
Proceedings of the 11th Workshop on the Representation and Processing of Sign Languages, pages 77–85
25 May 2024. © 2024 ELRA Language Resources Association: CC BY-NC 4.0

77

A software editor for the AZVD graphical Sign Language
representation system

Michael Filhol , Thomas von Ascheberg
CNRS, LISN, Université Paris–Saclay

Orsay, France
michael.filhol@cnrs.fr, ascheberg@lisn.fr

Abstract
Based on real spontaneous productions by signers, AZVD is a graphical Sign Language representation system
designed to maximise its potential for adoption by the signing community. Additionally, it is kept entirely synthesisable
by construction, i.e. any AZVD content determines a signed output, which can be rendered through an avatar for
example. This paper reports on the implementation of a software prototype developed to support AZVD editing, and
the current extent of AZVD graphics integration. The point is to allow users to experience and discuss the AZVD
approach, and ultimately assess it as a standardised graphical form for Sign Language representation.

Keywords: Sign Language, graphical form, writing system, AZVD

1. Introduction

Languages that have a written form are often
equipped with software assisting in various types
of processing, the first of which being text editing.
In contrast, sign languages (SLs) have no written
form. While video is often used as a default substi-
tute, it cannot be considered equivalent: its storage
is heavy, and it is comparatively laborious to edit,
index or query. Moreover, interpreting any of its
contents is subject to real time, whereas reading
allows to scan and capture multiple parts of the
input freely. It also prevents anonymity, which is a
significant limitation when considering information
and opinion circulation on the internet for example.

First we show a few systems proposed and tech-
niques used by SL users to work around this prob-
lem. Then we present the recent “AZee Verbalising
Diagram” (AZVD) approach to graphical SL repre-
sentation, designed to be synthesisable by signing
avatars and maximise adoptability by the users. We
follow by describing a software editing prototype
that we developed to test the system and ultimately
evaluate it.

2. Verbalising diagrams

To work around or address the lack of adopted
SL writing system, some scripts were developed,
three of them shown in fig. 1. Some were created
for scripting purposes, for linguistic annotation or
computer synthesis. Some have claimed a writing
system status or potential. But none is adopted by
the wide communities of language users (Grushkin,
2017; Kato, 2008).

And yet, there are clues that the need for some
form of writing exists. Deaf people and translators

(a) (b)

(c)

(a) Stokoe’s notation (Stokoe et al., 1965)
(b) Sign Writing (Sutton, 2014)

(c) HamNoSys (Prillwitz et al., 1989; Hanke, 2004)

Figure 1: Examples of graphical systems designed
for sign languages

also take notes or prepare SL discourses by draw-
ing diagrams that somehow capture their structure,
meaning or content in some more or less readable
form (Athané, 2015). These diagrams exhibit var-
ious arrangements of icons, text, drawings, lines
and arrows. An example of such “verbalising dia-
gram” (VD), from the corpus built by Filhol (2020a),
is given in fig. 2. It represents an LSF production
of 56 s, signed after the diagram was drawn, with
the following meaning:

Atoms are very small particles, composed
of a nucleus and electrons (elementary
negative electric charges). Atoms are
electrically neutral because their nucleus
holds as many positive charges as elec-
trons do negative charges. Groups of
atoms are called molecules. Ions are
atoms or molecules with electrons gained
or lost from the action of neighbouring
atoms. Ions are therefore electrically
charged.

https://orcid.org/0000-0002-3389-0412


78

Figure 2: Example of verbalising diagram

VDs are spontaneous productions in the sense
that the contained graphics follow no predefined set
of rules. This usually makes parts of them readable
only by the original author. In other words VDs do
not strictly determine the signed form to produce
to read them out, so they cannot be viewed as
synthesisable input to, say, signing avatars. This is
in contrast with a shared property of standardised
writing systems, which we consider powerful as
content becomes exchangeable in an anonymous,
light-weight and editable fashion.

However, after collecting a corpus of VDs from
French Sign Language (LSF) users, regularities
have been reported both across diagrams and
across authors (Filhol, 2020a), to the point where
some VD layouts or icons with an identifiable mean-
ing have a systematic signed equivalent when read
out by their author. An example is given in fig. 3,
where the same ‘=’ symbol is consistently used
between a left- and a right-hand side—say L and
R—to mean that R is a state or property of L. This
is almost systematically signed with L and R in
this order with a form of assertion. Another, more
trivial example is also visible in the same figure:
the ‘?’ symbols here consistently stand for the sign
commonly glossed “QUOI” (French for “what”).

The spontaneity of the VD representations and
the presence of regularities already in the produc-
tions led us to propose that a standardised graph-

(a) (b)

(c) (d)

(a) Fidel Castro’s health = good (F. C. is well)
(b) lion = nice (the lion is nice)

(c) cancer = ‘?’ (what is cancer?)
(d) life = ‘?’ (what is life?)

Figure 3: VD exemplars using the “equal” sign (with
meaning in context)

ical script inspired by them could be experienced
as a more natural way of representing signed con-
tent, hence increase its adoptability (Filhol, 2020b).
Such a script would include the regular VD lay-
outs when observed, while completing the set for
language coverage in a way that it remains synthe-
sisable.

The recent AZVD proposition is a first attempt
at satisfying these two features. The next section
presents it in further depth.

3. AZVD

AZVD is a formal graphical system combining 2D
symbols, borrowing from the observed sponta-
neous ones like that in fig. 3. Similarly to the mathe-
matical script in which atomic tokens (e.g. numbers,
variable names) and operators (e.g. unary ‘!’, bi-
nary ‘+’, ternary ‘Σ’) recursively combine to grow
formulae of arbitrary size, AZVD allows to build
recursive diagrams to represent SL utterances of
arbitrary size. To make diagrams synthesisable, ev-
ery symbol or layout defined in the graphical system
is mapped to a signed output in a given language,
making use of the nested arguments as appropri-
ate. The specification of this output is done with
AZee expressions or templates.

AZee is a formal SL representation system used
for synthesis with avatars. It defines the notion of
production rule, i.e. a strong association between a
meaning and an articulated form in a SL. The set of
production rules for a language is called its produc-
tion set. AZee has already proven efficient in terms
of language coverage (Challant and Filhol, 2022)
and feasibility and quality of synthesis (Mcdonald
and Filhol, 2021) in LSF.

Some of the regular VD patterns directly corre-
spond to LSF production rules. For example the
semantic relationship between elements L and R
carried by the “equal sign” layout (fig. 3) is exactly
the meaning carried by AZee expression info-
about(topic=L, info=R). An AZVD map-



79

(a) (b)

(a) info-about(topic, info)
(b) instance-of(type, elt)

Figure 4: AZVD layouts with variable sections, and
their AZee expression mappings

(a) (b)

Figure 5: Two AZVD layout variants mapping to
in-context(context, process)

ping is therefore warranted between the layout in
fig. 4a, with variable parts L and R, and that AZee
expression with the same variable parts. Others
can involve more elaborate AZee constructions.

More layouts are then added for AZee coverage
when no sufficient spontaneous regularity was ob-
served in VD. This applies to the set of rules sup-
porting the basic sign vocabulary (every sign needs
an icon), but also the combining, structuring rules.
For example, no stable VD layout was established
for instance-of1, so we created a layout for it,
shown in fig. 4b.

AZVD also allows to map a similar AZee output
from multiple graphical layouts, as was observed
in VDs. For example, straight separation bars cor-
responding to the meaning and form of AZee rule
in-context2 are commonplace in VDs (one hor-
izontal instance is visible in fig. 2). They can be
oriented in different ways, hence the definition of
two variants of the same mapping (fig. 5).

Recursively then, any full AZVD combination de-
termines a single AZee expression output. And
since any AZee expression determines a single SL
production as a result, AZVD guarantees that ev-
ery diagram ultimately determines a single read-out,
making it synthesisable in a testable manner.

For example, fig. 6 shows the AZVD for the full
2B-JP entry of the 40 brèves corpus3 (Filhol and
Challant, 2022), whose signed production lasts
27 seconds and meaning is the following:

1Meaning of instance-of(type, elt): elt, under-
stood as an instance of type.

2Meaning of in-context(context, process):
event or state process, which happened in situation
context or after context has happened.

3Each of the 120 entries consists in a video LSF trans-
lation for a French news item, and the AZee expres-
sion that represents it. https://www.ortolang.fr/
market/corpora/40-breves

Figure 6: Example of AZVD

The four French tourists who were kid-
napped 15 days in Yemen arrived on
Wednesday, shortly before 7:30am, at
Roissy airport, met by Minister of Foreign
Affairs Philippe Douste-Blazy.

The AZVD in the figure exactly maps to the refer-
ence AZee expression, which in turn evaluates to a
timeline specifying the necessary articulations for
an avatar to render the same utterance.

AZVD is therefore a graphical system that is both
synthesisable in principle and built with a method
intended to maximise its adoptability. Testing syn-
thesisability is verifying that an avatar animation
can be rendered automatically from the expres-
sions generated by composed graphical input, i.e.
essentially AZee synthesis. To test adoptability, we
ultimately need to place the system in the hands
of users and involve the community in an iterative
evaluation and improvement loop. To allow this
process, the first step was to develop a software
editor, able to assist in drawing AZVD in a controlled
manner.

https://www.ortolang.fr/market/corpora/40-breves
https://www.ortolang.fr/market/corpora/40-breves


80

Figure 7: Screenshot of the AZVD editor: icon and
layout menu on the left; main editor canvas in the
middle; generated AZee output on the right

4. A software editor for AZVD

To enable testing of the AZVD proposition, we de-
veloped a software editor supporting the creation
and manipulation of AZVD content. As we expect
it to evolve with the AZVD system itself, we made
the two following design choices:

• develop the editor as a web application to avoid
requiring any installation or updating process
on the user end, and enable instant deploy-
ment across all users on server upgrades;

• keep AZVD-side specifications separate from
the server and load them dynamically on
browser page load, in order to allow as much
AZVD evolution as possible without changing
the core application code.

After an overview of the chosen user interface,
this section explains what the necessary AZVD
components are, and how they are specified sepa-
rately.

4.1. User interface

Inspired by the common WYSIWYG4 interfaces to
similar graphical content creation tasks, such as
Qt Designer (windowed GUI design) or Dia (2D
diagram drawing), we opted for a window layout
with a central canvas to edit the AZVD content, and
elements available in a left-hand menu to popu-
late it with through drag-and-drop operations. We
also added a right-hand output panel to display the
generated AZee expressions, as we have stated
the goal and benefit that every diagram determines
one, and one only. This output synchronously re-
acts to every change on the canvas. A screenshot
of the interface is given in fig. 7.

The top-level unit of AZVD specification is the left-
hand menu object, which must contain information
on both what to draw when inserted on the canvas
and what AZee expression to generate as output.
This is close to what has been called an “AZVD

4“what you see is what you get”

→ →

Figure 8: Switching from vertical to horizontal vari-
ant, specified in the same JSON spec file

mapping” up to here. The way to specify them for
the editor is described in the next section.

4.2. Menu entries
As introduced earlier, adding, removing or chang-
ing AZVD mappings should be possible outside
of the server implementation, whether to specify a
graphical layout, icon or AZee output. At the mo-
ment this is done by providing JSON specification
files, dynamically populating the menu on page
load according to the specified content.

Each JSON file lists at least a description of a
graphical layout (or fixed icon) and an AZee tem-
plate to output when used on the canvas. To relate
variants in the interface and pack them in a single
menu entry, we allowed several layouts to be spec-
ified together in the same spec file. For example,
both variants in fig. 5 can be specified together, in
this case both mapping to the same parameterised
AZee expression. This allows easy switching be-
tween variants of elements already on the canvas,
as illustrated in fig. 8.

This explains how menu entries are created. The
next two sections respectively deal with how to
specify graphical layouts and the corresponding
AZee output expressions.

4.3. Graphical layouts
In the general case, layouts are composed of one or
more elements, each of which can be fixed graphics
(e.g. an icon or line) or a variable part. Specification
of a graphical layout is a problem of alignment and
scaling of those contained elements. For example,
the layout of fig. 5a is a group of three elements
(two nested diagrams context and process, and a
horizontal bar between them), aligned vertically
through the centre, equally spaced, and the width
of the middle bar constrained to be a little longer
then the widest of the other two by a few points.

To do this, we first defined primitive element
types to include in a layout:

• scalable graphics, rendered as specified di-
rectly inline with standard SVG code;

• text, which is rendered as a label verbatim in



81

Figure 9: Generic element hotspots, named af-
ter horizontal and vertical positions relative to
bounding box (L=left; T=top; C=centre; R=right;
B=bottom)

Figure 10: Specification of the layout in fig. 5a

the diagram, creating its own graphical bound-
ing box;

• drop zones, which stand for the named vari-
able parts of the layout, e.g. context and
process above, to be filled for a complete
diagram—they are rendered as plain grey
boxes when empty.

Secondly, we implemented a relative positioning
system based on generic hotspots assumed for
any layout element, shown in fig. 9. Each new ele-
ment in a layout is inserted by positioning one of its
hotspots relatively to another’s, with or without an
offset expressed in absolute terms or relatively to
other elements’ sizes. Scaling or resizing elements
is also possible, on either or both axes, proportion-
ally or separately, in absolute terms or relatively to
other elements’ sizes.

Fig. 10 collects all the specifications required
for the example layout of fig. 5a. It includes two
“CT under CB” positioning constraints, which stack
and centre the elements one under the previous,
and one width scaling constraint on the horizontal
bar, expressed as a function of the other elements’
widths. This way, the width of the bar will adjust
dynamically when the content of either drop zone
is modified.

4.4. AZee output
Every layout must specify the AZee expression it
maps to, so that the AZee output panel be immedi-
ately updated with the new content when the layout
is placed on the canvas. This can be a simple case
of a fixed expression from a fixed layout, or one
with variable parts like those in figures 4 and 5.

If the layout contains variable parts supported
by drop zones, the output depends on their con-
tent, provided by further graphics filled in by the
user. The AZee output then depends on the expres-
sions that this content generates. In such case, the
output specification can refer to the AZee for the
nested content using a provided operator and the
names of the zones, just like figures 4 and 5 used
the same variable names as the labels in the corre-
sponding layouts. Empty drop zones (incomplete
diagrams) will generate a placeholder label to stand
for the missing content, and dropping any graphical
content in an empty drop zone will automatically
update the output by expanding the placeholder to
reflect the change.

5. Evaluation of current progress

The editor has reached a technically usable state,
and we are gradually providing AZVD mappings
for the AZee production set of LSF, as explained
in section 3, to populate the menu. Straight away
however, we note that graphical coverage of the
entire production set is an unreasonable target to
condition first tests on.

One reason is the size and open-endedness of
the sign vocabulary. Looking at the 40 brèves cor-
pus alone, which serves as the AZee reference for
LSF today (totals 1 hour of AZee-encoded LSF dis-
course), we find that out of the 858 distinct produc-
tion rules applied, 768 are defined with no manda-
tory arguments5. Besides, we believe that users
should be given priority to propose the icon graph-
ics, debate choices6 and possibly feed back to one
another after some practice. Therefore, the effort
to create enough individual icons to cover any sig-
nificant portion of the vocabulary appears greater
than we can afford without a dedicated team. It
would also only serve as a kick-start proposition to
be entirely reviewed anyway. But to provide enough
vocabulary for the sake of demonstration, we de-
cided to choose 5 entries of the corpus of which
to cover the vocabulary entirely, namely 1A-OC,
1B-JP, 1O-VF, 1R-JP and 2B-JP. This represents a
vocabulary set of 114 signs.

To insert signs—or indeed any signed piece of
discourse—with no graphical solution yet, we cre-
ated an alternative to AZVD mappings, namely

5This is to us the best characterisation of a
vocabulary—or lexical—unit in AZee: a signed produc-
tion that can be delivered without contextual input (a
“citation”, “canonical” form).

6For example, should it capture the meaning (promote
a logographic symbol) or the articulated form (compose
a phonographic encoding) of the represented sign? We
have already documented the fact that spontaneous pro-
ductions exhibit a logographic prevalence overall, but not
an exclusive one (Filhol, 2020b).



82

AZee boxes. An AZee box can be dropped on the
canvas instead of a regular graphical layout, and
filled with AZee code, which will directly serve as
its own mapped output. For a sign without an icon
defined, an AZee box can therefore be used, filled
with a simple named rule application, looking es-
sentially like a gloss until an icon is defined. An ex-
ample is visible at the bottom of fig. 6 (“:Philippe
Douste-Blazy”), which is a name-sign for a prior
member of the French government, for which we
thought creating an icon was unnecessary.

Vocabulary signs aside, we are left with the pro-
duction rules requiring at least an argument when
applied. In our 40 brèves count, that remainder
consists in 90 rules of the featured set:

• 12 types of pointing gestures (e.g. using index
or hand sweep);

• 20 rules representing objects referred to as
“classifiers” in the literature (e.g. prf-flat-
surface, prf-person-standing);

• 58 recursive rules of various arities (unary
rules like with-worry, binary ones like
info-about, etc.).

The 58 recursive rules are the most interesting to
cover as they are those building up the backbone
structure of the discourse expressions. They typi-
cally have higher frequencies, and constitute a set
that is much less open-ended than the sign vocab-
ulary, in other words less subject to subsequent
extensions. This is in a sense a more grammatical
set, and securing mappings for it is a lot more sta-
ble an achievement than covering any vocabulary
subset. Incidentally, and contrary to the lexical set
known to be more significantly different between
SLs, recent experiments seem to indicate that this
set may be mostly transparent across different SLs
(McDonald et al., 2024 (to be published). It is some-
thing of interest if we later want to consider AZVD
beyond its application to LSF.

We have covered all rules of that set with a work-
ing graphical layout and AZee mapping in the editor,
except:

• 5 rules related to classifier use and geomet-
ric placement in signing space (landmark-
in-place, place-object, mult-around,
mult-in-a-row, deploy-shape);

• 4 rules supporting the logic for numbers above
20 (built with multipliers and sums) and dou-
bled letters in fingerspelling—although these
rules will not require graphics because num-
bers and words to fingerspell will appear spelt
out in diagrams without being broken down
(but an extension to the AZee output gener-
ation language from these text units will be
necessary).

Figure 11: AZVD mapping for “pointage
index(target)”

^Mssp ^Lssp ^Rssp

Figure 12: Basic AZVD point layouts

Let us now consider the pointing rules. Their
signatures all resemble vocabulary signs, only they
usually require a target argument of type POINT,
and sometimes other geometric arguments, e.g.
for orientation in a plane. Accounting for such a
rule with AZVD is therefore comparable to finding
an icon for a dictionary sign, only a non-optional
variable part must be part of the layout. Fig. 11
shows the layout defined for pointage index,
by far the most frequent: 256 occurrences in the
corpus, over 4 times as many as the second-ranked,
and indeed the 6th most frequent rule all together.
Notice that it features a variable part, awaiting a
point expression.

To enable filling such point arguments, we de-
fined three more mappings, from the symbols
shown in fig. 12 to the most basic and frequent
point expressions in the corpus. These are ^Mssp
(neutral, central point of the signing space at about
a forearm’s length of the signer’s abdomen), and
^Lssp and ^Rssp (points on either side of it, left
and right respectively).

The more complex geometric point constructions
or signing space references will require an AZee
box at this point of our progress, and providing it the
AZee code explicitly. The remaining 20 production
rules in the above count, related to classifiers, have
also not been accounted for yet. We come back to
those in the prospects below.

In summary, aside from complex number and
geometric constructions, we have reached most of
the grammatical production set for LSF already. For
instance, the 2B-JP entry of the 40 brèves corpus,
shown in fig. 6, is fully editable within the program.

Fig. 13 illustrates a few steps of an AZVD con-
struction, with the corresponding AZee output for
each, for an LSF production meaning “French per-
son returns from Portugal”, with Portugal located
on the right-hand side of the signing space first,
and the person returning to the left-hand side at he
end. A recorded video of the whole process is
available at https://zenodo.org/records/
10890951. Note how every drop, move or swap
action on the canvas updates the AZee output ac-
cordingly.

https://zenodo.org/records/10890951
https://zenodo.org/records/10890951


83

→ →

:in-context
’context
%placeholder%
’process
%placeholder%

:in-context
’context
:about-ref

’pt
^Rssp
’info
:Portugal

’process
:info-about

’topic
%placeholder%
’info
%placeholder%

:in-context
’context
:about-ref

’pt
^Rssp
’info
:instance-of

’type
:lieu
’elt
:Portugal

’process
:info-about

’topic
:side-info

’focus
:une personne
’info
:France
’info
:retour

’src
^Rssp
’dest
^Lssp

Figure 13: Progressive construction of an AZVD with the editor. NB in French: “lieu” = place, location;
“une personne” = a person; “retour” = return.

6. Conclusion and future work

After reviewing a spontaneous practice of drawings
to represent SL, we presented the AZVD system
aiming to propose a graphical system both synthe-
sisable and adoptable by SL users. We followed
by presenting a software editor developed to sup-
port creation and editing of diagrams in the AZVD
format.

The point of the editor in the long run is to allow
users to apprehend the AZVD approach, evaluate
its adoptability, and involve them in the system’s
evolution as much as they would like to. But mea-
suring adoptability with users through the editor can
only be conducted reliably if it is fit to support AZVD
manipulation transparently enough in the first place.
An incomplete or non-ergonomic, counter-intuitive
interface can indeed lead to rejection of AZVD as
a whole even if the cause is the editor alone.

So to avoid this bias, we must separate the eval-
uation of the editor and that of AZVD as a scripting
system. We will do so by taking a first step testing
the application essentially as an AZee editor first.
That is, measure how AZee experts feel assisted in
the task of writing and reviewing AZee expressions.
Any piece of AZee not covered with AZVD graphics
can still be expressed in AZee code inside AZee
boxes, which AZee coders would have done any-
way without the editor. Reaching a positive eval-
uation on that aspect would constitute evidence
that the interface and features of the editor provide
enough comfort and assistance to allow users to
direct their judgement at the manipulated script, not
the manipulation tool.

Now even with a good editor, limitations to AZVD
remain which should also be addressed. The most
limiting factors are the missing layouts for the geo-
metric rules and constructions (involving classifiers)



84

and the sign vocabulary (lexical set). Each of these
two aspects represents a work prospect to increase
the scope of AZVD graphics.

Geometric/classifier constructions were post-
poned mostly because a parallel work to encode the
Mocap1 corpus (LIMSI, 2020) with AZee expres-
sions is in progress. This substantial work should
result in a more stable reference for AZee represen-
tation of those constructions, which was to us an
interesting contribution to wait for before defining
a graphical layer for them. However, it is already
clear that their infinite range in signed locations,
paths, dynamics and classifier options does not
come from an ever-growing set of ad hoc rules, but
from the generative power and combinatorics of a
limited set. We therefore believe tentative solutions
should be in reach, similar to those addressing the
grammatical set, only certainly requiring more lay-
outs for native geometric objects (points, vectors,
paths). This is to at least remove the constant need
for AZee boxes in the diagrams, and propose a first
graphical scheme to the discussion along with the
other grammatical rules.

In contrast though, as explained above, it is im-
possible to do the same with the open-ended set of
vocabulary signs. The prospect for us here, aside
from keeping the possibility of glossing (a strategy
well captured by AZee boxes already), is to allow to
fallback on custom graphical choices, and ideally
integrate a proposal and voting system, or existing
lexically-oriented phonographic systems such as
SignWriting or HamNoSys (fig. 1). Choices could
be up- or downvoted by the community, and we
would get to observe discrepancy or consensus
in propositions. How variable are the logographic
choices? How often do phonographic ones make
spontaneous use of the existing systems? Much
is yet to be learnt, on top of what VDs already ex-
hibit, about how SL users envision scripting their
language symbolically.

In the mean time, one already pictures the kind of
diagrams AZVD allows to build, and notices two ma-
jor differences with the prior systems. First, logogra-
phy is allowed and frequently used in the graphics.
We have already said that it played a major part
in spontaneous VDs, while being totally absent in
the other systems. Second, the diagrams exhibit
the meaningful links between their constituents, re-
flecting the underlying structure of the utterances.
This is very similar to the spontaneous VDs, which
rarely present entirely separate parts, and rather
keep them connected in a planar (2D) drawing. It
also greatly contrasts with the other systems, which
impose to follow the production sequence one lex-
ical unit after the other, without connecting them
in any meaningful way. If we trust the idea that
following spontaneous practice is likely to favour
adoptability, both of those properties are therefore

welcome.
Finally, we would like to leverage the fact that

AZVD was designed not only to maximise adopt-
ability, but also to be synthesisable. Integrating
an avatar to the interface, for example under or
instead of the AZee output panel, to render the
AZVD canvas content would bridge over the full
pipeline from AZVD editing to dynamic display of
the scripted signed discourse. We are preparing for
this exciting prospect, which in our view will even
allow users with no knowledge of AZee to learn
AZVD directly.

This way we hope to put the system in the hands
of the Sign Language community with as few obsta-
cles as possible to appreciating the AZVD system.
More than evaluating a fixed state from a single field
test, we will hopefully engage users on a continu-
ous improvement process, and fuel the discussion
about graphical Sign Language writing, which is an
unresolved issue yet.

7. Acknowledgement

This work has been funded by the EASIER (Intelli-
gent Automatic Sign Language Translation) Euro-
pean project. Funding’s agreement Horizon 2020
no. 101016982.

8. Bibliographical References

Anaïs Athané. 2015. La schématisation : un travail
original de préparation à la traduction de textes
vers la langue des signes française. Double
Sens, 4.

Camille Challant and Michael Filhol. 2022. A first
corpus of azee discourse expressions. In Pro-
ceedings of the Language Resources and Eval-
uation Conference (LREC), Marseille, France.

Michael Filhol. 2020a. Elicitation and corpus of
spontaneous sign language discourse represen-
tation diagrams. In Proceedings of the 9th work-
shop on the representation and processing of
sign languages.

Michael Filhol. 2020b. A human-editable sign lan-
guage representation inspired by spontaneous
productions... and a writing system? Sign Lan-
guage Studies, 21(1).

Donald A. Grushkin. 2017. Writing signed lan-
guages: What for? what form? American Annals
of the Deaf, 161(5):509–527. Gallaudet Univer-
sity Press.

Thomas Hanke. 2004. Hamnosys—representing
sign language data in language resources and

https://doi.org/https://doi.org/10.1353/aad.2017.0001
https://doi.org/https://doi.org/10.1353/aad.2017.0001


85

language processing contexts. In Proceedings
of the workshop on the Representation and Pro-
cessing of Sign Languages, pages 1–6. Euro-
pean Language Resources Association (ELRA).

Mihoko Kato. 2008. A study of notation and sign
writing systems for the deaf. Intercultural Com-
munication Studies, 17(4):97–114.

John Mcdonald and Michael Filhol. 2021. Natural
Synthesis of Productive Forms from Structured
Descriptions of Sign Language. Machine Trans-
lation.

John McDonald, Rosalee Wolfe, Eleni Efthimiou,
and Evita Fotinea. 2024 (to be published). Multi-
lingual synthesis of depictions through structured
descriptions of sign: An initial case study. In Pro-
ceedings of the workshop on the Representation
and Processing of Sign Languages, Torino, Italy.

Elena Antinoro Pizzuto and Paola Pietrandrea.
2001. The notation of signed texts: Open ques-
tions and indications for further research. Sign
Language & Linguistics, 4(1–2):29–45.

S. Prillwitz, R. Leven, H. Zienert, T. Hanke, and
J. Henning. 1989. Hamnosys version 2.0, ham-
burg notation system for sign languages, an in-
troductory guide. International studies on Sign
Language communication of the Deaf, 5. Signum
press, Hamburg.

William C. Stokoe, Dorothy C. Casterline, and
Carl G. Croneberg. 1965. A Dictionary of Amer-
ican Sign Language on Linguistic Principles.
Washington, DC.

Valerie Sutton. 2014. Lessons in SignWriting, 4th
edition. The SignWriting Press.

9. Language Resource References

Filhol, Michael and Challant, Camille. 2022. 40
brèves. 2, ISLRN 988-557-796-786-3.

LIMSI, CIAMS. 2020. MOCAP1. ISLRN 502-958-
837-267-9. ORTOLANG (Open Resources and
TOols for LANGuage) –www.ortolang.fr.

https://doi.org/10.1007/s10590-021-09272-2
https://doi.org/10.1007/s10590-021-09272-2
https://doi.org/10.1007/s10590-021-09272-2
https://doi.org/10.1075/sll.4.12.05piz
https://doi.org/10.1075/sll.4.12.05piz
https://www.ortolang.fr/market/corpora/40-breves
https://www.ortolang.fr/market/corpora/40-breves
https://www.islrn.org/resources/988-557-796-786-3
https://hdl.handle.net/11403/mocap1/v1
https://www.islrn.org/resources/502-958-837-267-9
https://www.islrn.org/resources/502-958-837-267-9

	Introduction
	Verbalising diagrams
	AZVD
	A software editor for AZVD
	User interface
	Menu entries
	Graphical layouts
	AZee output

	Evaluation of current progress
	Conclusion and future work
	Acknowledgement
	Bibliographical References
	Language Resource References

