged F (“female”) in our corpus.
Once again, we see in Figure 6 that constraining
MNEMORPHON’s cloud along dimensions of simi-
larity, linguistic or otherwise, yields cleaner, more

8We thank an anonymous reviewer for highlighting this
point and encouraging us to explore it.

representative outputs.
Notwithstanding the obscuring or blurring of

phonetic detail in MNEMORPHON’s outputs, larger
scale patterns of energy distribution across differ-
ent frequency bands and time slices remain visible,
hinting at an emergent, transient form of abstrac-
tion; a hallmark of exemplar models. In our next
experiment we see that there is indeed linguistic
categorical information recoverable from these out-
puts.

In addition to the direct visual evaluation here,
we use a publicly available pre-trained neural
vocoder (Lee et al., 2023)9 to re-synthesize audio
from our generated spectrograms for impression-
istic auditory evaluation.10 It is the use of this
vocoder that constrained the spectrogram parame-
ters in our data preparation; because BigVGAN is
trained on narrow-band spectrograms (the standard
choice in neural text-to-speech synthesis), these
are required for any subsequent synthesis. That
said, the finer frequency resolution of narrow-band
spectrograms is likely beneficial for the quantita-
tive evaluation in Experiment 6.

6 Experiment 2: latent categorical
information in MNEMORPHON’s outputs

We have seen that MNEMORPHON’s outputs quickly
become noisy as a function of cloud size, although
this is somewhat mitigated by heavily weighting
the influence of cloud tokens that are close to the
seed in DTW distance. Despite this noise, we wish
to determine whether generated outputs retain any
categorically characteristic phonetic signal. We in-
vestigate this in the present experiment, in which
we train a neural network to take spectral slices as
inputs and classify them as front or back vowels.

9https://github.com/NVIDIA/BigVGAN
10The accompanying website hosts samples of audio syn-

thesized from MNEMORPHON’s outputs.
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Figure 5: Effect of cloud dispersal; spectrogram of seed
token of belki, along with spectrograms generated from
clouds with minimal and maximal dispersion (nearest
and furthest 3 neighbours, respectively).

Our focus on this particular phonetic char-
acteristic, foreshadows work in progress assess-
ing MNEMORPHON’s ability to learn productive
morphophonological generalizations, in particular
Turkish front/back vowel harmony.11

Although MNEMORPHON itself has no notion of
sub-lexical units, they are useful in the context of
this extrinsic analysis. For this experiment, we
extracted all vowels from the audio corpus using
the included alignments, and converted them di-
rectly to mel spectrograms, resulting in a total of
82360 samples, which were randomly shuffled and
divided via stratified split into train, development,
and test sets representing 80, 10, and 10 percent of
the corpus samples.

Our classifier is a convolution neural network.
They are known to perform well on spectrograms
and in fact form the backbone of many current
speech recognition systems (Gulati et al., 2020).
Our network has 4 layers of 2-d convolutions (5x5
in the first layer and 3x3 for subsequent layer),
a max-pooling layer, and a final fully-connected
layer projecting to a binary output (modeling
[± back]). Kernel sizes, learning rate and batch
size were tuned on a development split; the final
training run was for 25 epochs.12

11Turkish also has rounding harmony, which we also leave
for future investigation.

12See the accompanying repository for fuller details of the
data generating process, network architecture, and training

Figure 6: Effect of “gender”-based cloud constraint;
spectrogram of seed token of belki, along with spectro-
grams generated from size N = 10 clouds restricted
to tokens tagged as “female” versus sampled uniformly
across gender markers.

6.1 Data augmentation
Like all supervised learning approaches, neural
networks are sensitive to distribution shift, where
the properties that the network learns to extract as
relevant features are differently distributed in the
training and evaluation sets. This exact situation
obtains in the current experiment, where our train-
ing data consists solely of “clean” spectrograms di-
rectly computed from audio while the target spec-
trograms are “noisy” for reasons discussed above.
For this reason our initial attempts at classifying
MNEMORPHON’s outputs fared poorly.

In order to mitigate the effect of this dispar-
ity we augmented our training data with DBA-
generated samples; for each vowel category we
added 1000 samples, each created by running
distance-weighted DBA over 10 tokens uniform
randomly sampled from the given category’s exem-
plars in the training set.

6.2 Results
Table 1 shows the precision, recall, and F1 score of
our classifier on the test split of our data set. We
can see that MNEMORPHON is, at least according to
our classifier, producing output vowels with pho-
netic characteristics that enable their identification
as front or back.

procedure.
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class precision recall F1 support
front 0.880 0.878 0.879 3154
back 0.866 0.867 0.867 2856
accuracy 0.873 6010

Table 1: Precision, recall, F1 score, and accuracy of
CNN phone classifier on held-out set

7 Discussion

We have shown here that dynamic time warping
and DBA barycenter averaging together constitute
a viable basis for a production algorithm in an ex-
emplar model, MNEMORPHON, whose token rep-
resentations are word-sized mel spectrograms of
variable durations, overcoming a core challenge
for exemplar production models. We showed both
qualitatively and quantitatively that despite noise
introduced by averaging over tokens that are dis-
persed in spectrotemporal space, our model’s out-
puts retain phonetic properties that are characteris-
tic of the exemplars from the generating categories.

8 Limitations and future work

MNEMORPHON’s production algorithm as applied
in these experiments generates comparatively
noisy outputs, unless the selection of tokens for the
exemplar cloud is severely constrained. Nonethe-
less, we see this work as an initial step toward
a fully articulated theory and model of exemplar-
based (psycho)linguistic knowledge. An eventual
goal is to assess how far such a “pure” or “core”
model can take us before a hybrid approach be-
comes necessary (cf. Goldrick and Cole, 2023).

In future work will explore further restrictions
on cloud construction, exploring e.g. speaker iden-
tity, dialect, and speech rate among others.

As hinted in Section 6, we also intend to extend
this work to account for productive morphophono-
logical alternations like Turkish vowel harmony
(see Mailhot, 2010b, for an exemplar production
approach that learns productive vowel harmony on
toy data, including patterns of opaque and trans-
parent neutrality), and eventually to data from psy-
cholinguistic research on speech perception and
production (e.g. contexts of phonetic reduction
and lengthening, and patterns of interlocutor con-
vergence).

As the data used here are not widely accessi-
ble, we also intend to reproduce these results in the
not-too-distant future using data from the Mozilla

Common Voice corpus (Ardila et al., 2020)13 in or-
der to facilitate reproducibility.

8.1 A note on gender
As a final remark, we acknowledge here that gender
identity and expression exist on a spectrum, and
hence that the use of binarized gender in the ex-
periment on constraining cloud size is problematic.
The experiment was added in response to a perti-
nent reviewer remark, and in the interest of expedi-
ency we used the binarized gender markers that are
available in our corpus’s metadata. In future work
we hope to address this more carefully, either us-
ing a wider array of self-reported gender identities,
or potentially relying purely on phonetic features,
e.g. high or low F0 (although of course this is at
best an approximation).
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A PEBLS : Phonological
Exemplar-based Learning System

Kirchner et al. (2010) present PEBLS, to our
knowledge the only exemplar production model
in the phonetics/phonology literature that operates
over (digitized representations of) real speech to-
kens.

To produce an output, PEBLS randomly selects
a seed token from the set of word labels; all remain-
ing exemplars in that set serve as the cloud. Out-
put production is then cast as the problem of deter-
mining an optimal alignment between the seed and
the entire cloud. Concretely, PEBLS’s output is a
token composed of coordinates or sub-sequences
of in-cloud exemplars that may occur in any posi-
tion in any token. The optimization is computed
over both coordinate-wise similarities, and inter-
coordinate transition similarities (these obtained
by computing an alignment of the cloud with itself,
offset by one coordinate.)

Kirchner et al. note that this production
method also faces the issue of generalization,
as for categories whose exemplars mostly-with-
exceptions reflect some phonological generaliza-
tion (e.g. intervocalic lenition). If the initially
sampled seed token violates the relevant general-
ization (i.e., it includes a stop between vowels),

and even a single generalization-violating exem-
plar exists in the cloud, it will be directly output
by PEBLS, notwithstanding the preponderance of
generalization-conforming exemplars.

In order to predispose PEBLS to produce to-
kens that reflect the statistical generalizations in-
stantiated in its exemplars, a “confidence” mea-
sure is introduced that expresses the representative-
ness of sequences of coordinate transitions within
the cloud. This confidence computation requires a
complete hierarchical clustering over the cumula-
tive partial DTW scores at each coordinate transi-
tion.

While PEBLS presents solutions to the prob-
lems of production and generalization over real
speech exemplars, it does so at the cost of non-
trivial complexity; introducing unmotivated mod-
ifications to the DTW algorithm, along with an ad-
hoc mechanism to down-weight the importance of
non-representative exemplars within a cloud.

76

http://jmlr.org/papers/v21/20-091.html
http://jmlr.org/papers/v21/20-091.html
https://doi.org/doi:10.1515/TLR.2006.010
https://doi.org/doi:10.1515/TLR.2006.010
https://www.phon.ucl.ac.uk/home/sampa/
https://www.phon.ucl.ac.uk/home/sampa/
https://doi.org/10.21437/ICSLP.2002-152
https://doi.org/10.21437/ICSLP.2002-152
https://doi.org/10.21437/ICSLP.2002-152
https://catalog.ldc.upenn.edu/LDC2006S33
https://catalog.ldc.upenn.edu/LDC2006S33
https://catalog.ldc.upenn.edu/LDC2006S33

