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Abstract
This paper explores whether measurable quantitative linguistic relationships are readily apparent in the use of space
of three different Sign Languages (SLs): British Sign Language (BSL), Dutch Sign Language (NGT) and Mexican
Sign Language (LSM). To this end, three SL datasets were collected; one for each of the languages of interest.
Informative video frames were extracted from the collected datasets, which in turn were automatically processed to
detect hand locations. The obtained information was analyzed through statistical methods, and compared against
a dataset of non-linguistic gestural communication: the latter, in an effort to observe whether space-use differs
between linguistic and non-linguistic gestures. The results show that meaningful gestures—regardless of whether
they are deemed linguistic or not—seem to induce a spatial hierarchy around the gesturer, disproportionately
favoring certain areas during articulation. SLs in particular seem to exert pressure on those areas to become more
efficient, as signers appear to concentrate hand activity over more cohesive regions than non-signers. In addition,
these results point towards an indirect relationship between culturally-recognized gestures and their surrounding
SLs, showing that there is still work to be done on the exploration of iconicity and its effects on gestural communication.
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1. Introduction

Quantitative linguistics is the sub-field of linguistics
that studies language through empirical mathemati-
cal methods (Best et al., 2017), most of which arise
from statistics (Johnson, 2008). Previous work on
quantitative linguistics has shown that spoken and
written languages fulfill statistical laws that can be
asserted as language universals; notably Zipf’s
law of abbreviation (Bentz and Ferrer-i Cancho,
2016; Linders and Louwerse, 2023) (which states
that there is a negative relationship between word
length and frequency) and Menzerath-Altmann’s
law (Eroglu, 2013; Milička, 2014) (which states
that larger linguistic structures have shorter con-
stituents and vice versa). Research in the field has
also delved into the study of animal communica-
tion systems (Ferrer-i Cancho and McCowan, 2009;
Heesen et al., 2019; Clink et al., 2020; Huang et al.,
2020; Safryghin et al., 2022), and how their rudi-
mentary encoding of meaning produces patterns
reminiscent of both laws. However, quantitative lin-
guistic laws have seldom been confirmed in more
than a few Sign Languages (SLs) (Malaia et al.,
2023); thus, even though SL research has emerged
as a compelling area of study for the exploration
of statistical linguistic universals, little work has
been directed towards the study of quantitative re-
lationships akin to the ones observed in spoken
language.

This paper explores the existence of quantitative
spatial relationships in three different SLs: British

Sign Language (BSL), Dutch Sign Language (NGT)
and Mexican Sign Language (LSM). To this end,
four SL datasets were analyzed: three dictionar-
ies and one continuous signing video. Relevant
frames were extracted from each collection, which
in turn were processed to automatically detect hand
locations. Location points were then analyzed
with statistical methods, in an effort to discover
whether signers assign a strict hierarchy in the
signing space consistent with previous observa-
tions in quantitative linguistics. The obtained mea-
surements were compared against a dataset of
non-linguistic gestural communication videos, so
as to explore the differences between linguistic and
non-linguistic gestures.

The results show that communicative gestures—
whether they are SL or not—seem to induce a
spatial hierarchy, disproportionally favoring certain
space regions for articulation. SLs in particular
seem to exert pressure on those areas to become
more efficient, as signers appear to concentrate
hand activity over more cohesive regions than non-
signers.

The rest of this paper is organized as follows.
Section 2 presents some of the existing work in
quantitative linguistics for SLs. Section 3 presents
the methodology, whereas Section 4 shows the
obtained results. Finally, Sections 5 and 6 present
the discussion and conclusions, respectively.
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2. Related work

The volume of existing research in quantitative
linguistics strongly implies that SLs must fulfill
(at least) the same statistical patterns as spoken
languages—even despite their highly iconic nature.
However, few works have been directed towards
their quantitative exploration.

Among these, Riedl and Sperling (1988) at-
tempted to measure how American Sign Lan-
guage (ASL) intelligibility is affected depending on
changes on the visual signal. The authors filtered
the videos of an ASL corpus of isolated signs into
different spatiotemporal bands; afterwards, they
measured how combining them or adding noise
improved (or decreased) intelligibility with Deaf indi-
viduals. They found that they could divide isolated
signing videos into four high intelligibility bands
with enough visual information to discriminate be-
tween them; in essence, proving that the discrete
nature of language is preserved in SLs regardless
of modality.

More recently Stewart (2014) studied how role
shifting, sign-type or information status (new vs.
given) may affect the duration of ASL signs. The
author found that duration (in milliseconds) can be
used to distinguish between lexicalized signs and
non-conventionalized forms (i.e. iconic), pointing
towards an underlying meaning-length relationship
akin to the law of abbreviation.

Similarly, Börstell et al. (2016) analyzed the re-
lationship between sign duration and frequency
in Swedish Sign Language (STS). The authors
showed that high-frequency signs in their corpus
had shorter durations than low-frequency signs.
Also, they showed that signs that act as function
words had shorter durations than content signs,
once again pointing towards an underlying length-
meaning relationship.

Caselli et al. (2017) presented a lexical database
of 1000 ASL signs containing information includ-
ing frequency (as estimated by users), duration,
iconicity rating, grammatical class and the signs’
phonological properties. Having these measure-
ments enabled the authors to calculate statistical
relationships between them; notably, in contrast to
previous works, they also took into account sub-
lexical features. Their results show that:

• shorter signs were more frequent;

• less iconic signs were more frequent; and,

• the frequencies of individual phonological prop-
erties (including location) tended to approxi-
mate a power-law distribution.

Bosworth et al. (2019) also analyzed sub-lexical
characteristics of ASL, measuring spatiotemporal

properties such as: hand location, hand eccentric-
ity in the visual space, hand motion speed and total
traveled distance of the dominant hand. As their
predecessors, they also calculated sign duration.
The authors found that signers produce asymme-
tries in the visual field (concentrating movement
around certain areas). In that regard, their results
show that the statistical laws underlying SLs may
not only express themselves temporally, but also
spatially.

Fenlon et al. (2019) analyzed the difference be-
tween linguistic and non-linguistic gestures in SL.
The authors compared how pointing signs (with
grammatical function) in BSL differed from the point-
ing gestures produced by non-signing American
English speakers. To this end they annotated fea-
tures such as hand-shape, number of hands, du-
ration and body-contact of the observed pointing
instances (in both corpora). Their results show
that there is an evolutionary pressure consistent
with Zipf’s law of abbreviation that makes point-
ing signs both systematically shorter than pointing
gestures, and more stable shape-wise upon pro-
duction. The authors emphasize that this reduction
is expressed along several formational parameters
(not only duration) and that it may be related to the
high frequency of pointing signs in BSL.

A similar observation was made by Flaherty et al.
(2023), regarding the signing space. The authors
compared the signing of young and old Nicaraguan
Sign Language (ISN) signers using motion track-
ing technology. Their comparison was based on
measuring the size of the 3D space that the sign-
ers actually used during production, as well as the
average body-wrist distance. The results show that
younger signers tended to use less space that older
signers, pointing towards a reduction of the sign-
ing space consistent with an underlying linguistic
optimization model.

3. Methodology

The experiments consisted in automatically extract-
ing hand locations from both SL and non-SL gestu-
ral videos, so as to explore their respective spatial
characteristics. To this end four publicly available
SL resources were collected, as well as a non-SL
communication dataset.

3.1. Datasets
For SL communication three dictionaries were cho-
sen:

• BSL (Waters, 2003) with 280 signs;

• NGT (Els van der Kooij, 2003) with 250 signs;
and,
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• LSM (Alvarez Hidalgo et al., 2009) with 300
signs.

Dictionaries were preferred over continuous sign-
ing videos so as to remain fully comparable with the
non-SL videos. However, to account for potential
changes due to the grammatical use of space, a
continuous signing dataset was compiled:

• LSM (continuous) (López-Obrador, 2023), ex-
tracted from a publicly available government
conference.

Regarding non-SL gestural communication, a
video dataset of pantomimes, emblems1 and mean-
ingless gestures was chosen (Lingnau, 2018), con-
taining the following video distribution (Agostini
et al., 2019):

• Emblems (103 videos);

• Pantomimes (90 videos); and,

• Meaningless (77 videos).

Notably, the gestures represented in the dataset
were rated on how meaningful they were deemed by
American and Italian raters; with Pantomimes show-
ing a higher consensus on their apparent meaning
than Emblems. These differences between them
may be important for comparison against SL signs,
as it means that some gestures may share an iconic
“root” with some signs (particularly Pantomimes).
Moreover, lower consensus on the meaning of Em-
blems might also point towards cultural differences
that may affect the creation of meaningful commu-
nication symbols—which, in turn, could potentially
have a measurable effect on SLs.

From this dataset, only Emblems and Pan-
tomimes were analyzed; the ambiguous nature of
the Meaningless videos made them difficult to inter-
pret when compared against signing videos. Thus,
in the end, a total of six collections were considered:
three SL dictionaries, one continuous signing video
and two non-SL video datasets.

3.2. Frame extraction
For this study only a subset of informative video
frames were considered from each dataset. Mainly,
in an effort to avoid over-representation of space
regions across collections, which could be biased
by frame rate differences or changes in signing
speed. This strategy also served to reduce the
computational overhead of the analysis.

Thus, all relevant video frames were automat-
ically extracted from each of the six aforemen-
tioned collections. The extraction process followed
the algorithm proposed by Martinez-Guevara et al.

1Gestures with a culturally agreed-upon meaning.

(2023), based on finding stable fixed postures:
video frames with minimal change with respect to a
context window, as given by the Structural Similar-
ity Index (SSIM) (Wang et al., 2004). The authors
showed that the extracted frames are relevant in
the sense that they contain enough information for
native signers to still understand the utterance if
presented with those frames alone; i.e. they con-
tain enough information to preserve the message.

Table 1 shows the quantity of fixed postures ex-
tracted from each collection. Note that fixed pos-
tures were obtained from at most 90 random signs
per dataset, so as to remain consistent with the
number of gestures available in the Pantomimes
dataset.

Dataset
No. of
Fixed

Postures

No. of
Gestures
or Signs

BSL 137 44
NGT 136 44
LSM 272 86
LSM

(continuous) 280 ≈90
Emblems 133 90

Pantomimes 148 90

Table 1: Number of fixed postures (frames) ex-
tracted from each dataset.

As implied by Table 1, during the extraction pro-
cess some signs had to be discarded due to issues
arising from the extraction script: namely, with the
oldest datasets (BSL and NGT) the algorithm had
trouble distinguishing between similar frames. In
part, because of image noise. The same happened
with four out of the 90 LSM signs; however, it was
far less common as the LSM videos were of decid-
edly better quality than the others (higher resolution
and less noise). For the continuous LSM collec-
tion, frame extraction was artificially capped to 280
frames, assuming it would correspond to approxi-
mately 90 signs (following the values obtained from
the dictionary videos).

The idea of the extraction is roughly based on the
phonetic/phonological models proposed by Liddell
and Johnson (1989); Johnson and Liddell (2011).
Fixed postures would approximate Holds in the orig-
inal phonological model, or postural segments in
the phonetic framework.

3.3. Hand location extraction
For the analysis, the extracted fixed postures were
labeled with OpenPose (Simon et al., 2017; Cao
et al., 2019): a body location detection toolkit ca-
pable of detecting the 2D positions of up to 135
keypoints. Figure 1 shows the toolkit’s output on a
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single frame.

Figure 1: Keypoint posture detection with Open-
Pose.

For each fixed posture, only two points of interest
were considered: the left and right hand locations,
which were assumed to be indicative of place of
articulation. In that regard, both keypoints would
be able to show the entire extent of the signing
space; notably, enabling the study of regions with
out-sized importance for communication—those
concentrating the most activity across multiple fixed
postures. Figure 2 shows a scatter plot with all the
points extracted from the continuous LSM dataset.

Figure 2: Points extracted from the continuous LSM
dataset.

The obtained points were normalized prior to
their analysis using the following formulae:

x̂k
i =

xk
i

Wi
(1)

ŷki =
yki
Hi

(2)

where:

• (xk
i , y

k
i ) denotes the k-th point in collection i,

in pixels.

• Hi is the pixel height of the videos contained
in collection i.

• Wi is the pixel width of the videos contained
in collection i.

The resulting (x̂k
i , ŷ

k
i ) normalized points were de-

fined in the interval [0, 1], regardless of the source.

This enabled the direct comparison of space re-
gions between datasets, using both classical Eu-
clidean metrics and clustering evaluation scores.

Note that the normalization procedure didn’t con-
sider intrinsic features such as body size of the
signer or proximity to the camera. However this
shouldn’t pose problems for the analysis, save for
the comparison of point dispersion across datasets
through standard deviation. The results are shown
in Section 4.1.

3.4. Location density analysis
The normalized point clouds induced by the previ-
ously described procedure enabled the approxima-
tion of a location Probability Density Function (PDF)
for each dataset, showing where activity tended
to concentrate across relevant frames. The ap-
proximation was performed through Kernel Den-
sity Estimation (KDE) (Sheather, 2004), using the
Python implementation included with the Scikit-
learn library (Pedregosa et al., 2011). Scott’s rule
was used to determine the optimal bandwidth. A
visual depiction of the obtained densities can be
observed in Figure 3.

(a) BSL (b) NGT

(c) LSM (d) LSM (continuous)

(e) Emblems (f) Pantomimes

Figure 3: Location density maps for the six ana-
lyzed datasets.

In the Figure, darker densities imply higher ac-
tivity: this is, there is a stronger probability of a
hand being active in said region, for any given fixed
posture. Regions with no color overlap denote zero
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(or nearly zero) probability of including a hand.
The obtained PDFs were sampled and compared

against other probability distributions in two distinct
cases:

• To determine their goodness-of-fit against a
power law distribution, so as to show whether
locations are Zipfian in nature.

• To compare whether the use of space changes
between SL and non-SL gestures.

The comparisons were performed by way of the
Kolmogorov-Smirnov test. The results are shown
in Section 4.2.

4. Results

In order to determine whether the use of space
changes depending on the type of dataset, two
kinds of measurements were taken from the ex-
tracted data:

• Dispersion and separation measures: to
observe if there is a measurable cohesion re-
garding the spatial distribution of the hands
across multiple signs (i.e. if the signing space
tends to “shrink”).

• Hypothesis testing: to confirm whether there
is a hierarchical relationship between space
regions, as given by location densities (i.e. if
signers will disproportionately “prefer” some
regions above others).

4.1. Dispersion and separation measures
Dispersion was measured in terms of the Euclidean
distance between the normalized points described
in Section 3.3. For each dataset, the pairwise dis-
tances between all the extracted points were calcu-
lated. Table 2 shows both the mean distance and
the obtained standard deviation for each of the six
collections.

Dataset Right Left
µ σ µ σ

BSL 0.155 0.095 0.109 0.085
NGT 0.187 0.135 0.156 0.174
LSM 0.231 0.155 0.206 0.134

LSM (cont.) 0.118 0.063 0.131 0.071
Emblems 0.161 0.108 0.098 0.124

Pantomimes 0.175 0.110 0.196 0.155

Table 2: Mean (µ) Euclidean distances and their
standard deviation (σ) for all datasets.

Note that the measurements in Table 2 are sepa-
rated by hand: as hands are able to act with relative

independence with respect to one another, it is ex-
pected that they’d have their own preferred regions
of activity. Thus, any measurable pressure or spa-
tial hierarchy should be independently observable
in at least one of the hands.

Separation between the hands’ regions was mea-
sured by way of two intrinsic clustering evaluation
metrics: the Silhouette Coefficient (Rousseeuw,
1987) and the SDbw validity index (Halkidi and
Vazirgiannis, 2001).

The Silhouette Coefficient measures the differ-
ence between the average intra-cluster distance
(i.e. calculated between the points in the group)
and the average inter-cluster distance (i.e. calcu-
lated between the points outside the group). It is
defined on the interval [−1, 1], where -1 denotes
poor cluster separation and 1 denotes perfect clus-
ter separation.

The SDbw validity index measures the difference
between the average intra-cluster distance and the
average inter-cluster point density (i.e. the distance
between the cluster centroids). The resulting value
is higher than zero, with lower values denoting bet-
ter cluster separation. Table 3 shows the calculated
scores for each dataset.

Dataset Silhouette SDbw
BSL 0.481 0.717
NGT 0.473 0.741
LSM 0.271 0.855

LSM (cont.) 0.580 0.569
Emblems 0.512 0.670

Pantomimes 0.285 1.352

Table 3: Silhouette coefficient and SDbw validity
index for all point clouds.

Together, these results show how cohesive the
use of space is in the tested datasets. However,
they don’t show whether there might be a spatial
hierarchy between specific regions, as indicated by
hand activity. For the latter, measurements over
location probability densities (rather than individual
points) had to be considered, as presented in the
next section.

4.2. Hypothesis testing
For these experiments, the estimated PDFs de-
scribed in Section 3.4 were sampled and compared
against a power law distribution. The comparison
was performed by way of a two-sided Kolmogorov-
Smirnov test, using the Scipy library (Virtanen et al.,
2020). The results are shown in Table 4.

As with the clustering experiments, hands were
measured separately. Note that with a p = 0.05 sig-
nificance level, the null-hypothesis (samples come
from the same distribution) cannot be rejected for
any case.
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KS Test

Dataset Right Hand Left Hand
D p D p

BSL 0.106 0.19 0.062 0.81
NGT 0.113 0.14 0.058 0.86
LSM 0.064 0.78 0.095 0.30

LSM (cont.) 0.067 0.74 0.075 0.59
Emblems 0.111 0.15 0.054 0.91

Pantomimes 0.106 0.19 0.087 0.41

Table 4: Kolmogorov-Smirnov test results compar-
ing location densities against a power law distribu-
tion.

To complement these results, Figure 4 shows six
plots describing how a power law distribution fits
the location density data. Only the values for the
dominant hand are displayed.

In Figure 4, note that the following α parameters
were estimated for the depicted power laws:

• BSL α = 2.81

• NGT α = 2.44

• LSM α = 2.81

• LSM (continuous) α = 2.53

• Emblems α = 2.02

• Pantomimes α = 1.97

Finally, Table 5 shows the comparison of loca-
tion density distributions between SL and non-SL
datasets. As before, the comparison was per-
formed by way of a two-sided Kolmogorov-Smirnov
test.

Note that D denotes the maximum absolute dif-
ference between the two tested distributions: this
is, a higher D indicates that they are very different
from one another, whereas a lower D indicates that
they are very similar. The results are discussed in
the next section.

5. Discussion

In general, the results support the notion that
conveying meaning puts pressure on the use of
space during gestural communication, regardless
of whether it is SL or not.

For instance, looking at the Euclidian distance
statistics, it can be observed that both signers and
non-signers tend to concentrate movement around
certain regions: the results in Table 2 show that the
average distance between locations (for all cases)
tends to be below 20% of the available space, with a
systematically lower-than-the-mean standard devia-
tion pointing towards low dispersion. Regarding the
dominant hand (the right hand in all collections), the

KS Test

Dataset Right Hands
D p

Emb. - BSL 0.279 3.79× 10−5

Emb. - NGT 0.323 9.50× 10−7

Emb. - LSM 0.705 1.76× 10−43

Emb. - LSM (cont.) 1.0 2.01× 10−111

Pant. - BSL 0.324 4.02× 10−7

Pant. - NGT 0.594 7.38× 10−24

Pant. - LSM 0.647 1.68× 10−38

Pant. - LSM (cont.) 1.0 1.61× 10−118

Pant. - Emb. 0.479 3.65× 10−15

Dataset Left Hands
D p

Emb. - BSL 0.698 3.95× 10−32

Emb. - NGT 0.812 4.98× 10−45

Emb. - LSM 0.838 2.77× 10−65

Emb. - LSM (cont.) 1.0 2.01× 10−111

Pant. - BSL 0.788 2.30× 10−44

Pant. - NGT 0.396 1.64× 10−10

Pant. - LSM 0.849 5.37× 10−72

Pant. - LSM (cont.) 1.0 1.61× 10−118

Pant. - Emb. 0.789 5.32× 10−44

Table 5: Kolmogorov-Smirnov test results compar-
ing the location density distributions between SL
and non-SL datasets.

continuous signing video was the one that covered
the shortest distance. This was to be expected: lex-
icons are intended to show signs in a clear, system-
atic, manner, whereas continuous signing intends
to convey a concrete message—implying that com-
munication has to be more efficient, thus limiting
the breadth of movement to its minimal expression.
As such, it is not surprising that continuous signing
had the lowest standard deviation of all collections.
However, as implied before, this could also be an ef-
fect of camera positioning or the fact that the signer
is aware of the space limitations he has—taking
into account the fact that the continuous signing
example comes from an interpretation task.

Similarly, the clustering results from Table 3
show that the continuous LSM dataset provided
a stronger definition of hand regions, whereas pan-
tomimes tended to be remarkably less stable than
both SLs and emblems alike. A notable exception
is the LSM lexicon, which shows a lower Silhouette
score than pantomimes; however, when account-
ing for point density, its cluster definition became
closer to the remaining lexicons rather than to pan-
tomimes or emblems. Essentially, implying that
there is a more systematic use of space in the for-
mer that is not well established in the latter. This
can be partially seen in Figure 3 as well, where it
can be observed that the use of space in the Pan-
tomimes dataset tends to be less focused than in
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(a) BSL (b) NGT

(c) LSM (d) LSM (continuous)

(e) Emblems (f) Pantomimes

Figure 4: Dominant hand location log-density data fitted to a power law distribution.

the SL lexicons.
Regarding the location density results, Table 4

shows that not only do signers limit their movement
to specific space regions, but they do so in a Zip-
fian manner: some regions are exponentially more
active than others. The six collections showed ten-
dency to this phenomenon, consistent with previous
observations on the effects of meaning on natural
communication systems. Nevertheless, when com-
pared to SL datasets, pantomimes and emblems
showed a marginally lower growth on their calcu-
lated power law distribution; this may indicate that
a spatial hierarchy already exists in non-linguistic
communication, but it is less strict than the one

induced by SLs.
Finally, the direct comparison between SL and

non-SL datasets shows that, even though the den-
sity distributions are decidedly different from one
another, they are close enough to warrant further
explanation—at least, with respect to BSL and
NGT. For instance, Table 5 shows that space-use
in the Emblems videos is surprisingly similar to
BSL; this could be due to the fact that the former
dataset was created considering cultural gestures
in mind, which could very well be represented in
BSL. Thus, there could be an underlying relation-
ship not readily apparent between the two: they
could share the same iconic DNA due to cultural
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proximity. Nonetheless, there is not enough in-
formation in the selected datasets to confirm the
existence of such a relationship.

In the end, the obtained results seem to show
the existence of a spatial hierarchy linked to the
act of conveying meaning. However, the scale of
the performed experiments was too limited: only
one signer-gesturer was present in each of the six
collections. Furthermore, differences between dig-
ital media (e.g. image size, frame-rate, etc); the
kind of dataset; noise introduced by OpenPose;
or the accidental extraction of non-relevant frames
may be acting as sources of bias that are difficult to
interpret within the chosen framework of analysis.
Ideally, an homogeneous parallel corpus would be
better suited to explore the existence of quantita-
tive linguistic laws. Thus, further experiments are
required—on a larger scale—to confirm the pre-
sented results.

6. Conclusions

The quantitative exploration of SLs constitutes one
additional step towards improving our understand-
ing of the diversity of human language. The present
study contributes to these efforts by showing that
gestural communication seems to induce a mea-
surable spatial hierarchy, that follows a probability
distribution related to Zipf’s law. Moreover the ob-
tained results show that, contrary to non-linguistic
gestures, SLs tend to systematize the use of space
to optimize information exchange. Nonetheless, fu-
ture research is needed to confirm these observa-
tions in larger, homogeneous corpora. Additionally,
some results indicate that it may be worth it to ex-
plore the connection between culturally-recognized
gestures and their surrounding SLs, as the articula-
tion of the latter may be disproportionally influenced
by the former. In that regard, understanding how
both processes connect may also shed light on how
iconicity influences SL morphology, leading to sign
formation.
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