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Abstract
Sign language understanding (SLU) aims to convert sign language videos into glosses that transcribe sign language
word-by-word by means of another written language and generate corresponding spoken sentences, including sign
language recognition (SLR) and sign language translation (SLT). SLU has been a challenging undertaking since
it demands the capability of fine-grained video understanding and sequence generation. In addition, the lack of
supervised training data further hinders the advancement of SLU. To narrow the modality gap between vision and
language and mitigate the data scarcity problem, we propose a Simple and Effective Data Augmentation (SEDA)
framework for end-to-end SLU. In particular, SEDA consists of two key components: data augmentations on both
sign and text sides and multi-task learning with task-specific fine-tuning. Experimental results on RWTH-PHOENIX
Weather 2014T demonstrate that our proposed SEDA framework significantly and consistently outperforms the
baseline model and achieves a WER of 19.91, a BLEU score of 25.19, and a ROUGE score of 51.72, delivering
competitive scores in both SLR and SLT.
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1. Introduction

As the native language used by deaf and hard-
of-hearing individuals to communicate, sign lan-
guages (SLs) exhibit distinctive grammar and
have been established as a form of natural lan-
guage (Klima and Bellugi, 1979). Sign language
understanding (SLU) in which SLs are understood
by means of machines mainly involves two func-
tions: sign language recognition (SLR) and sign
language translation (SLT). It is a challenging under-
taking that requires the model to have the capability
of fine-grained video understanding and sequence
generation. Unlike spoken languages, SLs involve
manual and non-manual elements (e.g., the move-
ment of the body, head, mouth, or even eyebrows).
Also, the visual signal in SLs displays dramatic vari-
ability among signers, posing a huge modality gap
when transforming SLs into text (Zhang et al., 2023).
Insufficient supervised training data presents an
additional challenge to the advancement of SLU, as
it increases the risk of overfitting. To tackle these
challenges, it is essential to devise inductive biases,
such as novel model architectures, training strate-
gies and objectives, facilitating knowledge transfer,
and the induction of universal representations for
SLU. In this paper, we aim to augment SLs data
on both sign and text sides, and provide effective
training, including multi-task learning.

Existing SLU methods follow the framework of

neural machine translation (NMT) where the source
language is spatial-temporal pixels rather than
discrete tokens and the target language is spo-
ken languages. Depending on the model archi-
tectures, annotation pairs, or final goals, SLU
comprises: Sign2Gloss (Min et al., 2021; Hao
et al., 2021), Sign2Gloss2Text (Yin and Read,
2020), Sign2(Gloss+Text) (Camgoz et al., 2020)
and Sign2Text (Camgoz et al., 2018; Chen et al.,
2022) tasks. Additionally, to boost the well-being
of the sign language community and improve
SLU performance, a number of studies have fo-
cused on Gloss2Text (Moryossef et al., 2021) and
Text2Gloss (Miyazaki et al., 2020; Zhu et al., 2023)
by transfer learning, data augmentation, etc. Fol-
lowing this line of study, we find that researchers sel-
dom explore data augmentation techniques for the
sign aspect, primarily concentrating on the textual
component. Furthermore, constructing large-scale
SL datasets with well-aligned annotations is a time-
consuming and resource-consuming task (Uthus
et al., 2023). For these reasons, developing a data
augmentation technique for the sign side has be-
come crucial.

In this paper, we propose a Simple and Effective
Data Augmentation (SEDA) approach for SLU. The
main idea is to increase the training samples and
improve the model’s performance by learning highly
related tasks. Specificly, we adopt different sign
embeddings to augment sign representations and
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combine preprocessed spoken texts to achieve text
augmentation. The contributions of this paper can
be summarized as follows:

• We propose a Simple and Effective Data Aug-
mentation (SEDA) approach to ease the data
scarcity problem in the SLU task.

• Intensive analysis indicates that the SEDA
method improves end-to-end SLU significantly
through multi-task learning and task-specific
fine-tuning.

• We evaluate the effectiveness of the proposed
SEDA on the widely used dataset RWTH-
PHOENIX Weather 2014T (PHOENIX14T).
According to the experimental results, SEDA
leads to notable enhancements in the SLU
models, achieving competitive results in both
SLR and SLT.

2. Related Work

2.1. Sign language understanding
In previous SLU research, the SLU methods can
be divided into two categories: cascading and
end-to-end. The cascading style adopts interme-
diate supervision, such as gloss, in which each
gloss presents the manual transcription of a sign
to convey its intended meaning. First, the sign
language recognition model recognizes the contin-
uous glosses from the unsegmented sign videos
(Sign2Gloss), and then, the predicted glosses are
utilized to generate the corresponding spoken sen-
tence (Gloss2Text). In the Sign2Gloss system, a
common architecture involves a feature extractor
and a temporal modeling mechanism, such as Con-
nectionist Temporal Classification (CTC) (Graves
et al., 2006). However, most cascading SLU meth-
ods inevitably introduce an information bottleneck,
as these methods utilize sign glosses as interme-
diate supervision. When the original sign video is
transformed into glosses, some spatial-temporal in-
formation is lost (Yin and Read, 2020). End-to-end
training is one promising way to achieve SLU. The
end-to-end SLU directly converts the sign videos
to spoken sentences (Sign2Text). Camgoz et al.
(2018) formalizes this field by taking the SLU task
as a neural NMT problem, demonstrating the prac-
ticality of the end-to-end method. In the follow-
ing work (Camgoz et al., 2020), the sign glosses
serve as the auxiliary supervision to regularize the
neural encoder (Sign2(Gloss+Text)). Following
this paradigm, we focus on the challenge of data
scarcity by proposing a simple and effective data
augmentation method. Besides, the data augmen-
tation of sign language representation has rarely
been explored before.

2.2. Multi-task learning
Multi-task learning aligns with the goal of increasing
training samples and improving the model by learn-
ing related tasks (Zhang and Yang, 2018). Recently,
the natural language processing (NLP) domain has
benefited from adopting multi-task learning (e.g.,
multilingual translation). In Text2Gloss (Zhu et al.,
2023), multilingual translation has been adopted
to improve translation performance. As for SLU
research, comprehensive multi-task learning ex-
periments (i.e Sign2Gloss, Sign2Text, Gloss2Text,
Text2Gloss, and MT) are conducted in (Zhang
et al., 2023). These experiments offer valuable
insights into how multi-task learning benefits SLT.
We then combine multi-task learning with data aug-
mentation and innovatively propose a simple and
effective data augmentation (SEDA) framework for
SLU. The following sections present the details of
the proposed methods.

3. Methods

We applied the proposed SEDA to the sign
language transformer (Camgoz et al., 2020)
that widely serves as the baseline model in
Sign2(Gloss+Text) and Sign2Text tasks. In this
section, we first present the task definition and re-
visit the sign language transformer. We then give a
comprehensive explanation of our proposed ap-
proaches, including data augmentation on both
sign and text sides and multi-task learning.

3.1. Task definition
We formally define the setting of end-to-end
Sign2(Gloss+Text). Given sign-gloss-text triples
D = (Si, Gi, Ti)

N
i=1, where i and N represent the

index of the input triple and the number of triples
in the dataset, Si = {si,z}|Si|

z=1 denotes sign videos
comprising |Si| frames, Gi = {gi,u}|Gi|

u=1 represents
a gloss sequence with |Gi| gloss annotations, and
Ti = {ti,w}|Ti|

w=1 is the corresponding spoken text
consisting of |Ti| words, and generally in SL data
triples, |Si| ≫ |Gi| and |Si| ≫ |Ti|. The end-to-end
Sign2(Gloss+Text) aims to predict glosses G, the
text in sign order, and generate spoken text T .

3.2. Sign language transformers
The sign language transformer follows the encoder-
decoder paradigm, with Transformer (Vaswani
et al., 2017) as its backbone. It consists of five
modules: a sign embedding, a transformer encoder,
a CTC classifier, a word embedding, and a trans-
former decoder. In our sign language transformer,
we introduce label smoothing to CTC training loss,
aiming to mitigate the overfitting issue, and a new
sign embedding to extract informative sign features.
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Sign embedding. Replacing the sign embed-
ding in (Camgoz et al., 2020), we adopt the re-
trained one from self-mutual knowledge distillation
(SMKD) model (Hao et al., 2021) followed by 1D-
CNN layers to extract the informative sign repre-
sentations. Here, we denote the new sign embed-
ding as spatial-temporal embedding. During train-
ing, the parameters of the new pre-trained spatial-
temporal embedding are frozen. We formulate this
operation as:

fi = Spatial-temporalEmbedding(Si), (1)

where fi is the sign representation from the newly
introduced spatial-temporal embedding.

Transformer encoder. The sign language trans-
former encoder intending to predict sign glosses
G contains multi-layer transformer networks. The
inputs of the transformer encoder are embedding
sequences of tokens, such as the sign feature fi
from the spatial-temporal sign embedding. Unlike
traditional seq2seq models, transformer networks
do not employ recurrence or convolution mecha-
nisms, which means they do not inherently contain
positional information within sequences. To tackle
this concern, we adopt the positional encoding in-
troduced in (Vaswani et al., 2017) and add temporal
order information into the embedded representa-
tions in the following manner:

f̂i = fi + PositionalEncoding, (2)
where the PositionalEncoding is pre-defined to gen-
erate a distinct vector in the shape of a sine wave
that has been phase-shifted for each time step.
Furthermore, f̂i is modeled using self-attention and
projected into contextual representations h(Si) that
are fed forward to the transformer decoder to gen-
erate the target spoken text.

CTC with label smoothing. Sign language trans-
former employs glosses as auxiliary supervisions
to train the transformer encoder. In the CTC-based
Sign2Gloss tasks, CTC introduces the blank label,
representing the silence or transition between two
consecutive glosses. The extended glosses can
be defined as G∗ = (gi,1, ..., gi,|Gi|) ∪ {blank} ∈ Rl,
where l is the total number of labels. The CTC is
utilized to compute the p(G∗|h(Si)), marginalizing
over all possible h(Si) to G∗ alignments as:

p(G∗|h(Si)) =
∑
π∈B

p(π|h(Si)), (3)

where π is a path and B is the collection of all
possible paths that lead to G∗. The CTC loss in
Sign2Gloss is defined as:

Lctc = 1− p(G∗|h(Si)). (4)

While CTC-based methods offer notable training
convenience, as indicated in previous works (Min
et al., 2021; Tan et al., 2023), they are prone to
overfitting during training. Moreover, SLs are low-
resource languages, this fact also poses the risk
of overfitting. To mitigate the overfitting problem,
we add a regularization term to the CTC objective
function, which consists of the Kullback-Leibler (KL)
divergence between the network’s predicted distri-
bution P and a uniform distribution Q over labels.

LR = (1− α)Lctc + α

T∑
t=1

DKL(P ||Q) (5)

Training the transformer encoder networks using
CTC with label smoothing encourages the differ-
ences between the logits of the correct class and
the logits of the incorrect classes to be a constant
dependent on the weight ratio α.

Transformer decoder. The sign language trans-
former decoder aims to generate the spoken sen-
tence based on the contextual representation h(Si).
It consists of cross-attention and self-attention lay-
ers. We introduce cross-entropy loss as the objec-
tive function of spoken language sentence genera-
tion.

LT = −
|Ti|∑
u=1

logP(ti,u|ti,<u, h(Si)) (6)

3.3. Data augmentation
Data augmentation is a common technique used
to relieve the risk of overfitting due to data scarcity.
One commonly used data augmentation method
involves original data with some minor changes.
We apply the SEDA framework to the sign language
transformer.

Sign representation augmentation. Instead of
augmenting the sign frames directly, our proposed
SEDA focuses on sign feature augmentation, that
is, the same sign frames are processed by dif-
ferent sign embeddings. Given the sign video
frames Si = {si,z}|Si|

z=1, we propagate the Si to dif-
ferent embedding layers (i.e., spatial embedding
from (Camgoz et al., 2020) and newly introduced
spatial-temporal sign embedding) separately to ob-
tain multiple sign features. By taking this approach,
we can obtain fi ∈ F from spatial-temporal embed-
ding, where F = {f1, f2, ..., fN}, and f ′

i ∈ F ′ from
the original spatial embedding in the sign language
transformer, where F ′ = {f ′

1, f
′
2, ..., f

′
N}.

Spoken text augmentation. Inspired by the com-
bining preprocessing methods in (Zhu et al., 2023),
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Figure 1: Overview of the proposed SEDA frame-
work. The same sign frames will be forwarded to
different sign embeddings to obtain multiple sign
features. During multi-task learning, the sign fea-
tures from spatial-temporal embedding are used to
predict glosses and original spoken sentences, as
shown by the solid line. Meanwhile the sign fea-
tures from spatial embedding are fed to the model
to generate glosses and preprocessed sentences,
which is presented by the dotted line.

we apply preprocessing techniques to the spo-
ken sentence Ti. We conduct lemmatization
and alphabet normalization on the PHOENIX14T
dataset (Camgoz et al., 2018) and combine the pro-
cessed data with the original annotations. Lemma-
tization is the linguistic process of reducing words
to their base or root form. Alphabet normaliza-
tion is employed to convert specific letters, such
as ü, ö, ä, and ß, into their corresponding coun-
terparts. The processed spoken text, denoted
as T ′

i , is then paired with the copied gloss se-
quence Gi to become a new training dataset on
the target side. Once the augmented sign features
and preprocessed spoken text annotations are ob-
tained, we are able to construct new data triples
D1 = (fi, Gi, Ti)

N
i=1 and D2 = (f ′

i , Gi, T
′
i )

N
i=1.

3.4. Multi-task learning
The augmented data triples, represented as D1 and
D2, are then mixed up and fed to the sign language
transformer one after another. As shown in Fig. 1,
when presented with the input fi, the sign language
transformer encoder is trained to predict Gi, and
the transformer decoder is trained to generate Ti.
The same procedure applies to the input f ′

i , where
the sign language transformer encoder predicts Gi,
and the transformer decoder generates T ′

i .
The networks are trained by minimizing the joint

loss term L, which is the weighted sum of the trans-
lation loss LT and the gloss prediction loss LR, as
follows:

L = λRLR + λTLT , (7)

where λR and λT are hyperparameters that de-

termine recognition and translation loss function
weight during training. Since our final goal is to
predict Gi and generate Ti, we then fine-tune the
network using D1 = (fi, Gi, Ti)

N
i=1.

4. Experiments

4.1. Experimental setup
To evaluate the effectiveness of the proposed SEDA
framework, we conducted ablation experiments.

Model setting. For training hyper-parameters,
we start mainly from the setting for the sign lan-
guage transformer1. In particular, we keep α =
0.01, λR = 5.0, and λT = 1.0, which is empirically
decided. As suggested in (Zhu et al., 2023), the
model performance increases when the number of
encoders or decoders is reduced compared to the
original transformer architecture in SL translation
scenarios. We performed extensive experiments.
As the results indicated, we maintained the encoder
depth at 2 and the decoder depth at 4.

Dataset. We worked on the widely utilized
PHOENIX14T dataset and augmented the spoken
texts (Zhu et al., 2023). The details of the aug-
mented information are shown in Table 2. Note that
we used D1 for the development and test.

Evaluation metrics. We report the experi-
mental results mainly on the Sign2 (Gloss+Text)
task, including the Sign2Gloss and the total Sign2
(Gloss+Text) results. The most common measure
of Sign2Gloss performance is the word error rate
(WER), which can be calculated as:

WER =
S +D + I

S +D + C
, (8)

where S , D , I , and C indicate the num-
ber of Substitutions, Deletions, Insertions, and
Corrections, respectively. For SLT task, we
use standard metrics commonly used in machine
translation, including tokenized BLEU (Papineni
et al., 2002) with 4-grams and the Rouge-L F1
(ROUGE) (Lin, 2004).

4.2. Experimental results
We evaluated the proposed SEDA framework on
augmented PHOENIX14T. The main results are
listed in Table 1. On the PHOENIX14T develop-
ment set, the proposed SEDA surpassed the base-
line by 9.93 WER, 4.24 BLEU, and 4.65 ROUGE. It
also outperformed the state-of-the-art end-to-end
or cascading approaches.

4.3. Discussion
Introducing high-quality spatial-temporal sign
embedding improves SLR and SLT. Replacing

1https://github.com/neccam/slt

https://github.com/neccam/slt
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Table 1: End-to-end SLU performance on PHOENIX14T dataset
DEV TEST

Methods WER↓ BLEU-4↑ ROUGE↑ WER↓ BLEU-4↑ ROUGE↑
Previous research (end-to-end)
Joint-SLRT (Camgoz et al., 2020) 24.98 22.38 – 26.16 21.32 –
Sign Back Translation (Zhou et al., 2021) 22.70 23.90 50.29 24.45 24.34 49.54
STMC-T*(Zhou et al., 2022) – 24.09 48.24 – 23.65 46.65
Previous research (cascading)
STMC-Transformer*(Yin and Read, 2020) 19.60 22.47 48.70 21.00 22.47 48.78
Ours (end-to-end)
Baseline 29.84 20.95 47.07 28.67 21.70 47.82

+High-quality Spatial-temporal Sign Embedding 21.40 22.28 48.81 22.59 22.86 48.97
+ CTC Label Smoothing 21.56 23.05 48.86 22.05 22.40 47.58
+ Multi-task Learning 20.36 23.88 50.57 21.79 23.34 49.71

+ Fine-tune 19.91 25.19 51.72 21.51 24.89 51.61
+ Gloss-less fine-tune – 25.35 51.40 – 24.75 50.77

∗ denotes using extra clues (keypoints)

Table 2: Statistics of preprocessed PHOENIX14T
Original Text Preprocessed text

Train Dev Test Train Dev Test
Instance 7,096 519 642 7,096 519 642
Vocab. 1,066 393 411 2,216 793 836
tot. words 99,081 6,820 7,816 99,081 6,820 7,816
tot.OOVs – 57 60 – 39 38

the original sign embedding, we introduce the re-
trained one from the SKMD model and adopt 1D-
CNN layers to extract the spatial-temporal sign in-
formation. This replacement delivers notable en-
hancements in both SLR and SLT (–8.44 WER,
+1.33 BLEU, +1.74 ROUGE on the dev set). Adding
a regularization term to the CTC, we observe an
improvement in SLT (+ 0.77 BLEU on the dev set).

Multi-task learning enhances both SLR and SLT.
The sharing of parameters through multi-task learn-
ing, using augmented dataset, facilitates knowl-
edge transfer. As shown in Table 1, the multi-task
learning achieves a quality boost (–1.2 WER, + 0.83
BLEU, +1.71 ROUGE on the dev set). Sharing the
mixed parameters benefits tasks but lacks of task-
specific characteristics. For this, we performed
fine-tuning in the following.

Mixing shared parameters with task-specific
parameters further provides quality gains. We
further conduct task-specific fine-tuning using the
data triples D1 = (fi, Gi, Ti)

N
i=1. Here gloss-less

fine-tuning refers to using the multi-task learning
applied model, and we fine-tune the model to do the
Sign2Text task without glosses. By task-specific
fine-tuning, SLR and SLT tasks undergo a dramatic
improvement (Fine-tune: –0.45 WER, + 1.31 BLEU,
+ 1.15 ROUGE; Gloss-less fine-tune: +1.47 BLEU,
+0.83 ROUGE on the dev set).

5. Conclusion

In this paper, we propose a simple and effec-
tive data augmentation (SEDA) method to mitigate
the data scarcity problems in end-to-end sign lan-
guage understanding (SLU). The SEDA approach
includes adopting different sign embeddings, com-
bining preprocessed spoken texts, and a multi-task
learning strategy. The former two methods increase
the amount of training data, especially the sign
representations, which has rarely been conducted
before. Multi-task learning narrows the gap be-
tween vision and language by sharing mixed param-
eters. Experimental results on the widely utilized
PHOENIX14T dataset indicate that our proposed
SEDA benefits the end-to-end SLU, surpassing the
baseline by 9.93 WER, 4.24 BLEU score, and 4.65
ROUGE score and achieving competitive results in
both sign language recognition (SLR) and transla-
tion (SLT) tasks.

6. Limitations

While our SEDA framework significantly benefits
the end-to-end SLU on the PHOENIX14T dataset,
it still faces the limitation that more datasets, such
as the German sign language dataset (Public DGS
Corpus (Hanke et al., 2020)) or Chinese sign lan-
guage dataset (CSL-Daily (Zhou et al., 2021)), are
needed to demonstrate the universality of the pro-
posed method. We will adopt multiple datasets and
conduct more detailed analyses in future work.
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