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Abstract
Because sign languages are the first language for those who are born deaf or who lost their hearing in early childhood,
it is better to use sign languages rather than transcribed spoken language to provide important information to these
people. We have been developing a sign language computer graphics generation system to provide information to
deaf people, and in this paper, we present a translation method from spoken language to sign language that can be
used in the system. In general, since the number of glosses used when transcribing sign language is limited, a single
meaning is often expressed by a combination of multiple sign words, i.e., the word “library” is expressed in Japanese
Sign Language with two words: “book” and “building.” To merge these expressions into one token, we propose
gloss pair encoding (GPE), which is inspired by bite pair encoding (BPE). This technique is expected to enable more
accurate handling of expressions that have a single meaning in multiple sign words. We also show that it is effec-
tive as data augmentation on the sign language side in sign language translation, which has not been done much so far.
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1. Introduction

Sign languages are typically the first language for
those who are born deaf or who lose their hearing
in early childhood. To provide information for these
individuals, it is better to use sign language than to
transcribe spoken language, as reading transcrip-
tions of a spoken language, which is their second
language, places an unnecessary burden on them.

We have been developing a sign language com-
puter graphics (CG) generation system to provide
information to deaf people. This system consists
of two parts: a machine translation part and a CG
generation part. The first part translates the input
sentence of spoken language into a sign language
gloss sequence, and the next part generates sign
language CG based on the gloss sequence by re-
ferring to the motion data of each sign word. In this
paper, we focus on improving the performance of
the machine translation part.

In general, the number of glosses used for tran-
scribing sign language is smaller than vocabulary
size of spoken languages. For example, in our cor-
pus, the gloss-based vocabulary size of Japanese
Sign Language is approximately 4,000, while the
word-based vocabulary size of Japanese is 27,000.
Therefore, a single meaning is often expressed by
a combination of multiple sign words, i.e., the word
“library” is expressed in Japanese Sign Language
with two words: “book” and “building.” In this case,
the glosses “book” and “building” play the role of
subwords. Also, some glosses play the role of a
letter, as in fingerspelling. In other words, glosses
are sometimes used as a word, sometimes as a
subword, and sometimes even as a letter. Since

the granularity of glosses themselves can differ sig-
nificantly, we believe that using them as they are
in machine translation may cause degradation of
the translation performance. Therefore, we pro-
pose a method to combine multiple glosses into
one merged-gloss, and match the granularities.

The proposed method is named gloss pair encod-
ing (GPE), which is inspired by byte pair encoding
(BPE) (Sennrich et al., 2016). BPE is often used in
machine translation to merge byte pairs that appear
consecutively with high frequency into one merged
subword. Our GPE is also merge gloss pairs that
appear consecutively with high frequently into a
merged-gloss. This allows multiple sign words that
express one meaning to be treated as a single
token. For example, the two glosses “book” and
“building,” which express the meaning of library, can
be treated as a single merged-gloss “book+build-
ing.” This is expected to enable more accurate
handling of glosses with multiple meanings. Fur-
thermore, through experiments, we demonstrate
that it is also effective as data augmentation on
the sign language side in sign language translation,
which has not been done much so far.

Our contributions are summarized as follows. (1)
We propose gloss pair encoding (GPE) to treat a
gloss sequence that appears consecutively with
high frequency as one token. (2) We show that
by setting an appropriate number of vocabulary
words, using merged-gloss with GPE can improve
translation performance. (3) We experimentally
demonstrate that by using a corpus with and without
GPE in combination, translation performance can
be improved due to the effect of data augmentation.
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2. Related Work

2.1. Tokenization in Machine Translation
Machine translation utilizing neural networks origi-
nally treated words as the smallest unit (Cho et al.,
2014; Bahdanau et al., 2015). Later on, in order
to take advantage of the fact that each part of a
word has something in common (e.g., the “person”
part is common between personal and person, and
there are also similarities in meaning) subwords
have come to be used.

Byte pair encoding (BPE) is one of the most com-
monly utilized subword extracting methods. BPE
was first proposed by Gage (1994) for encoding
strings of text into tabular form, and Sennrich et al.
(2016) then applied it to natural language process-
ing methods including machine translation.

To avoid creating subwords that cross word
boundaries, it is necessary to provide a separation
for each word in advance. This is simple enough for
languages that already have white spaces to sepa-
rate words, such as English and German, but for
other languages, such as Chinese and Japanese,
it is necessary to separate words in advance. In re-
sponse to this challenge, sentencepiece (Kudo and
Richardson, 2018) was proposed as a method that
allows end-to-end tokenization even in languages
without word breaks.

2.2. Machine Translation of Sign
Language

Several methods for translating spoken language
into sign language have been proposed. Zhang
and Duh (2021) regarded sign language transla-
tion as a low-resource machine translation task,
and applied some of the techniques that are of-
ten used in low-resource language translation such
as hyperparameter search and back translation.
Zhu et al. (2023) applied techniques common to
low-resource machine translation to sign language
machine translation and showed that these tech-
niques can also improve sign language translation.
All of these methods use gloss sequence as sign
language transcription.

The disadvantage of using gloss is that it causes
important information in sign language, such as
facial expressions and finger movement speed,
to be lost. Therefore, gloss-free translation meth-
ods have recently proposed. Lin et al. (2023) pro-
posed an end-to-end gloss-free translation method.
Zhou et al. (2023) developed a novel pre-trained
paradigm that combines masked self-supervised
learning with visual language supervision learning,
and they reported that this approach can deliver
good translation. While gloss-free translation meth-
ods are currently used for translating sign language
video into spoken language, there are few exam-

ples of its application for translating spoken lan-
guage into sign language. This is because it is
very challenging to generate motion data of sign
language directly, which is necessary for gloss-free
translation from spoken language to sign language,

The Conference on Machine Translation (WMT),
a well-known workshop series of machine trans-
lation, initiated a shared task on sign language
translation in 2022 (Müller et al., 2022). We hope
this will lead to even more active research into sign
language translation.

3. Proposed Method

As mentioned in the Introduction, the granularity
of glosses can differs significantly, which is one of
the reasons machine translation of sign language
is difficult. Therefore, in our approach, we merge
frequently occurring gloss sequences into one to-
ken by using gloss pair encoding (GPE), which is
based on byte pair encoding (BPE) (Sennrich et al.,
2016) and modified for sign language, to match the
granularity of tokens.

First, we explain the original BPE, and next we
present our proposed GPE.

3.1. Byte Pair Encoding (BPE)
BPE first initializes the vocabulary while covering all
the characters in the training data, and regarding in-
put data as sequences of characters with a special
end-of-word symbol “·”, which is utilized to restore
the subword segmentation sentence to the original
sentence. It then counts the frequencies of all sym-
bol pairs and replaces the most frequently used
pair (“A”, “B”) into one merged-character ’AB,’ and
adds it to the vocabulary. BPE applies this process
repeatedly until finally it outputs the vocabulary in-
cluding all the characters and merged-characters.
The final vocabulary size can be controlled as a hy-
perparameter of the number times to repeat merge
operations.

BPE makes it possible to achieve subword seg-
mentation, where sequences of characters with
meaning becomes a single vocabulary.

3.2. Gloss Pair Encoding (GPE)
In our GPE, the operation is almost the same as
with BPE but differs in that is compresses frequent
pairs of glosses instead of frequent pairs of bytes.

GPE first initializes the vocabulary while cover-
ing all the glosses in the training data. Unlike BPE,
GPE does not use a special end-of-word symbol
“·”. It then counts the frequencies of gloss pair, and
replace the most frequently used pair (“glossA”,
“glossB”) into one merged-gloss “glossA+glossB,”
and adds it to the vocabulary. GPE applies this
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Figure 1: Three types of training data used in ex-
periments.

process repeatedly until finally it outputs the vocab-
ulary including all the glosses and merged-glosses
The final merged-gloss vocabulary size can be con-
trolled as a hyperparameter of the number times to
repeat merge operations.

GPE merges gloss-pairs that appear continu-
ously and frequently into a single merged-token.
As a result, glosses that have the role of a subword
are merged into merged-gloss, and we can expect
the granularity of glosses to be ensured.

Also, by using GPE, the vocabulary size can be
freely set using a hyperparameter, so the difference
in vocabulary between spoken language and sign
language can be reduced. This may also improve
the translation performance.

3.3. Applying GPE to NMMs
Sign language utilizes non-manual movements
(NMMs) such as head-nods and pointing. Note that
although pointing is often treated as a sign word,
we treated it as one of NNMs in this paper. Pointing
does not express any meaning by itself, but it ex-
presses meaning when combined with other words.
Since this is the same as a head-nod, we decided
to treat pointing as one of NMMs as a head-nod.

Head-nods often serve as function words, such
as indicating the beginning or end of a sentence
and expressing breaks in sentences or parallel re-
lationships. Pointings is used to express meaning
by referencing a previous word to emphasize the
subject (Liddell, 2003).

In sign languages, NMMs are used much more
frequently than sign words. Therefore, if NMMs
are included in the merge target of GPE, it can
be expected that many merged-glosses containing
NMMs will be created. To evaluate this effect, we
compare the performance when merging NMMs
with GPE (with-NMM-GPE) and when not (without-
NMM-GPE). In without-NMM-GPE, we first divide
sentences by NMMs, then remove the NMMs, and
finally apply GPE.

4. Experiments

We conducted an experiment to evaluate the text-
to-gloss translation performance utilizing data with

different sizes of vocabulary using GPE. In the ex-
periment, we prepared one setting that did not ap-
ply GPE (Original), one that used only training data
that applied GPE (OnlyGPE), and one that both ap-
plied and did not apply GPE are merged as training
data (Original+GPE), as shown in Figure 1. In Orig-
inal+GPE, training data with two different vocabu-
laries are mixed and shuffled for learning. Since
the vocabulary expanded by applying GPE always
includes the same vocabulary as Original, it is pos-
sible to learn with a single encoder-decoder model
without having to separate the translation models.
We did not apply GPE to the development and test
data, and the merged-gloss of the translation result
was restored to the original gloss for evaluation.

In the experiment, we prepared training data with
a total of five patterns of vocabulary size by applying
GPE: 4,000, 6,000, 8,000, 10,000, and 12,000 for
both with-NMM-GPE and without-NMM-GPE. As
a baseline, we also conducted an experiment in
which the vocabulary size of 3,717 that appeared
three or more times in the corpus was used without
GPE. The number of Japanese vocabularies was
set to 8,000 in all experiments. We describe the
experiments in detail below.

4.1. Our Corpus

We used an in-house corpus called the Japanese-
JSL sign language news corpus for our experi-
ment. This corpus is created from daily NHK sign
language news programs, which are broadcast
on NHK TV with Japanese narrations and JSL
signings. The corpus includes around 160,000
Japanese transcriptions, JSL transcriptions, and
JSL videos. Japanese is transcribed by revising
the results of applying speech recognition on news
programs. JSL is transcribed by native signers
who manually transcribe each sign motion into sign
language gloss. Note that, Japanese and JSL sen-
tence pairs are not literal translations, so there are
many subject complements, omissions, and so on.
We transcribed all of the manual and some of the
NMMs (e.g. head-nods and pointing) in linear tran-
scription. In most cases, these type of manual
and non-manual features are not expressed at the
same time, so this transcription simplifies the JSL
expressions while simultaneously retaining most of
the necessary information.

We selected 129,950 sentence pairs that do not
include classifier, which is hard to be transcribed
into gloss. This is because classifier has a large
vocabulary and no fixed hand or finger expressions,
so our sign language CG generation system cannot
convert them into sign language CG. We randomly
split the corpus into 127,950 for training, 1,000 for
development, and 1,000 for testing.
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without-NMM-GPE with-NMM-GPE

Data No. of vocab. Median Average & Median Average &
std. deviation std. deviation

Original 3,717 24.27 24.46 ± 0.40 – –
4,000 24.75 24.73 ± 0.20 24.53 24.40 ± 0.47

Only 6,000 24.69 24.81 ± 0.14 21.75 21.74 ± 0.15
GPE 8,000 24.09 24.05 ± 0.07 21.49 21.42 ± 0.17

10,000 23.61 23.72 ± 0.35 20.83 20.72 ± 0.26
12,000 23.45 23.46 ± 0.29 21.00 20.87 ± 0.23
4,000 24.36 23.74 ± 0.60 24.37 24.37 ± 0.05

Original 6,000 25.03 25.03 ± 0.05 24.94 24.74 ± 0.47
+ GPE 8,000 24.79 24.81 ± 0.09 24.75 24.66 ± 0.26

10,000 25.02 25.05 ± 0.09 24.64 24.59 ± 0.16
12,000 24.61 24.79 ± 0.35 24.75 24.58 ± 0.51

Table 1: Experimental results. We show the median, average, and standard deviation of BLEU after three
attempts with different random seeds. Bold indicates the best result in the table, and underline indicates
a result that outperformed original.

4.2. Experimental Setting
We utilized a 6-layer transformer encoder-decoder
model (Vaswani et al., 2017) with the norm-first
setting (Nguyen and Salazar, 2019) for the trans-
lation model. We utilized PyTorch (Paszke et al.,
2019) for implementing the model and RAdam (Liu
et al., 2020) for optimization with the learning rate
of 1.0 × 10−3. We utilized cross-entropy loss for
calculating loss in training. The dropout ratio for
the transformer encoder and decoder was 0.1, and
that for the output layer of the feed-forward neu-
ral network was 0.3. We applied sentencepiece
(Kudo and Richardson, 2018) for input Japanese
sentences with a vocabulary size of 8,000. We
trained the models with the batch size of 256 and
the number of training epoch of 50. We evaluated
the model in each epoch using the development
data, and chose the model with the best BLEU
score on development set. We trained the models
three times with different random seeds.

4.2.1. Results

Experimental results are provided in Table 1. As
shown, Original+GPE performed better than Orig-
inal in a wide range of vocabulary sizes for both
without-NMM-GPE and with-NMM-GPE settings. In
contrast, OnlyGPE performed better only in small
vocabulary size, and its performance was worse
than Original+GPE. In particular, OnlyGPE using the
with-NMM-GPE setting underperformed the base-
line in most cases. Overall, Original+GPE using the
without-NMM-GPE setting performed the best.

4.3. Discussion

4.3.1. with- and without-NMM-GPE

The without-NMM-GPE setting outperformed the
with-NMM-GPE setting for almost all vocabulary

No. of vocab. %
4,000 78.5
6,000 66.1
8,000 60.6

10,000 58.4
12,000 57.5

Table 2: Percentage of merged-gloss including
NMMs in with-NMM-GPE setting.

Merged-gloss Meanings
without-NMM-GPE

Explanation + Disappear I have given an
explanation

Decide + Disappear It has been decided
Place + Place In various places
People + Everyone Everyone
High + Temperature Highest temperature

with-NMM-GPE
pointing + head-nod –
Exist + head-nod Existing (EOS)
Disappear + head-nod Finished (EOS)
head-nod + pointing –
In + head-nod Still (EOS)

Table 3: Top-5 merged-gloss of with-NMM-GPE
and without-NMM-GPE. Glosses are in italic, NMMs
are underbar, and merge is denoted by “+”. (EOS)
indicates that the head-nod in merged-gloss marks
the end of a sentence.

sizes. NMMs are very often used in sign language,
so if GPE merges NMMs, most of the merged-
glosses contain NMMs, and sign words are less
often merged. Table 2 gives the percentage of
merged-glosses that contains at least one NMMs,
and Table 3 shows the top-5 frequently appear-
ing merged-glosses in training data for the with
and without-NMM-GPE settings. More than half
of the merged-glosses in with-NMM-GPE contain
NMMs, and many merged-glosses are combined
with a head-nod representing the end of a sentence.
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Data # vocab. % of marged-gloss
Train Output

Original 3,717 0 0
4,000 0.35 3.1

Only 6,000 12.91 11.65
GPE 8,000 17.52 14.60

10,000 20.00 15.82
12,000 21.66 16.66
4,000 0.18 0.01

Original 6,000 6.01 0.50
+ GPE 8,000 7.94 0.55

10,000 8.92 0.86
12,000 9.56 0.88

Table 4: Percentage of merged-gloss among all
gloss.

Since this combination does not extend the mean-
ing, it is presumably not very effective. In contrast,
many merged-glosses of without-NMM-GPE take
on new meaning by merging multiple glosses.

Head-nods, which are a type of NMMs, often
serve as function words and do not express mean-
ing when combined with other words. Therefore,
merging head-nods using GPE does not seem very
effective. In contrast, pointing expresses meaning
by combining with the previous word. However,
our GPE often merged a pointing with the word
following the pointing, which is meaningless since
the pointing always points in the direction of the
previous word. Also, as reported in our previous re-
search, machine translation that merges a pointing
and the previous word does not improve the perfor-
mance (Miyazaki et al., 2020), thus, demonstrating
that merging NMMs did not contribute to improving
the translation quality.

We found that a better performance could be
obtained by excluding NMMs from the merge target
in GPE. In the following discussion, we examine
the case of using without-NMM-GPE.

4.3.2. Effects of Merged-gloss

In the OnlyGPE setting, when the number of vo-
cabularies was set appropriately (i.e., vocabulary
size of 4,000 or 6,000 in this experiment) the per-
formance improved. This indicates that with an
appropriate vocabulary size, expressions that ex-
press one meaning by using multiple glosses can
be combined into a merged-gloss, which makes it
easier for translation models to learn and thereby
improves the performance.

In contrast, OnlyGPE does not improve when the
vocabulary size is increased to the same level as
Japanese. This shows that it is not necessary to
match the number of vocabularies in the source
and target languages. The performance deteri-
oration of OnlyGPE when the vocabulary size is
large is presumably due to the fact that gloss-pairs

that are not very frequent in the training data were
also merged. The percentage of merged-glosses
among all glosses for training data and transla-
tion output is shown in Table 4. With OnlyGPE,
as the number of vocabularies increases, the per-
centage of merged-glosses in the output becomes
considerably smaller compared to the training data.
This suggests that GPE can create merged-glosses
that are actually useful in translation only when the
number of vocabulary words is around 6,000 in
this dataset, and that for larger vocabulary sizes, it
was mostly noise during learning. With OnlyGPE,
merged glosses are not learned as a single gloss,
so the influence of noise will be greater. On the
other hand, with Original+GPE, merged glosses
can be learned as merged-gloss as well as each
single gloss by using original data, so the influence
of noise can be reduced. This is why Original+GPE
performed better than OnlyGPE especially for large
vocabulary size in the experiments.

4.3.3. Effects of Data Augmentation

As shown in Table 4, the outputs of Original+GPE
include not so many merged-glosses compared
with the percentage of merged-glosses in the train-
ing data. This suggests that the increase in the
amount of training data—that is, the effect of data
augmentation—was large in Original+GPE and had
a greater influence than the effects of the merged-
glosses. Data augmentation in gloss-based sign
language translation has been reported by (Zhu
et al., 2023) and while they demonstrated data aug-
mentation due to differences of the pre-processing
on the spoken language side, data augmentation
for sign language side was not examined. Our ex-
periments indicate that data augmentation on the
sign language side is also effective.

5. Conclusion

In this paper, we presented a translation method
using gloss pair encoding (GPE), which merges
multiple consecutive sign words that frequently ap-
pear in a corpus. We experimentally demonstrated
that the translation performance improved when
applying GPE with an appropriate number of vo-
cabularies. We also found that by learning together
with a corpus to which GPE is not applied, the ef-
fects of data augmentation can be obtained and
translation performance can be further improved.
When applying GPE it is better not to merge NMMs
such as head-nod and pointing.

We did not perform an experiment in combination
with data augmentation on the spoken language
side. Many data augmentation methods for spoken
language have been proposed, so considering how
to combine them will be left as our future work.
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6. Limitation

Also, this time we only used the training dataset of
our in-house Japanese-Japanese Sign Language
corpus. We hile we are confident that performance
will improve regardless of the language pair, but
we have not yet conducted experiments with other
languages.
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