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Abstract
Isolated Sign Language Recognition (ISLR) aims to classify signs into the corresponding gloss, but it remains
challenging due to rapid movements and minute changes of hands. Pose-based approaches, recently gaining
attention due to their robustness against the environment, are crucial against such challenging movements and
changes due to the difficulty of capturing small joint movements from the noisy keypoints. In this work, we emphasize
the importance of preprocessing keypoints to alleviate the risk of such errors. We employ normalization using
anchor points to accurately track the relative motion of skeletal joints, focusing on hand movements. Additionally,
we implement bilinear interpolation to reconstruct keypoints, particularly to retrieve missing information for hands
that were not detected. Preprocessing methods proposed in this work show a 6.05% improvement in accuracy and
achieved 83.26% accuracy with data augmentation on the WLASL dataset, which is the highest among pose-based
approaches. The proposed methods show strengths in cases with signs having importance in the hand shape,
especially when some frames have undetected hands.
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1. Introduction

Sign language is the visual means of communica-
tion for the deaf, utilizing hand shapes, body move-
ments, and facial expressions to convey messages.
Like spoken languages, sign languages have their
own diverse vocabulary and grammar. The diffi-
culty of recognizing signs with detailed movements
and diverse hand shapes remains as a barrier for
hearing individuals to learn sign language. Sign
Language Processing is an emerging field of ma-
chine learning that makes a bridge between the
deaf and hearing individuals, by generating (Saun-
ders et al., 2020), translating (Camgöz et al., 2020),
and recognizing (Zhou et al., 2020) sign language
expressions.

Isolated Sign Language Recognition (ISLR) fo-
cuses on translating sign language videos into the
corresponding glosses, which are word-level rep-
resentations of sign language expressions (Grobel
and Assan, 1997; Jiang et al., 2021). ISLR shares
similarities with video recognition tasks; however,
the limited resources of ISLR datasets have been
known as the main limitation, leading models to
easily overfit on the dataset (Jang et al., 2022).
Pose-based ISLR utilizes pose estimation models
for keypoint extraction to overcome the challenges
associated with the quantity and quality of datasets
(Laines et al., 2023). The extracted keypoints re-
main independent of backgrounds and subjects,
and since the keypoints are relatively lighter than
RGB vidoes, they can also be easily augmented to
prevent overfitting. Moreover, keypoints can be pro-
cessed as sequential data with RNN or Transformer-

based models or as graph representations with
graph neural networks (Ko et al., 2018; de Amorim
et al., 2019).

Hand shape is one of the most important compo-
nents of sign language, containing dense informa-
tion in a smaller area than the body. Despite the im-
portance of hand shape, pose-based approaches
struggle with the challenging task of recognizing
hand shapes, which easily differs with that of iden-
tifying minute movements of hand keypoints. To
address this, the previous methods have been ap-
plying normalization on keypoints or have been im-
plementing an additional model seperately trained
on the hands (Coster et al., 2020; Hu et al., 2021).
The challenge becomes more difficult due to noisy
keypoints from the failure of detection on the hands
of the pose estimation model. For instance, Medi-
apipe (Lugaresi et al., 2019), a widely used pose
estimation framework in the sign language domain,
fails to detect over 50% of the hands appearing in
each frame of the word-level American Sign Lan-
guage dataset, WLASL. The noisy and undetected
keypoints hinder hand shapes, leading to wrong
predictions (Jiao et al., 2023).

In this work, we introduce a preprocessing frame-
work, focused on hands, developed for pose-
based ISLR. Our framework is based on the follow-
ing strategies: anchor-based normalization, hand
keypoint reconstruction, and fixing length. First,
anchor-based normalization is applied to normal-
ize the body and hands based on anchor points,
which are set to clearly outline the hand shape by
considering the relative distance between skeleton
joints. Second, we employ keypoint reconstruc-

https://orcid.org/0009-0000-7907-0906
https://orcid.org/0009-0006-8893-604X
https://orcid.org/0000-0003-3461-779X
https://orcid.org/0000-0003-1290-1570
https://orcid.org/0000-0002-8859-5111


324

tion to recover the information of undetected hands
by applying bilinear interpolation on surrounding
frames. Additionally, the input sign language se-
quences are padded with frame duplication in a
uniform distribution to train the model on stable
data with a fixed length.

Finally, for evaluation, we validate our prepro-
cessing framework on two representative ISLR
datasets, WLASL-100 (Li et al., 2020a) and
AUTSL (Sincan and Keles, 2020). The perfor-
mance of the methods is assessed using both a
Transformer encoder-decoder architecture and an
encoder-only architecture to demonstrate the gener-
ality of the preprocessing methods. Our proposed
methods improve the accuracy of recognizing sign
language keypoints by 6.05%, and with basic aug-
mentation, we achieve an accuracy of 83.26% on
the WLASL-100 dataset, the highest among pose-
based approaches. Further analysis demonstrates
the significance of our normalization and recon-
struction techniques in ISLR, and case studies
show the effectiveness of our methods. We also
discuss better input formats for sign language key-
points and handling highly undetected keypoints
for future work.

2. Related Work

With the development of machine learning, ISLR
research has also been highlighted in recent years.
The approaches handling sign language videos are
divided into two streams: the RGB-based approach,
which directly recognizes features extracted from
the RGB video into gloss representations, and the
pose-based approach, which extracts skeleton key-
points from the RGB videos and recognizes the
keypoints into the corresponding gloss.

2.1. RGB-based Approaches
Early Sign Language Recognition began with apply-
ing the Hidden Markov Model (HMM) to ISLR (Gro-
bel and Assan, 1997). These approaches required
additional equipment, such as colored gloves. How-
ever, with the development of CNN-based models,
machine learning models can now segment the
hand area without such additional equipment and
directly extract feature vectors from the visual rep-
resentation (Koller et al., 2018; Pigou et al., 2016).
With the advancement of language processing mod-
els, the sequential feature vectors extracted from
the CNN models can be effectively recognized with
RNN or LSTM-based models (Koller et al., 2020;
Cui et al., 2019). The development of 3D CNN
models has demonstrated the strength of a single
model capable of extracting both spatial and tempo-
ral information from videos without information loss
between different models (Tran et al., 2015). Specif-

ically, research using the I3D model has shown that
RGB-based methods can achieve reliable results in
ISLR (Li et al., 2020a; Joze and Koller, 2019). Still,
RGB-based approaches face limitations due to the
constrained size of sign language video datasets.
This leads models to develop biases towards the
environments and appearances of the signers in-
cluded in the training data. Recently, Jang et al.
(2022) proposed a framework designed to augment
the sign language video dataset by altering the
background of the videos.

2.2. Pose-based Approaches

Pose-based ISLR has a significant advantage in
that the pose estimation models are trained on a
relatively large dataset compared to sign language
datasets, making models more robust against differ-
ent environments. Since the initial machine learn-
ing models with CNN architectures were not specif-
ically designed to handle sequential keypoints,
Pham et al. (2019) applied a transformation to the
3D skeleton keypoints to generate an image that
contains both the spatial and temporal information
of the keypoints, and a ResNet model was em-
ployed to recognize the generated image. With the
enhancement of sequential models, the keypoints
can be directly recognized with RNN or LSTM mod-
els (Ko et al., 2018; Liu et al., 2016; Papadimitriou
et al., 2023). The skeleton keypoints can also be
treated as graphs, and Graph Convolutional Net-
works (GCNs) have shown the strength of the archi-
tecture compared to the previous LSTM and RNN
models (Maruyama et al., 2021). Especially, Jiang
et al. (2021) have shown that pose-based architec-
tures can outperform 3D CNN-based architectures
with GCNs specialized for sign language. With
the successful application of Transformer models
to keypoints by Hu et al. (2021) and Bohácek and
Hrúz (2022), recently, there has been an increasing
focus among researchers on exploring the applica-
tion of the Transformer model.

2.3. Preprocessing Pose Keypoints

One of the advantages of using skeleton keypoints
is the lightweight nature compared to RGB videos,
making preprocessing much easier. Normalization
is a basic preprocessing method, and Transformer-
based models have shown that the normalized key-
points can significantly improve the performance
(Bohácek and Hrúz, 2022). With data augmenta-
tion, keypoint data can be augmented using basic
approaches such as rotation and Gaussian noise
to prevent the model from overfitting with limited
data (Coster et al., 2020). Other approaches have
shown that extracting additional features, such as
movement of joints or bone information, can help
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the recognition (Jiao et al., 2023). As shown in vari-
ous studies, preprocessing methods enable models
to learn effectively and overcome problems related
to the limited amount of data.

The primary challenge with pose keypoints is that
the pose estimation model can easily fail to detect
the correct hand keypoints. To address such errors,
researchers have been exploring better frameworks
and attempting to combine different modalities (Zuo
et al., 2023; Kanakanti et al., 2023). Masking key-
points is another preprocessing method aimed at re-
ducing the risk from error keypoints and making the
model more robust on such keypoints (Jiao et al.,
2023; Hu et al., 2021). While current approaches
focus on optimizing the use of the keypoints, there
has not been as much exploration into recovering
error keypoints.

In action recognition and other domains, several
preprocessing approaches have been developed
to improve the quality of noisy keypoints and re-
construct them using autoencoder models (Li et al.,
2019; Wu et al., 2020; Zhou et al., 2021). However,
these approaches face challenges when applied to
sign language keypoints, particularly due to the fre-
quent occurrences of undetected hands that such
models cannot easily reconstruct. For instance,
the Mediapipe framework, one of the major pose
estimation frameworks for sign language, fails to
detect almost 50% of the hands on the WLASL
dataset. This high rate of undetection necessi-
tates the adoption of alternative preprocessing tech-
niques for hand pose reconstruction.

3. Methodology

The main goal of the proposed work is to concen-
trate on a more efficient method to normalize and
reconstruct the hand keypoints, thereby facilitating
the training of the model. In this section, we outline
the designed experiments and provide details on
how we handled and normalized the data.

3.1. Anchor Based Normalization
Previous keypoint normalization techniques have
been focusing on normalizing the keypoints based
on the average position of the center of the body
and rescaling lengths based on the shoulder length
(Yoon et al., 2019). Especially, Coster et al. (2020)
and Bohácek and Hrúz (2022) have normalized
the keypoints with bounding boxes by aligning the
keypoints in a segmented box region. Unlike such
approaches, we envision that an anchor point could
let the model learn better with a standard point. For
this purpose, we normalized the keypoints by shift-
ing them to position the neck (center of the body)
fixed on the center (0, 0). To normalize the length
information, we divided all values by the length of

the neck instead of the shoulders because the neck
seemed to be moving less than the shoulders for
the ISLR task which has less facial expressions. By
centering and scaling, we normalized the skeleton
keypoints against the position of the signer so that
the model becomes robust no matter how close the
signer is to the camera or aligned in some direction.
The equation below outlines the normalization pro-
cess where xk and yk are the x and y coordinates,
respectively, for each skeleton keypoint. The zeroth
keypoint is designated as the neck (k = 0), and the
first keypoint (k = 1) is identified as the center of
the head. The normalization formula is given by:

(x′
k, y

′
k) =

(xk, yk)− (x0, y0)

|(x1, y1)− (x0, y0)|
(1)

We also conducted separate normalization for
the hands, utilizing anchors positioned on the palm.
In sign language recognition, the significance of the
hand primarily stems from its shape and position.
Since the position of the hand is already incorpo-
rated into the body keypoints with the wrist keypoint,
our focus for the hands should be on shape informa-
tion rather than position. To achieve this, we chose
to normalize the hands separately from the body,
akin to the approach taken by Bohácek and Hrúz
(2022), to reduce the weight of positional informa-
tion and emphasize shape information. However,
to capture hand shapes more efficiently, we intro-
duced anchors to the palm and shifted the hands
based on these anchors to eliminate positional in-
formation. The size of the hands, containing infor-
mation such as the relative distance from the body,
is not separately normalized as length.

3.2. Hand Keypoint Reconstruction
Sign language videos often include rapid hand
movements, leading to blurry frames. Extracting
keypoints from such blurry frames frequently re-
sults in failures in pose estimation. Additionally,
signs involve occlusions due to overlapping hands,
producing one of the most challenging cases to
estimate accurately. To address these challenges,
previous research has primarily focused on mask-
ing techniques to enhance the model’s robustness
against noisy keypoints (Hu et al., 2021; Jiao et al.,
2023). While these approaches concentrate on
making the model robust against noisy keypoints,
Laines et al. (2023) have recovered positional infor-
mation by placing undetected hand keypoints into
the position of the palm.

Our approach focuses on recovering the basic
information of the hand shape through keypoint
reconstruction, as illustrated in Figure 1. We use
bilinear interpolation to fill in the empty hand key-
points based on the surrounding skeleton keypoints.
To apply bilinear interpolation to frames lacking key-
point data, we require at least one preceding and



326

Pose Estimation Model (Mediapipe)

Initialized Interpolated

Figure 1: The process of initialization and recon-
struction on a single hand. The average shape for
the first and last frames is applied for initialization,
and bilinear interpolation on other frames is used
for reconstruction.

one succeeding frames with identified keypoints
to serve as reference points. Therefore, we ini-
tiate our process by standardizing the keypoints
of the first and last frames based on the average
keypoint values, which typically represent the pose
when the signer is waiting to start. This initialization
step ensures that every empty frame is now sand-
wiched between frames populated with keypoints.
Subsequently, we apply bilinear interpolation to
these empty frames to recover the missing infor-
mation. The provided equation for the normalized
hand keypoints fk from the kth frame incorporates
a conditional mechanism to handle both the pres-
ence and absence of keypoint data. The equation
is structured as follows:

f ′
k =

{
βfk−α+αfk+β

α+β , iffk = 0

fk ,otherwise
(2)

where α and β are the minimum numbers that the
k − αth and k + βth frames have hand keypoints
detected, repectively, which means fk−α ̸= 0.

3.3. Fixing Length
One of the main motivations of this work is to con-
centrate on training the model more effectively
through data preprocessing. We considered that
methods related to the input length could also affect
the model’s performance. Sign language videos ex-
hibit various lengths, ranging from below 15 frames
to over 200 frames for a single gloss. The vari-
ability in length is due not only to the difficulty of
expressing the sign but also to different signing
styles among signers. Typically, padding is applied

Dataset # Glosses # Videos Detect %
WLASL (2020a) 100 2k 46.56
AUTSL (2020) 226 36k 78.83

Table 1: Statistics related to the two datasets,
WLASL and AUTSL. Detect % stands for the detec-
tion rate on hands, using the Mediapipe framework.

to short sequences to facilitate training together
with long sequences in a single batch (Vázquez-
Enríquez et al., 2021). Instead of padding, an al-
ternative approach of interest was extending the
length of the input sequence. To do so, frame du-
plication with a uniform distribution was applied to
each instance, fixing the length to 512 frames.

4. Experiments

Experimental setups are introduced in this section.
We provide information about the datasets used,
the pose estimation frameworks employed for the
experiments, and details regarding the settings.

4.1. Datasets

The datasets chosen to evaluate the proposed ap-
proaches are the WLASL and AUTSL datasets.
WLASL is a Word-Level American Sign Language
dataset that aligns with the task of ISLR (Li et al.,
2020a). The dataset is structured with subsets of
varying class sizes, 100, 300, 1,000, and 2,000
classes, which are ordered by the number of in-
stances per class. Due to the difficulty of recog-
nizing large subsets, which are unbalanced on the
number of instances per class, we decided to use
the smallest but richest subset, WLASL-100, for this
experiment. The WLASL-100 dataset is composed
of 2,038 instances from 97 different signers. With a
relatively large number of signers, WLASL exhibits
strength in diversity; however, this diversity makes
recognition challenging due to the varying signing
styles, speeds, and expressions.

The Ankara University Turkish Sign Language
Dataset (AUTSL) is a Turkish Sign Language
dataset with 226 classes, 36,302 instances, and
43 different signers (Sincan and Keles, 2020).
The dataset is relatively balanced regarding the
number of instances per class. However, with a
smaller number of signers than WLASL, AUTSL ex-
hibits limited diversity concerning the environment.
These two datasets were selected for their distinct
characteristics so that we can evaluate the efficacy
of the proposed methods in diverse settings. As the
datasets already include train/dev/test annotations,
we apply the annotations for the experiment.
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Figure 2: The baseline Transformer encoder archi-
tecture framework with preprocessing. Positional
Embedding (PE) is added, and the CLS tokens are
concatenated to the feature vectors.

4.2. Keypoint Representation

For the datasets mentioned in Section 4.1, we uti-
lized Mediapipe Holistic to extract keypoints from
the sign language videos (Lugaresi et al., 2019).
Similar to the previous methods, we also decided
not to use the z-axis data, as the Mediapipe docu-
mentation mentions that it is unreliable. The key-
points we used follow the work of Laines et al.
(2023) for fair compatibility. As marked in Table 1, it
is quite difficult to detect hands from sign language
videos. To retain the positional information of the
hands, the palm keypoints were duplicated to be
included in the body, resulting in 20 keypoints for
the face, 8 keypoints for the body (including the
palms) and 21 keypoints for each hand, totaling 70
keypoints. For the baseline settings, the keypoints
for undetected hands were set to the position of the
palm, and for other settings, we preprocessed the
keypoints as mentioned in Section 3.2.

4.3. Model Architecture and Setups

Transformer Encoder. As previous studies have
demonstrated the effectiveness of applying Trans-
former architectures (Vaswani et al., 2017) to ISLR,
we have also decided to utilize a Transformer ar-
chitecture in this work (See Figure 2). However,
our approach differs in that we only applied the en-
coder model, which appeared to be more efficient.
The vanilla Transformer encoder model with 4 lay-
ers was applied, which shows reliable performance
with low complexity that seemed to be more effi-
cient than using more layers. Positional embedding
was incorporated with learnable parameters to train
the model with the awareness of spatial information,
which indicates that each skeleton joint contains
distinct information. Similar to the classification

based Transformer models by Devlin et al. (2019)
and Dosovitskiy et al. (2021), class tokens are con-
catenated to the features as a parameter. Finally,
a linear layer is applied to the output class tokens,
and accuracy is measured. We set the Transformer
encoder architecture as the baseline and demon-
strate the effects of the proposed methods.

To compare the Transformer encoder model with
previous researches based on a different Trans-
former model, we also employ the architecture of
SPOTER (Bohácek and Hrúz, 2022). SPOTER is
based on a Transformer encoder-decoder architec-
ture with 6 layers and positional embeddings on
every feature that contain both spatial and temporal
information.
Training Details. The learning rate was fixed at
1e-5, and the models were trained for 200 epochs.
Batch size differed between datasets, with WLASL-
100 trained on batch size 4, while AUTSL, which
has a relatively larger size, was trained with batch
size 16. Adam Optimizer was used for optimization.
Cross-entropy loss was employed for the training
loss, and the top-1 accuracy score was measured
for evaluation. All results shared in the results are
the average scores from 5 or more attempts with a
random seed, as the results may vary depending
on the seed number.

4.4. Data Augmentation
Data augmentation is considered as one of the dis-
tinct strengths of pose-based ISLR (Alyami et al.,
2024; Selvaraj et al., 2022). Previous research has
consistently demonstrated that data augmentation
significantly enhances performance, especially on
limited datasets with unbalanced instances (Zuo
et al., 2023). By implementing data augmentation,
we show that the proposed preprocessing meth-
ods are independent of data augmentation, which
means that the methods can be utilized together
with different data augmentation techniques from
previous and future works.

In this study, we implemented widely adopted
augmentation techniques, rotation and Gaussian
noise. We adopted the augmentation settings as
utilized by Bohácek and Hrúz (2022), applying rota-
tion with angles randomly chosen between -13 and
13 degrees and adding Gaussian noise to each
keypoint, following a distribution with a mean of 0
and a standard deviation of 10−3.

5. Results and Analysis

5.1. Main Results
The results of applying the proposed methods ap-
pear in Table 2 on the two datasets. With the
encoder-only model that we proposed, we can see
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Dataset Model Method Acc. (%)Hand Normalize Hand Initialize Fixing Length

WLASL

✗ ✗ ✗ 71.63
Transformer ✓ ✗ ✗ 79.38

Encoder-Decoder ✓ ✓ ✗ 80.31
(SPOTER) ✓ ✗ ✓ 78.68

✓ ✓ ✓ 79.46
✗ ✗ ✗ 76.12

Transformer ✓ ✗ ✗ 79.85
Encoder-only ✓ ✓ ✗ 80.62

(Baseline) ✓ ✗ ✓ 81.16
✓ ✓ ✓ 82.17

✗ ✗ ✗ 90.40

AUTSL
Transformer ✓ ✗ ✗ 90.76
Encoder-only ✓ ✓ ✗ 90.77

(Baseline) ✓ ✗ ✓ 90.95
✓ ✓ ✓ 91.15

Table 2: Comparative results on WLASL and AUTSL between SPOTER and our Transformer encoder
ISLR model under three preprocessing settings. Results with the best accuracy score are bold, and the
following best results are underlined.

that normalizing hands based on anchors signifi-
cantly improves accuracy with a 3.73% improve-
ment on the WLASL dataset. Moreover, initializ-
ing the keypoints with bilinear interpolation and fix-
ing the input length has also enhanced the perfor-
mance. Applying all of the methods together, the
encoder-only model has shown a 6.05% improve-
ment. The performance change is relatively small
in the AUTSL dataset; however, we notice that each
method is improving the performance and showing
a similar tendency with the results of WLASL.

Results from the Transformer encoder-decoder
model show that anchor-based normalization and
reconstruction of hands give rise to a significant im-
provement, which shows the generality of the two
methods on a different model architecture. Unlike
other methods, fixing the length seemed to be both-
ering the training process on the encoder-decoder
model. The difference of the model based on the
SPOTER architecture and the encoder-only model
is that the positional embedding of the SPOTER
has considered both the spatial and temporal em-
beddings together, while the baseline model has
only been focusing on embedding spatial informa-
tion. As the length of the input sequences has
been extended and fixed by duplication, it seemed
that the inconsistent information with the temporal
embedding resulted in a lower performance.

5.2. Comparison with Other Methods

WLASL. Results conducted on WLASL are pre-
sented in Table 3. Our proposed method outper-
forms previous pose-based methods. SPOTER†

Method Modality Acc. (%)
I3D (2020a) 65.89
TK-3DConvNet (2020b) RGB 77.55
Full Transformer (2022) 80.72
GCNBERT (2021) 60.15
SPOTER (2022) 63.18
SPOTER† Pose 71.63
SignBERT (2021) 79.07
SL-TSSI† (2023) 81.47
I3D+ST-GCN (2021) 81.38
SignBERT (2021) Multi. 82.56
NLA-SLR (2023) 92.64

Ours† Pose 82.17
Ours† w/ Augment 83.26

Table 3: Accuracy comparison on WLASL with
previous methods using different modalities. Note
that the dagger(†) mark refers to researches based
on Mediapipe keypoints and Multi. refers to the
multimodal approaches.

is the result of the SPOTER model trained on Me-
diapipe keypoints. Our approach outperforms pre-
vious RGB-based methods and most of the mul-
timodal methods that use pose and RGB data to-
gether. While we still cannot reach the performance
of the NLA-SLR model by Zuo et al. (2023), the
results highlight the importance of the proposed
preprocessing methods.

AUTSL. In contrast to the results related to
WLASL, the results presented in Table 4 indicate
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Method Modality Acc. (%)
VTN-PF (2021) 92.92
I3D (2022) RGB 93.53
MViT-SLR (2023) 95.72
SL-TSSI† (2023) 93.13
MS-G3D (2021) Pose 95.38
SL-GCN (2021) 96.47
SAM-SLR (2021) Multi. 98.53

Ours† Pose 91.15
Ours† w/ Augment 91.66

Table 4: Accuracy comparison on AUTSL-100 with
previous methods with different modalities. Note
that the dagger(†) mark refers to researches based
on Mediapipe keypoints and Multi. refers to the
multimodal approaches.

Method None Gauss. Rotate Both
Accuracy 82.17 82.24 82.63 83.26

Table 5: Accuracy score with different data aug-
mentation methods, Gaussian noise, rotation, and
applying both.

that our model underperforms compared to previ-
ous methods based on pose and RGB data. The
limitation seemed to be due to the smaller num-
ber of parameters than the previous methods, as
it is highlighted in the earlier work of Laines et al.
(2023). SL-TSSI employs 7.2M parameters, and SL-
GCN employs around 19.2M parameters, whereas
our method works on 5.3M parameters. Moreover,
the difference based on the pose estimation frame-
works shows that only SL-TSSI has been using the
Mediapipe keypoints, which produces a relatively
similar result compared to others.

5.3. Analysis
Data Augmentation. We also show that our
methods can be enhanced with basic data aug-
mentation skills mentioned in Section 3.4. Table 5
shares the results of applying each augmentation
skill. Both augmentation methods are showing im-
provements, especially when they are applied si-
multaneously. These results demonstrate that the
proposed methods and data augmentation com-
plement each other and show the possibilities with
more complicated augmentation methods, such
as augmentation based on speed or joint rotation
(Bohácek and Hrúz, 2022; Laines et al., 2023).

Normalization Comparison. To show the im-
portance of the anchor-based normalization, we
share the results of normalizing our model and the

Method SPOTER TF Encoder
Bounding Box 76.59 78.06
Anchor-based 79.38 79.85

Table 6: Accuracy score of the two models,
SPOTER and our Transformer encoder model, with
the two different normalization methods of setting
bounding boxes and normalizing based on anchors.
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Figure 3: Accuracy scores on all detected, un-
detected, and all undetected cases. All detected
stands for the instances that have all of the hands
detected, undetected for those with some hands
undetected, and all undetected for those that have
at least one hand undetected in all of the frames.

SPOTER model based on our anchor-based nor-
malization and the bounding box-based normaliza-
tion in Table 6. As we can see, the normalization
with anchors on the hands shows better perfor-
mance on the two different models. The use of
anchor keypoints suggests that the model learns
more effectively based on the relative distance be-
tween skeleton joints.

Reconstruction Effectiveness. The proposed
methods have shown improvements in the model
performance. To clearly see that the model is re-
covering the information of keypoints, we divided
the WLASL test dataset according to whether the
hand detection fails or not. Instances with all hands
well detected are checked as “all detected”, some
frames having undetected hands are checked as
“undetected”, and those with all frames having at
least one hand undetected are checked as “all un-
detected”. For comparison, we analyzed our pro-
posed methods trained with the hands normalized
and having the hands reconstructed.

Results are shared in Figure 3, where we observe
that the model trained on reconstructed hands ex-
hibits the strength in instances where at least some
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hands are detected. The reconstruction not only
seemed to be improving the performance based on
the recovered information but also seemed to be
alleviating the difficulty of training the model with
different keypoint representations, some of which
have all keypoints detected while others are miss-
ing many of the keypoints. However, instances with
almost no hands detected seemed to be struggling
with reconstructed keypoints that do not possess
much information, resulting in a slight decrease in
performance. Still, the trade-off is smaller than the
improvements noticing that the keypoint reconstruc-
tion recovers some information and alleviates the
problems coming from undetected hands.

Case 1 Input Sequence Gloss

Original Pull

Extracted Bowling

Ours Pull

Case 2 Input Sequence Gloss

Original Graduate

Extracted Help

Anchor-base
Normalized Graduate

Figure 4: Case studies on the WLASL dataset.
Hand keypoints successfully reconstructed are
highlighted with red boxes.

5.4. Case Studies
Finally, case studies were conducted to determine
if the proposed methods were successfully applied
to specific cases. Figure 4 illustrates two cases of
when our method has been applied successfully.
The first case contains an example where some
of the hands are undetected, leading to incorrect
predictions. Empty hand keypoints confuse the
model, causing it to predict the input sequence
into glosses having similar body movements but
different hand shapes. Pull and bowling serve as
examples of such difficult cases with similar body
movements. The loss of keypoints seemed to be
leading the model to incorrect predictions. Keypoint
reconstruction applied in the proposed research
reconstructs the missing hand keypoints and leads
the model to correct predictions.

The second case contains an example with a
sign that has a particular hand shape containing

some important information while the body does not
move so much. When the hands are not separately
normalized based on anchors, the model struggles
to predict similar signs having similar motions even
though all hand keypoints are detected. Anchor-
based normalization seemed to help the model
recognize the shape of hands, leading to correct
predictions.

6. Conclusions and Limitations

In this work, we proposed preprocessing methods
for Isolated Sign Language Recognition (ISLR).
First, we have applied anchor-based normaliza-
tion, which normalizes the body and hands based
on anchor points. Particularly, anchors from the
hands remove unnecessary positional information
and emphasize the distance between keypoints that
effectively retains the shape information. Second,
undetected hand keypoints were reconstructed us-
ing bilinear interpolation, showing that the recon-
structed keypoints recover the shape information
of hands. Finally, the length of the sign language
sequence was fixed to relieve the difficulty of train-
ing a model on data with diverse input lengths. We
argue that the methods show the generality across
different model architectures and datasets. The ap-
plication of basic data augmentation methods has
improved the performance, demonstrating that the
preprocessing methods are independent of data
augmentation.

Still, we have several tasks to explore in the fu-
ture. Fixing the length of the input sequence has
been interrupting the training process when we
applied the Transformer encoder-decoder model
which has both spatial and temporal embeddings.
We assume that the temporal embeddings have
inconsistent information with the duplicated frames,
and leave the question of implementing a better
format instead of duplicating the frames for stable
training on diverse models for future work. Addi-
tionally, the proposed methods still face challenges
in cases with highly undetected keypoints, which
need to be addressed as well in subsequent work
by applying other preprocessing methods or better
pose estimation frameworks specialized on hands
(Ivashechkin et al., 2023).
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