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Abstract
We propose a multimodal network using skeletons and handshapes as input to recognize individual signs and 
detect their boundaries in American Sign Language (ASL) videos. Our method integrates a spatio-temporal Graph 
Convolutional Network (GCN) architecture to estimate human skeleton keypoints; it uses a late-fusion approach 
for both forward and backward processing of video streams. Our (core) method is designed for the extraction—
and analysis of features from—ASL videos, to enhance accuracy and efficiency of recognition of individual signs. 
A Gating module based on per-channel multi-layer convolutions is employed to evaluate significant frames for 
recognition of isolated signs. Additionally, an auxiliary multimodal branch network, integrated with a transformer, is 
designed to estimate the linguistic start and end frames of an isolated sign within a video clip. We evaluated 
performance of our approach on multiple datasets that include isolated, citation-form signs and signs pre-
segmented from continuous signing based on linguistic annotations of start and end points of signs within 
sentences. We have achieved very promising results when using both types of sign videos combined for training, 
with overall sign recognition accuracy of 80.8% Top-1 and 95.2% Top-5 for citation-form signs, and 80.4% Top-1 
and 93.0% Top-5 for signs pre-segmented from continuous signing.

Keywords: ASL, GCN, Gating module, Temporal action localization

1. Introduction
In the US, it is estimated that 28 million people
are Deaf or hard of hearing (Lin et al., 2011), and
that about 500,000 use American Sign Language
(ASL) as their primary language (Mitchell et al.,
2006). ASL is also the 3rdmost studied non-native
language (Looney and Lusin, 2021). Signed lan-
guages are full-fledged natural languages, with in-
formation expressed in the visual-gestural modal-
ity by movements of the arms, hands, head, and
upper body, and by facial expressions. They gen-
erally lack a standardized written form.
Computer-aided sign language analytics and
sign recognition from video have many poten-
tial applications, which include resources to pro-
vide/enhance access to digital materials for sign-
ers, and tools for sign language learners (including
hearing parents of deaf children) and interpreters,
for ASL-to-English translation, and for improved
sign language research. Research in this area is
challenging, however, in part because of the com-
plexity and variability of sign production and the
fact that information expressed across the relevant
channels may differ in spatio-temporal scale. For
example, grammatical information conveyed non-
manually by facial expressions and head gestures
may extend over phrasal domains, i.e., it may oc-
cur over a scope that includes more than one sign.
In this paper, we focus on the recognition of in-
dividual signs—both isolated, citation-form signs

and signs pre-segmented from continuous sign-
ing. This is a critical step towards recognition of
signs directly from sentences. Sign production in
continuous signing differs somewhat from produc-
tion of citation-form signs (Neidle, 2023), so it is
particularly significant that we are able to achieve a
high degree of success also for recognition of pre-
segmented signs trained on the combined dataset.
One major challenge is the existence of both
inter- and intra-signer variations in sign produc-
tion. Another significant challenge results from
the fact that different classes of signs (e.g., lexi-
cal signs, fingerspelled signs, and classifiers) have
significantly different internal structures. Address-
ing these challenges requires extensive video
datasets with diverse signers and consistent gloss
labeling of signs, to train computational models
effectively. We utilize multiple datasets shared
on the Web by the American Sign Language
Linguistic Research Project (ASLLRP) (Neidle
et al., 2022b)—specifically, their collections of
isolated, citation-form signs (ASLLVD (Neidle
and Metaxas, 2023b), DSP (Neidle and Metaxas,
2023c), and RIT (Neidle and Metaxas, 2023e)),
and of signs pre-segmented from continuous
signing based on linguistic annotations that in-
clude information about the linguistic start and end
points of these signs within sentences (ASLLRP
Sentences (Neidle and Metaxas, 2023a) and DSP
Sentences (Neidle and Metaxas, 2023d))—as well
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isolated sign data from WLASL (Li et al., 2020),
with annotations provided by ASLLRP to ensure
consistent labeling (Neidle et al., 2022a; Neidle
and Ballard, 2022). Taken together, this collec-
tion includes 21,083 videos with over 2,000 dis-
tinct signs from 119 signers, with consistent gloss
labeling and a focus on lexical signs. This collec-
tion, which will be referred to in this paper as the
”ASLLRP Individual Sign Collection,” forms the ba-
sis for our experiments to advance sign recogni-
tion using deep learning techniques.
Prior to the advent of deep learning methods, tra-
ditional machine learning methods such as Hid-
den Markov Models (HMMs) and Conditional Ran-
dom Fields (CRFs) were employed to capture the
spatio-temporal aspects of sign language (Lafferty
et al., 2001; Grobel and Assan, 1997; Dilsizian
et al., 2014). Recent advances in deep learning,
including Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and Long
Short-Term Memory networks (LSTMs) (Hochre-
iter and Schmidhuber, 1997), have opened new
avenues towards the automated recognition of
signs from large vocabularies without the man-
ual identification of features in the video. How-
ever, several challenges remain. For example:
(1) Many of the available video resources have
poor spatio-temporal resolution; (2) There are
many different types of signs, with different inter-
nal composition, and some types, such as classi-
fier constructions (which incorporate some degree
of iconicity) do not constitute a fixed vocabulary;
(3) The size of the data is relatively small, com-
pared to spoken-language datasets; and (4) There
is no 1-1 correspondence between ASL signs and
English words, and no agreed-upon convention for
providing English-based gloss labels to uniquely
identify ASL signs. In this paper, we present re-
sults for recognition of individual ASL lexical signs,
using the largest-to-date dataset that includes both
isolated signs and signs pre-segmented from con-
tinuous signing. For more precise recognition, we
have also developed a new approach to detect
the beginning and end of an isolated, citation-form
sign within a video clip.

2. Overview of our Approach
To achieve accurate sign recognition from video,
we propose a deep learning approach based on
skeletons. This method involves detecting start
and end frames of the signs, and it leverages pa-
rameters from the skeleton data. Using a bidirec-
tional learning framework within a Graph Convo-
lutional Network (GCN) architecture, our method
achieves notable accuracy on the ASLLRP Indi-
vidual Sign Collection and WLASL data.
To improve sign recognition accuracy for the set
of isolated signs, a Gating module designed to

evaluate temporal weights has been embedded
to enable the network to focus on the significant
frames in the video clips, while avoiding frames
that contain blurring or other artifacts often present
in videos. To further enhance the feature ex-
traction model, we designed an auxiliary multi-
modal branch network for temporal action local-
ization based on an encoder and transformers.
With training based on linguistic annotations of
start and end frames in the ASLLVD and DSP iso-
lated sign datasets, the auxiliary branch utilizes
spatio-temporal features extracted by the GCN
and the encoded handshape information, to detect
the start and end points of isolated signs. The re-
sulting improvements in sign recognition accuracy
are shown in Section 5.3.3.

3. Related Work
Before the advent of deep learning techniques,
sign language recognition research relied primar-
ily on handcrafted features, such as the posi-
tioning and movement of hands relative to spe-
cific body parts (Tornay et al., 2020; Cooper
et al., 2012; Badhe and Kulkarni, 2015; Xiao-
han Nie et al., 2015), combined with standard
classifiers like Support Vector Machines (SVMs),
k-Nearest Neighbors (kNNs), Conditional Ran-
dom Fields (CRFs), and Hidden Markov Models
(HMMs) (Memiş and Albayrak, 2013; Dardas and
Georganas, 2011; Yang, 2010; Metaxas et al.,
2018; Tornay et al., 2020). However, these hand-
crafted features and underlying Gaussian distri-
bution assumptions limited the systems’ capabil-
ities for generalization and scalability. Recently,
deep neural network methods have made break-
throughs in computer vision tasks, such as action
and gesture recognition; these methods have also
been applied to sign language recognition, a more
difficult problem given the complexity of linguistic
structure (Rastgoo et al., 2021; Jiang et al., 2021).
Some recent research has used transfer learn-
ing methods for isolated sign recognition, since
available sign language datasets have vocabular-
ies that are small compared to those of general-
purpose human motion databases like Kinet-
ics400 (Carreira and Zisserman, 2017). Such ap-
proaches are discussed by Sandoval-Castañeda
et al. (2023), who attained best results using
a visual transformer pretrained first on human
action videos in Kinetics400, and then on Ope-
nASL (Shi et al., 2022) videos (following Wei et
al. (2022)). They fine-tuned on the WLASL (Li
et al., 2020) dataset—with modified glossing (as
in Dafnis et al., 2022b; Neidle et al., 2022a; Neidle
and Ballard, 2022). They also leveraged phono-
logical features extracted from ASL-LEX 2.0 (Sev-
cikova Sehyr et al., 2021), to ”better characterize
video models and pre-training tasks.” See further
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discussion in Section 5.4.

3.1. RGB-based Approaches

In sign recognition, RGB-based approaches have
undergone a significant evolution with the rise
of deep learning. Initially, these methods fo-
cused on extracting spatial features from RGB
frames using traditional image processing tech-
niques. The introduction of Convolutional Neural
Networks (CNNs) marked a significant advance,
allowing for more efficient and nuanced extraction
of spatial features directly from RGB data.
Pioneering work by Krizhevsky et al. (2012) and
Simonyan and Zisserman (2014) showcased the
effectiveness of CNNs in automated image fea-
ture extraction (Krizhevsky et al., 2012; Simonyan
and Zisserman, 2014), laying the groundwork for
applying these networks to sign language recog-
nition. These CNN models are adept at analyz-
ing shapes, movements, and orientations of hands
and body parts, critical for sign recognition. How-
ever, the challenge in sign recognition extends be-
yond spatial to temporal feature extraction. This
led to the integration of CNNs with Recurrent Neu-
ral Networks (RNNs), especially Long Short-Term
Memory (LSTM) networks, known for their ability
to capture temporal dynamics in sequences, as
described by Hochreiter and Schmidhuber (1997).
Further advances were achieved with 3DConvolu-
tional Neural Networks (3D-CNNs), which, as ex-
plored by Ji et al. (2013), extract spatio-temporal
features from video sequences, offering a more
holistic approach to gesture recognition. More
recent studies have investigated use of attention
mechanisms, particularly in Transformer models
(Vaswani et al., 2017), for sign recognition. These
mechanisms focus on specific segments of video
frames, enhancing recognition accuracy by high-
lighting critical sign language features.
Despite these technological advances, RGB-
based methods still face challenges, in part
because of sensitivity to lighting conditions,
foreground-background complexities, and possi-
ble lack of focus on the important parts of the hu-
man body. This translates to an increased need
for training data, which are unavailable in real-
world settings. Our model-based approach aims
to overcome these limitations, enhancing the ro-
bustness and applicability of sign language recog-
nition systems in various real-world settings.

3.2. Skeleton-based Approaches

Skeleton-based approaches for action and sign
language recognition have significantly evolved,
focusing on extracting and analyzing body key-
points or skeleton graphs. Facilitated by ad-
vanced human pose estimation technologies, this

methodology prioritizes essential movement fea-
tures while excluding irrelevant background noise.
Initial research utilized Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks
(RNNs) to capture temporal aspects of actions
(Soo Kim and Reiter, 2017; Liu et al., 2017). How-
ever, thesemodels struggled with encoding spatial
and temporal interactions between keypoints.
Addressing these limitations, Yan et al. (2018)
introduced the Spatial Temporal Graph Convolu-
tional Network (ST-GCN), showcasing the poten-
tial of Graph Convolutional Networks (GCNs) in
learning skeleton dynamics. Despite this innova-
tion, ST-GCNs, focusing on direct joint connec-
tions, overlooked critical indirect keypoint interac-
tions, which are essential for comprehensive sign
recognition. Efforts to surmount this challenge
included Li et al.’s (2019a) exploration of latent
connections and Shi et al.’s (2019b; 2020) multi-
stream approaches that enhanced action recog-
nition by integrating keypoints, bones, and their
motion. Additionally, de Amorim et al. (2019)
adapted the ST-GCN framework for sign recog-
nition, achieving approximately 60% accuracy in
recognizing a limited vocabulary of signs.
Further advances are exemplified by Jiang et al.
2021, which implemented a pose-based GCN with
additional modalities like RGB frames and opti-
cal flow, resulting in significant progress in iso-
lated sign recognition. Dafnis et al. (2022a) ex-
tended these approaches by incorporating forward
and backward data streams with keypoints and
bones acceleration, significantly improving recog-
nition accuracy on the WLASL dataset.

4. Methodology

The human body can be represented as a graph
with nodes consisting of the face, upper body,
arms, and hands. For sign recognition, all these
parts are important and need to be used. There-
fore, our approach extracts this information from
video based on the following three components:
(1) a spatio-temporal Graph Convolutional Net-
work (GCN) architecture, for detailed modeling of
skeleton keypoints from a signer’s video; (2) a
late-ensemble technique to synergistically com-
bine, in the GCN, the forward and backward video
streams, for improved sign recognition; and (3) an
Encoder and Transformer-based approach, for
precise temporal motion localization of the begin-
ning and end frames of a sign.

4.1. Spatio-temporal Graph
Convolutional Network

Our goal is to capture and analyze the complex
spatio-temporal movement dynamics of the arms



411

and hands during signing. To achieve this, our
method first extracts keypoints and bones from the
torso, arms, and hands using Alphapose, as de-
veloped by Fang et al. (2017). This method is
capable of estimating 136 keypoints for the entire
body from single RGB images. Using this model,
we constructed a skeletal graph consisting of 27
nodes. These keypoints and respective bones
are integrated within a GCN using spatio-temporal
graph convolutions. Our model’s spatial convolu-
tions are computed based on the spatial partition-
ing strategy described in the ST-GCN framework
by Yan et al. (2018). The integration of spatio-
temporal graph convolutions enables our model
not only to capture the spatial relationships be-
tween keypoints and bones, but also to estimate
their temporal evolution over time. This dual ca-
pability showcases the unique advantage of the
ST-GCN framework in capturing both spatial intri-
cacies and temporal variations. The spatial formu-
lation of our GCN model is delineated as follows:

xout = Λ− 1
2 (I +A)Λ− 1

2xinW, (1)

where xin in the GCN input consists of keypoints,
bones, and other related information, while xout de-
notes the output feature matrix derived from the
graph convolution process. Matrix A models the
intra-body connections (bones), while the identity
matrix I models self-connections (keypoints). Λ
is a diagonal matrix derived from (I + A), and W
is the ST-GCNweight matrix (2018). For purposes
of our proposed application, the spatial graph con-
volutions are modeled using 2D convolution oper-
ations; the result, xinW , is then multiplied by the
normalized term Λ− 1

2 (I + A)Λ− 1
2 to compute xout

.The right of Figure 1 shows the ST-GCN network
architecture. Notably, a Gating module is ap-
pended to the end of the network, specifically fo-
cusing on important frames in isolated sign videos.
The middle of Figure 1 illustrates the architecture
of each of the GCN Blocks. It is composed of a
Decoupled Spatial GC, STC Attention, a Tempo-
ral GC, and a series of Batch Normalization (BN)
layers along with ReLU activation functions. The
entire GCN Block includes a tail concatenation in
the form of a residual structure to preserve low-
level feature information. Drop Graphs are used
in certain locations to prevent overfitting. The left
part of Figure 1 provides details of the STC Atten-
tion Block, which consists of three attention mod-
ules: Spatial Attention, Temporal Attention, and
Channel Attention, each with a tail concatenation
to model the residual structure.

The Gating module in our approach is designed to
identify and remove frames that are not useful for
recognizing the sign, such as those with blurring
or extraneous movements. We achieve this by

Figure 1: The ST-GCN Network Architecture

designing a multilayer convolution-based tempo-
ral attention module, to identify and remove those
non-informative frames, as shown at the top of Fig-
ure 2. In this module, the skeleton feature dimen-
sion computed from the previous layers is reduced
using a 3-layer stack of convolutions; a sequence
of weights related to the temporal dimension is
obtained by a temperature softmax layer (Hinton
et al., 2015). The skeleton features computed from
the previous layers are thenmultiplied with the out-
put of the softmax layer in the Gating Block. Using
this Gating Block, the network focuses, in the case
of isolated signs, on those frames that carry valid
information for sign recognition.

Figure 2: Gating Module Architecture

4.2. Bidirectional Stream GCN
Drawing inspiration from the multi-stream ap-
proach used in Shi et al. 2020, our methodol-
ogy incorporates both forward and backward di-
rections of video frame sequences for two types of
data inputs: the location coordinates of the skele-
ton keypoints, and the bone vectors. To repre-
sent the bone vectors in our graph, we designate
the nose as the root keypoint. Subsequent bone
vectors are computed by tracing the connections
between consecutive skeletal keypoints, starting
from this root. As shown in Figure 3, the temporal
data from the skeleton are processed with respect
to two types of input: joints and bones; these are
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then input into the forward stream. Subsequently,
the temporal dimension is reversed and input into
the backward stream. Then an ensemble from the
predictions of the four models gives rise to a final
prediction for the sign, as shown in Figure 3.

Figure 3: Bidirectional Stream GCN Architecture

4.2.1. Score Fusion

As mentioned previously, our proposed framework
uses two types of information streams, specifically
joints and bones. We use their forward and back-
ward directions to arrive at an improved consoli-
dated prediction. We first integrate the prediction
scores from these streams within each direction
by using the softmax scores from each stream, as
described by Shi et al. (2019a; 2019b; 2020); Cai
et al. (2021); and Dafnis et al. (2022a), to calcu-
late an optimized weighted sum of the scores per-
tinent to each direction. This process is then repli-
cated for the fusion of prediction softmax scores
from both directions; an optimized weighted sum-
mation is computed to predict the sign labels.

4.2.2. Temporal Action Localization

To locate the start and end frames of isolated signs
and thereby improve sign recognition, we design
an auxiliary multimodal branch network. We train,
using, in the loss function, linguistic annotations
(which include the start and end frames of signs,
and the handshapes in those frames), to learn
to identify the start and end frames of a given
isolated sign. As shown in Figure 4, the GCN
network architecture is used to extract spatio-
temporal features. Additionally, up to four types of
handshapes for each sign video—Dominant start
handshape, Dominant end handshape (and, for
2-handed signs, also Non-dominant start hand-
shape and Non-dominant end handshape)—and
the video are input into the network via a cus-
tom encoder. These are then processed through
a transformer layer to improve the temporal posi-
tional dependence and interpretability of the hand-

shapes. The extracted features are concatenated
with the features extracted by the GCN using a
Temperature Softmax to predict the start and end
frames of the isolated sign.

Figure 4: Auxiliary Multimodal Branch Architecture
for Action Localization

5. Experiments
5.1. Data Preprocessing
Following the dataset partitioning strategy outlined
in Dafnis et al. 2022b and Li et al. 2020, we di-
vided the dataset into training, validation, and test-
ing subsets. The division was carried out in a ra-
tio of approximately 4:1:1 for each sign category;
hence we further restrict these datasets to signs
with at least 6 examples. For assessing the effi-
cacy of sign recognition, we employed an evalu-
ation metric based on the mean Top-K accuracy
scores, where K is set to 1 and 5, applied across
all instances of the signs.
We have used different combinations of the
datasets for different tasks.

• To recognize isolated and pre-segmented
sign videos, we combined video clips from
all six datasets as follows: the isolated sign
collections (WLASL (19,666 video clips), RIT
(12,197 video clips), ASLLVD (9,746 video
clips), DSP (2,935 video clips)); and the
pre-segmented sign collections: ASLLRP
(17,222 video clips) and DSP Sentences
(hereafter referred to as DSP_S, 3,136 video
clips); totaling 64,902 video clips. After im-
posing a requirement of at least 6 available
example video clips per sign, we arrived at a
total of 56,681 distinct video clips correspond-
ing to 2,377 distinct signs.

• To recognize isolated sign videos, the four iso-
lated sign datasets just listed were used, with
a total of 44,544 video clips. With the same
restriction on example count, this yielded
41,597 distinct video clips corresponding to
2,295 distinct signs. We use the whole video
clip, without estimating the beginning and the
end frames of the sign.
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• To train for recognition of the start and end
frames of isolated signs, we merged the two
isolated datasets for which we had ground
truth annotations for the start and end frames
of signs—ASLLVD and DSP—with a total of
12,681 distinct video clips corresponding to
748 distinct signs.

The process of graph construction begins with
the normalization of keypoint coordinates within
the range of [-1,1]. We then apply a variety of
data augmentation techniques, including random
sampling, mirroring, rotation, scaling, and shifting.
Considering the varying lengths of the videos, we
standardize all videos to a uniform length of 200
frames. For videos exceeding this frame count,
only the initial 200 frames are used. This trun-
cation does not result in any significant loss of
information because of the nature and length of
the signs in our datasets. Conversely, for videos
shorter than 200 frames, we pad zeros to the end
of the temporal dimension to fill up to 200 frames.

5.2. Training Details
We employ Pytorch version 1.7.0 alongside a
NVIDIA Quadro RTX8000 graphics card for all
computational operations. The Graph Convolu-
tional Network (GCN) models, encompassing both
forward and backward streams, are trained under
specific parameter settings. The training uses the
Cross-Entropy loss function, with a finely-tuned
weight decay parameter set to 1 × 10−4. For
optimization, Stochastic Gradient Descent (SGD)
with NesterovMomentumwas the chosenmethod,
where the momentum is maintained at 0.9. We ini-
tiated the learning rate at 0.1, reducing it by a fac-
tor of 10 at the 100th and 150th epoch milestones,
culminating the training at 200 epochs.
With respect to batch processing, the batch size
is uniformly set at 64 across both the training and
testing stages. Each training iteration involves the
random selection of 64 videos as inputs, ensur-
ing a varied and comprehensive exposure of the
dataset in each epoch. This strategy is pivotal in
incorporating every video in the dataset into the
training process, thus enhancing the robustness
and diversity of the model training.

5.3. Results
5.3.1. GCN Performance
The sign recognition accuracy achieved using the
combination of methods described in this paper is
presented in Tables 1, 2, and 3.

5.3.2. Improvements in Performance
Resulting from Use of Gating & Fusion

The score fusion of the forward and backward
streams enhances overall sign recognition, as
does the use of Gating for isolated sign video clips.

WLASL ASLLVD RIT DSP Comb.
Top-1 79.59% 85.53% 75.98% 80.73% 79.98%
Top-5 95.32% 96.57% 93.22% 95.70% 95.04%

Table 1: Recognition accuracy for isolated signs
trained on the combined isolated sign collections

WLASL ASLLVD RIT DSP Comb.
Top-1 81.32% 86.70% 75.31% 79.97% 80.76%
Top-5 95.41% 96.95% 93.38% 95.28% 95.18%

Table 2: Recognition of isolated signs trained on
the combined isolated & pre-segmented datasets

ASLLRP DSP_S Comb.
Top-1 81.58% 73.86% 80.39%
Top-5 93.39% 90.62% 92.96%

Table 3: Recognition of pre-segmented signs
trained on the combined isolated & pre-segmented
datasets

This is shown in Table 4. The Bidirectional model’s
Top-1 and Top-5 performance using forward and
backward streams of joints and bones is presented
in that table. The first four columns show recog-
nition of isolated signs—based on training on the
combined isolated sign collections—with and with-
out Gating. The last two columns show results
for recognition of signs from (and trained on) the
combined isolated and pre-segmented datasets.
It should be noted that the Gating module is not
needed for our pre-segmented sign videos, since
the start and end frames of these videos had been
determined based on linguistic annotations of the
start and end points of these signs.

5.3.3. Temporal Action Localization

In this section, we report (1) the accuracy of
identification of the start and end frames of signs
in isolated video clips, and then (2) the resulting
improvement in sign recognition accuracy.

1. Accuracy of Temporal Action Localization
To validate the accuracy of detection of start
and end frames, we use the ASLLVD and DSP
datasets—for which we have linguistic annota-
tions of the start and end frames for signs. Table
5 presents the Mean Absolute Deviation (MAD),
computed separately for the start and end frames
as follows:

MADstart =
1

N

N∑
i=1

|psi − gsi | (2)

MADend =
1

N

N∑
i=1

|pei − gei | (3)

where, psi and pei are the predicted start and end
frames for the i-th segment, while gsi and gei are
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Isolated (no Gating) Isolated (with Gating) Isolated and Pre-segmented

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Forward stream of joints 74.04% 93.06% 74.82% 93.26% 75.59% 92.15%
Forward stream of bones 74.17% 92.63% 75.33% 93.12% 75.07% 92.52%
Backward stream of joints 73.36% 91.82% 73.96% 91.81% 74.02% 91.40%
Backward stream of bones 72.52% 92.44% 75.09% 92.71% 75.49% 92.28%
Fusion 79.24% 94.89% 79.98% 95.04% 80.61% 94.96%

Table 4: Recognition performance for forward and backward streams, where the isolated signs shown
in the first 4 columns had been trained on the combined isolated sign data, and the combined isolated
and pre-segmented signs in the final 2 columns had been trained on that total dataset

the annotated start and end frames for the i-th
examples, and N is the total number of examples.

This is a measure of the deviation between the an-
notations and predictions for start and end frames
of signs in videos with a frame rate of about 30 fps.
However, it should be noted that in some cases,
there is minimal difference in the images of the an-
notated and predicted frames; and in some other
cases, the prediction may actually be more accu-
rate than the annotation.

start frame end frame
ASLLVD 3.03 3.00
DSP 3.93 5.33
Comb. 3.24 3.56

Table 5: Mean Absolute Deviation between anno-
tated and predicted start and end frames

2. Resulting Improvement in Sign Recognition
When our auxiliary multimodal branch network
is used to segment signs in our isolated sign
datasets, this results in some improvement in sign
recognition rates. All video clips were subjected to
segmentation processing prior to being input into
the GCN model. Table 6 presents the recognition
results for the isolated sign datasets, trained on
the combined isolated sign datasets, by the GCN
modelWITH (row [2]) andWITHOUT (row [1]) prior
segmentation.

WLASL ASLLVD RIT DSP Comb.
[1] Top-1 79.41% 85.35% 75.72% 80.62% 79.78%

Top-5 95.15% 96.53% 93.11% 95.58% 94.92%

[2] Top-1 79.59% 85.53% 75.98% 80.73% 79.98%
Top-5 95.32% 96.57% 93.22% 95.70% 95.04%

Table 6: Sign recognition accuracy from isolated
sign video clips: rows in [1] WITHOUT – and rows
in [2] WITH – prior segmentation based on de-
tected sign start and end frames

Although sign segmentation results directly in only
a very slight improvement, there are additional
ways in which we plan to leverage the ability to

identify the start and end frames of lexical signs,
specifically with respect to explicit detection of
handshapes. As demonstrated by Dilsizian et
al. (2014), e.g., it is possible to exploit the lin-
guistic dependencies that hold between start and
end handshapes and between the handshapes on
the two hands of lexical signs, to improve hand-
shape recognition, which is an important compo-
nent of sign recognition. They showed that incor-
poration of statistical information about such hand-
shape dependencies, which can be derived from
our annotated corpora, results in significant im-
provements in isolated sign recognition for lexical
signs. This is planned for future research.

5.4. Comparisons of Overall Isolated
Sign Recognition Accuracy

Table 7 compares the accuracy of our proposed
model against state-of-the-art methods for recog-
nition of signs from the WLASL dataset (Li et al.,
2020). The overview at the top is taken from
Xiao et al. (2023), Table 2 ”Recognition per-
formance comparison for different learning meth-
ods in WLASL dataset;” it shows results from
[1] (Vinyals et al., 2016); [2] (Snell et al., 2017);
[3] (Sung et al., 2018); [4] (Ravi and Larochelle,
2016); [5] (Mishra et al., 2017); [6] (Finn et al.,
2017); [7] (Cai et al., 2018); [8] (Gidaris and
Komodakis, 2018); [9] (Gordon et al., 2018);
[10] (Qiao et al., 2018); [11] (Gidaris and Ko-
modakis, 2019); [12] (Garcia and Bruna, 2017);
[13] (Li et al., 2019b); [14] (Liu et al., 2018); and
their own [15] (Xiao et al.). These studies used
the WLASL dataset, which contains 21,083 video
clips with about about 2,000 ASL signs.
As shown at the bottom of the table, our model se-
cured the highest recognition rates for both Top-1
and Top-5. However, it should be noted that Daf-
nis et al. (2022b) and our own research used a
partial but substantial subset of the WLASL data,
consisting of 19,672 video examples, reglossed
to ensure consistency of labeling (both internal to
the WLASL dataset and across our other datasets
(Neidle et al., 2022a; Neidle and Ballard, 2022)).
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OVERVIEW from Xiao et al. (2023)
Method Top-1 Top-5

Metric-based
Matching Nets [1] 41.22% 50.26%
Prototypical Nets [2] 47.61% 65.13%
Relation Net [3] 45.26% 63.21%
Meta-based
MetaLSTM [4] 41.56% 60.38%
SNAIL [5] 42.18% 53.77%
MAML [6] 46.21% 59.15%
MMNet [7] 52.13% 65.06%
Dynamic-Net [8] 54.21% 70.21%
Generation-based
VERSA [9] 49.11% 61.19%
Param Predict [10] 55.36% 73.28%
wDAE [11] 55.05% 70.12%
Graph-based
GNN [12] 52.02% 63.89%
CovaMNet [13] 51.18% 66.39%
TPN [14] 52.15% 65.22%
SL-GCN [15] 56.15% 73.26%

COMPARE WITH
Dafnis et al. 2022b 77.43% 94.54%
Ours 79.59% 95.32%

Table 7: Performance on the WLASL dataset 
(which contains isolated signs)

Sandoval-Castañeda et al. (2023) also used this 
subset of the WLASL dataset, with the same re-
vised glosses. Using a very different approach 
(summarized in Section 3), they obtained similar 
results, with 79.02 % Top-1 recognition accuracy; 
Top-5 accuracy was not reported.
Table 8 compares performance of our model, with 
training on our isolated sign collection, and that 
of Dafnis et al. (2022b) on the same combined 
WLASL and ASLLVD dataset. We attained an im-
provement of 2.86% in Top-1 accuracy.

Combined WLASL & ASLLVD
Top-1 Top-5

Dafnis et al. 2022b 78.70% 94.79%
Ours 81.56% 95.73%

Table 8: Performance on the same combined
WLASL & ASLLVD datasets

6. Conclusions
We introduce here a comprehensive framework
for recognition of individual ASL signs. Although
most prior related research has focused on iso-
lated, citation-form signs, we successfully extend
our recognition to include signs pre-segmented
from continuous signing. Our method relies on

spatio-temporal GCNs, enhanced by bidirectional
stream processing, and, for isolated signs, intro-
duction of a Gating module and an auxiliary multi-
modal branch for temporal action localization. Our
methodology addressesmany of the inherent chal-
lenges of sign language recognition.
The application of our framework to an extensive
collection of different datasets results in a high de-
gree of recognition accuracy. For present pur-
poses, we have used only a limited set of infor-
mation from facial expressions (i.e., skeleton key-
points), to establish a baseline. In future work
we will explore adding more complete information
from facial expressions, as this has been shown
to improve sign recognition accuracy (von Agris
et al., 2008).
We achieve state-of-the-art performance across
various metrics, with overall sign recognition accu-
racy of 80.8% Top-1 and 95.2% Top-5 for citation-
form signs, and 80.4% Top-1 and 93.0% Top-5
for signs pre-segmented from continuous sign-
ing, when using the combined isolated and pre-
segmented sign datasets for training.
Performance enhancements are achieved through
use of a bidirectional approach to harness the
full temporal context of sign videos; and, for iso-
lated sign clips, of both a Gating module, to filter
out non-informative frames and an auxiliary mul-
timodal branch for temporal action localization, to
identify the start and end frames of signs. Tempo-
ral action localization is a critical step towards ASL
recognition from fluent signing.
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