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Abstract
In sign languages, syllables are composed of syllabic components consisting of locations, movements, and
handshapes; however, the rules of combinations of these syllabic components are still unclear. Decomposing existing
syllables into syllabic components is necessary to clarify the rules. This study aims to construct an automatic syllabic
component classification system for Japanese Sign Language (JSL) using deep learning. We propose a pre-training
method using non-Japanese Sign Language data to achieve high performance in classifying syllabic components in
a situation where the number of training JSL videos is limited. We also investigate multitask learning for syllabic
component classification to share the information among the syllabic components. Experiments on the syllabic
component classification for the dominant hand show that 1) pre-training with the American Sign Language (ASL)
dataset improved classification performance for the movement and handshape components and 2) multitask learning
did not contribute to the performance improvement of syllabic component classification. We also investigated the
influence of pre-training on syllabic component classification by visualizing critical elements in videos to predict the
components.
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1. Introduction

Locations, movements, and handshapes are the
syllabic components in sign languages. Syllables
of sign language are combinations of the syllabic
components, and the composition rules for the
syllables are still unclear (Hara, 2016). To ana-
lyze the rules of syllable composition in Japanese
Sign Language (JSL), Hara (2019) proposed a syl-
lable database with videos of syllables and their
components that are decomposed by hand. How-
ever, manually decomposing a number of syllables
that have not yet been registered in the database
into syllabic components is costly. Therefore, it is
needed to construct a system that can automatically
recognize syllabic components from JSL videos.
The syllabic component recognizer could be used
not only to supplement the database but also to
further analyze JSL using the system’s prediction
results.

Recently, deep learning approaches to sign lan-
guage processing have been shown to be effec-
tive (Jiang et al., 2021; Chen et al., 2022; Zuo
et al., 2023). Deep learning methods require a
large amount of labeled training data to achieve
high performance, but unfortunately, the number
of JSL videos with labeled syllabic components is
limited. On the other hand, there is a large amount
of data of a non-Japanese Sign Language, such
as American Sign Language (ASL), and the two
sign languages share features in expressing signs
with manual and non-manual signals. Although we
can expect the improvement of classification perfor-

mance for JSL by using the shared features, such
an approach has yet to be investigated.

This study aims to construct an automatic syllabic
component classification system from JSL videos.
As the first step toward this goal, this study focuses
on the location, movements, and handshape of the
dominant hand. To address the problem of limited
data in JSL, we propose pre-training using non-JSL
datasets. We conduct training on JSL video data to
classify syllabic components after initializing the pa-
rameters with those trained on a non-JSL dataset.
We also introduce multitask learning in classifying
location, movement, and handshape components
by sharing the base classification model among the
components.

The contributions of this study are summarized
as follows:

• We constructed a system that automatically
recognizes syllabic components of the domi-
nant hand from JSL videos.

• We showed the effectiveness of using models
pre-trained on a non-JSL dataset for the move-
ment and handshape classification from JSL
with limited data.

• We found that information sharing between
tasks does not necessarily improve classifica-
tion performance through multitask learning of
syllabic components in JSL.
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2. Related Work

2.1. Japanese Sign Language Dataset
Nagashima et al. (2018) constructed a versatile
JSL database that can be used in the fields of lin-
guistics and engineering. The database includes
high-resolution video data capturing the actions of
two native signers with a high-resolution camera
from the front and diagonally forward from the left
and right. Additionally, it incorporates 3D motion
data obtained through optical motion capture and
depth data from distance sensors. The dataset
provides data on 4,873 glosses and ten dialogues.

Hara (2019) defined a JSL coding manual and
created a syllable database in which the syllables
were broken down into location, movement, and
handshape components. The database contains
video clips representing the JSL syllables, recorded
with a single signer. 1,086 syllable videos were
included, each consisting of approximately 300
frames. The location components are classified
into 22 categories to indicate the hand locations in
space or on the body. The handshape components
are divided into 69 categories. The location and
handshape components are assigned to a single
category label in the video. The location compo-
nent signifies the starting position of the sign, and
the handshape component indicates the shape of
the hand. We should note that this database manu-
ally defines base handshapes so that each syllable
can be represented by a single base handshape.
We use this base handshape as the handshape
component, and the changes in the handshape are
represented by the movement component.

The movement components are distinguished
into 55 ways of moving a hand, such as rightward
movement and finger joint opening, with one to
three categories assigned to each video. In addition
to the components for dominant and non-dominant
hands, more detailed decompositions of each syl-
labic component are attached, such as “contact,”
“hand orientation,” and “metacarpal orientation.”

2.2. Sign language processing using
machine learning and deep learning

Sign language processing using machine learning
and deep learning, such as Sign Language Recog-
nition (SLR) for predicting gloss (Jiang et al., 2021;
Zuo et al., 2023) and sign language translation for
translating signs into spoken language (Chen et al.,
2022), has been actively conducted. Skeleton
Aware Multi-modal SLR (SAM-SLR) (Jiang et al.,
2021) is a framework that integrates body, mo-
tion, and depth information in addition to video
and keypoint information. Video-Keypoint Network
(VKNet) (Zuo et al., 2023) extracts features from 64
and 32 video frames and keypoints to account for

different temporal information. VKNet consists of
two sub-networks, VKNet-64 and VKNet-32. Each
sub-network also contains video and keypoint en-
coders, and there are bidirectional lateral connec-
tions (Duan et al., 2022) to exchange information
between each encoder. S3D (Xie et al., 2018),
a 3D Convolutional Neural Network that can con-
sider spatio-temporal information, is used as the
encoder. After keypoints are estimated from the
video using a learned pose estimation model, HR-
Net (Sun et al., 2019), 64 and 32 video frames and
keypoints are input to VKNet-64 and VKNet-32, re-
spectively. The combined representation vectors
from each network are used to predict the gloss.
VKNet performed well on several datasets for SLR.

Studies on sign languages considering syllabic
components have also been conducted (Zhang
and Duh, 2023; Tavella et al., 2022; Kezar et al.,
2023; Hatano et al., 2016). To clarify the impor-
tance of the handshape component in SLR, Zhang
and Duh (2023) constructed a dataset labeled with
handshapes on an existing SLR dataset and pro-
posed a model that predicts both glosses and hand-
shapes simultaneously by extending the existing
SLR model. The proposed model performs better
than those that only use videos as input without
considering handshapes. Tavella et al. (2022) and
Kezar et al. (2023) have constructed datasets la-
beling multiple syllabic components in addition to
gloss in sign language videos. Furthermore, Kezar
et al. (2023) classified 16 different phonological
features, which are close to fine-grained syllabic
components, and demonstrated that learning the
features through classification contributes to im-
proving the performance of SLR. In JSL, Hatano
et al. (2016) employed machine learning methods
to recognize the location, movement, and hand-
shape components and construct a SLR system
based on the weighted sum of classification scores
for each component. This method requires extract-
ing the video’s features, such as coordinates, ve-
locity, and acceleration.

3. Methods

This study proposes a method for classifying syl-
labic components in JSL videos using pre-training
on a non-JSL dataset. This study focuses on the
location, movement, and handshape components
of the dominant hand, which are defined in the sylla-
ble database created by Hara (2019) and employs
VKNet (Zuo et al., 2023) as the base deep learning
model. We initialized the parameters of VKNet with
those pre-trained on a non-JSL dataset to leverage
information from non-JSL. The overall architecture
of the proposed model is illustrated in Figure 1.

As explained in §2.1, there are 22, 55, and 69
categories for location, movement, and handshape
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Figure 1: The overview of syllabic component classification through pre-training using non-JSL dataset

components, respectively. We added three fully
connected (FC) layers corresponding to individual
components to the VKNet pre-trained on the non-
JSL to classify each syllabic component.

A softmax function is applied to the output vector
of the FC layers for the location and handshape
components, where a single label is assigned from
multiple categories. This function enables multi-
class classification, where the class with the highest
predicted probability is considered the prediction.
By contrast, a sigmoid function is applied to the
output vector of the FC layers for the movement
component, which involves multiple labeled move-
ments. This function allows for binary classification
for each movement type; movements with predicted
probabilities higher than a threshold are considered
the prediction in the multi-label classification.

The loss function includes cross-entropy and
asymmetric losses (Ridnik et al., 2021). The cross-
entropy loss is used for location and handshape
classification, while the Asymmetric Loss (AsLoss)
is applied to the movement classification. Since
there are only up to three movements for each syl-
lable in the database, the classification problem
is highly imbalanced, with few positive and many
negative examples. The AsLoss addresses this
imbalance by calculating a weighted sum in which
the weight of the loss in positive examples is larger
than that in negative examples. It is defined as:

AsLoss =

{
−(1− p)γ

+

log(p) if y = 1

−pγ
−

m log(1− pm) otherwise
(1)

where pm is defined in Equation (2) to ignore nega-
tive examples that can be classified easily.

pm = max(p−m, 0) (2)

Note that p is the network’s output probability and
hyperparameters γ− and γ+ are sets such that
γ− > γ+ to emphasize the contribution of positive
examples. m represents the threshold value.

During training, multitask learning is performed to
share the information among syllabic components.
Specifically, VKNet is shared, and the loss function
is the sum of classification losses for each syllabic
component.

4. Experimental settings

We evaluated the proposed method using the sylla-
ble database created by Hara (2019). We randomly
split the 1,072 instances annotated with the loca-
tion, movement, and handshape components into
750, 161, and 161 instances for training, develop-
ment, and testing, respectively. The statistics for
the top-10 instances of each component are pre-
sented in Table 1. The table shows that syllable
instances are highly imbalanced among the cate-
gories. To avoid highly challenging classification
problems, we excluded instances with the cate-
gories with fewer than five instances in the training
data, treating them as false-negative predictions.
We adopted the micro F-score as the evaluation
metric.

As the pre-training parameters, we utilized the
pre-trained VKNet parameters,1 which was trained
on the 14,289 training instances with 2,000 glosses
of Word-Level American Sign Language (WLASL)
dataset for SLR in ASL (Li et al., 2020).

We conducted two comparisons in the experi-
ments. The first comparison is to investigate the ef-

1https://github.com/FangyunWei/SLRT/
tree/main/NLA-SLR

https://github.com/FangyunWei/SLRT/tree/main/NLA-SLR
https://github.com/FangyunWei/SLRT/tree/main/NLA-SLR
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Movement # Handshape # Location #

Rightward movement of a hand 142 138 * 835

Forward movement of a hand 135 125 Temples 40

Wrist rotation: outward rotation of a wrist with the little finger as the axis 120 57 Mouth 32

Downward movement of a hand 117 55 Chest 23

Flexion of finger joints with handshape changes 80 53 Brow 22

Extension of finger joints with handshape changes 77 48 Eyes 17

Circular or semicircular movement on a horizontal plane 69 42 Face 16

Upward movement of a hand 64 40 Elbow 13

Leftward movement of a hand 61 40 ** 13

Non-linear movement (trajectory) of a hand 51 34 Abdomen 12

Table 1: Numbers (#) of top-10 instances for the location, movement, handshape components, icons from
McKee et al. (2011). * and ** in the location component represent the neutral space in which the sign is
made in front of the body or face, respectively.

Method Syllabic component
Location Movement Handshape

VKNet 80.75 (± 1.02) 38.29 (± 2.54) 39.54 (± 1.05)
+ Pre-training 81.16 (± 2.05) 52.41∗ (± 0.86) 44.72∗ (± 3.55)
+ Multitask learning 81.99 (± 0.00) 45.76∗ (± 0.82) 42.23† (± 1.34)

Table 2: Results of syllabic component classification. The means of three runs are shown as the final
micro F-scores (%). The numbers in parentheses are standard deviations. * and † denote significance
levels of 0.05 and 0.1 compared with the results directly above.

fectiveness of pre-training using the ASL dataset in
syllabic component classification for JSL; we com-
pared the classification performance of VKNet with
parameters initialized from the pre-trained model
and VKNet with randomly initialized parameters.
The second comparison is to evaluate multitask
learning. We compared the classification perfor-
mance when simultaneously or independently ad-
dressing each task to understand the impact of
information sharing between tasks. We used the
Adam optimization method (Kingma and Ba, 2015),
setting the learning rate to 5×10−5 and applied co-
sine annealing as a scheduler to change the learn-
ing rate per epoch. We set the hyperparameters
γ−, γ+, and m of the AsLoss to 4, 1, and 0.05, re-
spectively. To suppress overfitting, we employed
dropout (Srivastava et al., 2014) and regularization,
setting their values to 0.2 and 10−3, respectively.

5. Results

The results of syllabic component classification
from JSL videos in test data are shown in Table 2.
The results of syllabic component classification

using VKNet with parameters pre-trained on the
WLASL dataset as initial values showed that the
micro F-scores for the location, movement, and
handshape components were improved compared
to those using VKNet with random parameters as
initial values. The results evaluated on the develop-
ment and test data are summarized in appendix B.
We conducted a significance difference test with
the bootstrap method to verify the improvement in
classification performance of the pre-trained VKNet.
As a result, we confirm that the pre-training method
effectively improved the classification of the move-
ment and handshape components of JSL.

Multitask learning improved the micro F-score of
the location component but decreased those of the
movement and handshape components. The sig-
nificance test showed a significant decrease in the
classification of the movement component, while
there was no significant difference for the location
and handshape components. This result indicates
that multitask learning is ineffective or harmful in
classifying syllabic components of JSL.
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(a) Visualization result of VKNet’s pre-
diction basis

(b) Visualization result of pre-trained
VKNet’s prediction basis

Figure 2: Visualization results (classification of the
movement component)

6. Discussion

To verify the influence of pre-training on the syllabic
components of VKNet, we visualized the parts of
the video VKNet focused on while predicting syl-
labic components using Adaptive Occlusion Sen-
sitivity Analysis (AOSA) (Uchiyama et al., 2023),
one of the methods of explainable AI techniques.
The AOSA results were visualized with colors from
red to blue to indicate their importance; the areas
with high importance are shown in red. The exam-
ple of the movement component that could not be
classified by VKNet but could be classified by the
pre-trained VKNet is visualized in Figure 2. From
these results, we can see that the right hand, which
is the dominant hand, is more focused after pre-
training. This change in the focus suggests that the
pre-trained VKNet can make more accurate predic-
tions than the VKNet by focusing on the dominant
hand and classifying syllabic components.

7. Conclusions

This study proposed the classification of the syllabic
component for the dominant hand using parame-
ters of a model pre-trained on a non-JSL dataset as
a first step to construct a method for syllabic com-
ponent classification based on JSL videos. We
also introduced multitask learning for sharing in-
formation among syllabic component classification.
We evaluated the proposed method based on the
VKNet model using the JSL database in the experi-
ments. Experimental results show that pre-training
with the ASL dataset significantly improves the clas-
sification performance of the movement and hand-
shape components from a limited number of the
JSL videos. On the other hand, the classification
performance with multitask learning did not improve
the performance of syllabic component classifica-
tion in JSL. We also investigated the effect of pre-
training on syllabic component prediction by visu-
alizing the predictive basis of VKNet using AOSA.
The visualization results suggest that the proposed
pre-training enabled the focus on the target hand.
Future work includes investigating the models and
training methods to improve the classification and
classification performance of syllabic components
for both the dominant and non-dominant hands.
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A. Impact of data imbalance on
location component classification

For the location component classification, neutral
space instances, the first row in Table 1, cover
most of the dataset. To examine its impact on
the classification results, we used a pre-trained
VKNet and evaluated it by excluding the instances.
The evaluation results on the development data are
shown in Table 3. When excluding neutral space
instances from the dataset, the performance sig-
nificantly dropped. This result suggests that the
model was affected by the bias in the dataset and
fitted to the neutral space class. This performance
degradation indicates that, to improve the general-
ity of the model, the bias in the dataset needs to be
addressed by sampling data or changing the loss
function.

B. Overall result

In this study, we set four learning conditions to com-
pare the effects of pertaining VKNet and multitask
learning: (1) no pertaining VKNet, no multitask
learning, (2) pertaining VKNet, no multitask learn-
ing, (3) no pertaining VKNet, multitask learning, (4)
pertaining VKNet and multitask learning. We per-
formed syllabic component classification for each
condition using the development and test data. The
results are shown in Table Table 4

C. Hyperparameter tuning in
multitask learning

we conducted additional experiments to optimize
the coefficients of the loss functions for each task
in multitask learning. Previously, we summed the
losses for each syllabic component. Still, this time,
we introduced weighting coefficients for the loss
of each syllabic component and attempted to op-
timize these coefficient values using a Bayesian
optimization. Specifically, the value of each coeffi-
cient was constrained to be between 0 and 1, and
the sum of all coefficients was always set to 1. We
performed 70 iterations of Bayesian optimization
and searched for the combination of coefficients
that maximized the micro F-score for syllabic com-
ponent classification on the development data. It
is shown in Table 5, where the optimal coefficient
values obtained by Bayesian optimization and the
corresponding micro F-scores are shown in con-
trast to the micro F-scores obtained by simply sum-
ming the losses. After three evaluations, the micro
F-score for the handshape component showed a
slight improvement, although the micro F-scores for
the location and movement components showed
a slight decrease. However, these score changes

Location
pre-trained VKNet w/ neutral space 80.75 (± 1.02)
pre-trained VKNet w/o neutral space 41.67 (± 4.54)

Table 3: Results of location component classifi-
cation with and without neutral space instances.
Neutral space instances constitute a large portion
of the dataset. The performance is measured us-
ing the micro F-score (%), with the reported values
showing the average and standard deviation over
three evaluation runs.

were within the margin of error, indicating no sig-
nificant difference resulted from simply summing
the losses for each syllabic component. Therefore,
we evaluated the test data using a simple sum of
losses with equal weights.
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Dev Test
Method Location Movement Handshape Location Movement Handshape

Multitask VKNet 82.40 (± 1.27) 34.06 (± 0.52) 39.75 (± 1.83) 80.33 (± 1.06) 38.55 (± 1.25) 35.20 (± 2.55)
+ Pre-training 82.20 (± 1.17) 39.94 (± 2.85) 47.41 (± 2.29) 81.99 (± 0.00) 45.76 (± 0.82) 42.23 (± 1.34)

Singletask VKNet 83.85 (± 1.01) 34.57 (± 0.39) 43.89 (± 0.29) 80.75 (± 1.02) 38.29 (± 2.54) 39.54 (± 1.05)
+ Pre-training 83.44 (± 0.77) 44.98 (± 1.06) 47.82 (± 1.02) 81.16 (± 2.05) 52.41 (± 0.86) 44.72 (± 3.55)

Table 4: Results of syllabic component classification with and without pertaining and with and without
multitask learning. The evaluation metric is the micro F-score (%). The mean and standard deviation of
the three evaluations are shown.

Dev
hyperparameter Location Movement Handshape
alpha = 0.095704

78.46 (± 1.17) 38.70 (± 1.86) 48.24 (± 1.63)beta = 0.597839
gamma = 0.306457
alpha = beta = gamma 82.20 (± 1.17) 39.94 (± 2.85) 47.41 (± 2.29)

Table 5: Micro F-score (%) of syllabic component classification using the optimized hyperparameters
obtained from Bayesian optimization and an equal weight baseline. Coefficients for location, movement,
and handshape are denoted as alpha, beta, and gamma, respectively.
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