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Preface

This collection of papers stems from the 11th Workshop on the Representation and Processing
of Sign Languages which takes place as a satellite workshop to the LREC-COLING 2024 Joint
Conference in Turin, Italy.

While there has been occasional attention to sign languages at the main LREC conference, the
focus there is on spoken languages in their written and spoken forms. This series of workshops,
however, offers a forum for researchers focussing on sign languages, especially on corpus
data and corpus technology for sign languages.

This year’s hot topic “Evaluation of Sign Language Resources” addresses the challenge that as
the field is maturing, it becomes increasingly important to assess the quality of sign language
resources for a large variety of tasks. This relates to both automatic and human-based
evaluation procedures and to a large variety of sign language resources and tools.

The contributions composing this volume are presented in alphabetical order by the first author.
For the reader’s convenience, an author index is provided as well.

Once again, we would like to thank all members of the program committee who helped us
tremendously by reviewing the submissions to the workshop within a very short timeframe!

Finally, we would like to point the reader to the sign-lang@LREC Anthology at
https://www.sign-lang.uni-hamburg.de/lrec/

The anthology contains all publications of the workshop series as well as sign language papers
from the LREC main conference and its other workshops. It offers author and topic indices
across all papers, stable URLs for all workshop papers and their supplementary materials, as
well as bibliographical (BibTeX) data for all entries. Happy browsing!

The Editors
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Abstract

This paper presents a transcription and annotation scheme introduced specifically for L1 and L2 continuous data of
Swiss German Sign Language, with potential applicability to other sign languages. The scheme includes a novel
way of annotating linguistic errors in L2 data, thereby contributing to a deeper understanding of sign language
learning. An initial validation approach is outlined, revealing challenges and underscoring the necessity for a more
comprehensive method for validating sign language (learner) data. The paper emphasizes the overarching goal of
achieving interoperability among sign language corpora and research groups, particularly in advancing sign language
data validation techniques.

Keywords: Sign language data, learner corpus, annotation scheme, inter-annotator agreement

1. Introduction guage (Deutschschweizerische Gebérdensprache,
DSGS) second language (L2) learners, alongside
Transcribing and annotating sign language datarep-  a corpus of native/early learners (L1) of DSGS.
resents a significant bottleneck in the development We summarize the process of annotating sign
of sign language corpora, especially when aiming  language (learner) data and present the annota-
for substantially sized, well-annotated datasets for  tion scheme. Given that the data is continuous
automated Sign Language Processing (SLP) tasks.  signing that exceeds the level of individual signs,
Many challenges in SLP arise not only due to a  our scheme primarily focuses on the annotation of
scarcity of consistent and detailed annotations but ~ non-manual components that sometimes stretch
also due to the variation in annotation standards  across multiple manual signs. Furthermore, we
and granularity across projects. address the annotation of L2 errors and suggest
In sign language corpus creation, it is crucial  the potential of our scheme for future annotation of
for annotation schemes and guidelines to adopt a  sign language (learner) data to enhance interoper-
broader perspective, characterized as “holistic and  ability of datasets and thus facilitate cross-linguistic
forward-thinking” by Hodge and Crasborn (2022).  studies. Finally, we introduce an initial validation
In a “holistic” approach, both basic and detailed  approach and preliminary results, highlighting the
annotations are combined from the beginning of  challenges encountered and the need for a com-
the annotation process. The former, comparable  prehensive validation method for sign language
to transcription (Konrad, 2011), includes segmen-  (learner) data.
tation and tokenization, which involves identifying Section 2 introduces previous work in the area
manual actions, usually at the level of lexical units.  of sign language annotation, with a focus on inter-
The latter enriches the transcription with a more  annotator agreement in sign language data. Sec-
detailed level of annotation, such as non-manual  tion 3 summarizes our annotator process, while
actions and potentially grammatical functions. A Section 4 describes the annotation scheme in de-
more comprehensive approach such as this pro-  tails. In Section 5, we outline an initial validation
motes best practices and represents a step towards ~ approach on our annotated data.
standardization of signed language corpora.
This paper presents the development of an an- 2. Related Work
notation scheme integrating basic and detailed
annotations, designed for multidisciplinary use in -~ o 4
sign language linguistics, automatic sign language
assessment, and SLP. The development of this
scheme was an integral part in constructing a  Several attempts have been made to define stan-
longitudinal corpus of Swiss German Sign Lan- dards and best practices in sign language data

Annotations of Sign Language
(Learner) Data
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annotation (Nonhebel et al., 2004; Johnston, 2010;
Schembri and Crasborn, 2010; Cormier et al.,
2016). The selection of annotation scheme and
the specificity of its labels are frequently influ-
enced by the linguistic theories embraced by the re-
searchers and by their research questions (Hodge
and Crasborn, 2022). For instance, lexical fre-
quency and morphosyntactic analysis guide the an-
notation scheme for the Auslan Corpus (Australian
Sign Language) (Johnston, 2008), while phonetics
and phonology shape the scheme for the NGT Cor-
pus (Nederlandse Gebarentaal, Sign Language of
the Netherlands; Crasborn et al., 2006-2017).

Kopf et al. (2022) delineates commonalities and
differences between annotation conventions as
applied to several publicly accessible sign lan-
guage corpora. In the section dedicated to non-
manual components, the authors point out that
there are few studies describing the annotation
of non-manual activities. Among the most recent
works, Johnston (2019) provides detailed insights
into the considerations made to annotate the form
and the function of these components in Auslan,
while Wallin and Mesch (2018) describe how they
treated and annotated these activities in the corpus
of Swedish Sign Language (Svenskt teckensprak,
STS).

Given the importance of these components at
the sentence and discourse levels, Gabarré-Lépez
and Meurant (2014) explain how to use certain
non-manual components, including head nod or
movement, eye blink, and gaze, as criteria to fa-
cilitate sign language discourse segmentation in
French Belgian Sign Language (Langue des signes
de Belgique francophone, LSFB). Similarly, to de-
scribe the components’ function at the sentence
and discourse levels, Lackner (2019) illustrates
their annotation and their potential configurations
in Austrian Sign Language (Osterreichische Gebér-
densprache, OGS).

However, none of the aforementioned studies
specifically address the annotation of manual and
non-manual components in sign language learner
data. Despite the increased interest in research fo-
cusing on sign second language acquisition (SSLA)
and the creation of datasets from non-native sign-
ers (L2 signers) (Schénstrém, 2021), management
and annotation of L2 data remains an understud-
ied area (Mesch and Schénstrém, 2018). This is
characterized by a lack of guidelines for annotating
errors or L2 linguistic structures. In addition to ba-
sic or detailed annotations similar to those applied
to L1 data, L2 data is typically enriched with annota-
tions that highlight deviations from canonical forms
or disfluencies, a common practice also employed
in the studies of spoken language learning (Gilquin
and De Cock, 2011).

For analyzing the Corpus in Swedish Sign Lan-

guage as a Second Language (SSLC-L2), Mesch
and Schénstrom (2018) proposed a method to an-
notate typical L2 structures, which includes con-
ventions for annotating phenomena specific to L2
languages. The authors build upon their previous
studies on annotations of hon-manual components
and errors (Schonstrém and Mesch, 2014; Mesch
et al,, 2016).

Until recently, research on SSLA has primarily fo-
cused on analyzing individual glosses and manual
errors (Rosen, 2004; Ortega and Morgan, 2015;
Ebling et al., 2021; Kurz et al., 2023). However,
there has been a growing interest in investigating
higher-level linguistic constructions, such as sen-
tences or discourse, highlighting the need for an-
notating non-manual components also for L2. For
example, Mesch and Schénstrém (2020) explored
the use of mouth actions in SSLC-L2, while Gu-
lamani et al. (2020) examined the adoption of dif-
ferent viewpoints in British Sign Language (BSL)
learners.

2.2. Inter-annotator Agreement in Sign

Language Data

None of the above-mentioned studies present an
approach for the validation of annotated data. Stud-
ies on sign languages either do not report on relia-
bility or provide only superficial ratings of inter-rater
agreement (Schembri and Crasborn, 2010). For
example, Hodge (2014) conducted a thorough ex-
amination of the annotation procedure, where addi-
tional annotators reviewed annotations of clause-
like expressions by way of re-analysis.

Calculating agreement on sign language data
annotations is a complex process that must con-
sider multiple variables, such as the diversity of
time spans and labels used.

In the context of annotations on behavioral stud-
ies, Andersson and Sandgren (2016) proposed a
method called temporally weighted overlap ratio, to
use with the ELAN annotation software (Wittenburg
et al., 2006), to calculate agreement between two
annotated events. Considering a certain time span,
the authors search for an event in two different an-
notation transcripts. If an event is found and has
the same label for Annotator A and Annotator B, an
agreement is calculated based on the time overlap
between the two events weighted by the maximum
length of the event. This approach can also be
applied to measure agreement between two events
in a given time span in sign language data.

3. Annotation Process

As mentioned in Section 1, we devised the anno-
tation process and scheme as part of constructing
a longitudinal corpus of continuous DSGS L2 pro-



duction, in parallel with an L1 control corpus. In
total, 35 participants were recorded, resulting in
approximately 70 hours of recorded data.

The L1 control corpus comprises recordings of
ten deaf signers performing the same tasks as the
DSGS learners. Examples of tasks include picture
or video retelling. We enlisted deaf signers who
use DSGS as their primary language and acquired
the language at different ages (M=3.8, SD=6.1).
Among the 25 L2 participants, 14 were students of
a DSGS interpreter training program. We followed
these students throughout their language learning
journey by recording their language production four
times over an 18-month period.

Annotation is carried out by a team comprising
two L1 deaf expert annotators with extensive expe-
rience in teaching and researching sign language,
alongside two L1 deaf annotators-in-training, all of
whom are project members. The data is annotated
using the iLex software (Hanke and Storz, 2008),
allowing for the linkage of all sign tokens in the cor-
pus to their corresponding sign types in the lexicon
and propagating any changes to sign types across
all transcripts.

Figure 1 illustrates the data processing steps,
starting from raw data in the recording phase to
the subsequent data annotation rounds. Initially,
we pre-process the data and generate transcripts
that include selected tiers for both manual and non-
manual components, with task boundaries auto-
matically annotated based on recording software
timestamps.

The data then undergoes two main rounds of pro-
cessing. The first round involves segmenting tasks
into sentences and sign units, identifying manual
and non-manual components for both L1 and L2
data, and labeling the time span for each identi-
fied feature. In the second round, deviations from
the canonical form are identified and labeled in the
L2 data. Additional tiers are added to the L2 tran-
scripts to facilitate marking deviations for both man-
ual and non-manual components. A third round
involves cross-checking and validating annotated
data applying the four-eyes principle, where 20% of
annotated data are re-annotated by the two expert
annotators to calculate agreement. Annotations
by annotators-in-training undergo double-checking,
with corrections made as needed. Disagreements
between annotators are discussed with an expert
sign language linguist to understand the disagree-
ment factors and resolve differences.

Due to the comprehensive nature of the annota-
tion task and the corpus’s extensive volume, only
selected tasks of the first two data collection points
have been annotated thus far. On average, for both
L1 and L2 data, annotators require 30 minutes to
annotate a sentence containing six glosses.

Figure 2 displays a sample transcript in iLex for

an L2 learner production, showing annotations from
the first and second rounds.

4. Annotation Scheme

In developing the annotation scheme, we were
faced with the challenge of determining the granu-
larity of the annotation, which is dependent upon
the intended application of the corpus.

In our scheme, we aimed to strike a balance be-
tween basic and detailed annotation to accommo-
date an array of future analyses. We have defined
various labels for each feature or component and
organized these labels into macro categories to
establish a coarser annotation level. This coarser
level is expected to facilitate SLP tasks and statisti-
cal linguistic analyses.

Table 1 presents the main blocks of features cov-
ered by our annotation scheme, with each block cor-
responding to a set of tiers within an iLex transcript.
In the following sections, we provide detailed ex-
planations of the tiers included in each main block.

Video
Item / Task
Sentence
Manual components
Non-manual components
Errors
Additional information
Comments

Table 1: Main blocks of tiers in the transcription
and annotation scheme.

4.1. Task Level

The initial segmentation of the video stream in-
volves automatically annotating the task starting
and ending times, along with the task code, in the
ltem tier.

Following this, each task time span is segmented
into sentence-like units, which are labeled within
the Sentence tier. These units may encompass
anywhere from one to n sentences.

The segmentation process is subsequently ex-
tended to manual and non-manual components
within each sentence.

4.2. Manual Components

In general, the most basic level of corpus annota-
tion is tokenization. Tokens pertaining to manual
components are identified and segmented within
the sentence adhering to a wider segmenting sys-
tem (Hanke et al., 2012).
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Figure 1: Visualization of the data process from raw data to data annotation.
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Figure 2: Sample transcript in iLex with manual, non-manual, and error annotation tier.

Table 2 outlines the tiers for the manual com-
ponents included in our scheme. Following iden-
tification, manual components are annotated by
inserting identificative glosses (ID glosses) as
semantic notations, and described in their form
using the Hamburg Notation System for Sign
Languages (HamNoSys; Prillwitz, 1989). In using
the iLex corpus lexicon system, we are assured of
having consistent use of glosses by different an-
notators. The selection of glosses was motivated
by their widespread usage as common semantic
labels of signs. In addition, glosses are extensively
employed in SLP, particularly in the domain of Sign
Language Translation (SLT) (Mdller et al., 2023).

In this phase, we distinguish between signs pro-
duced with the left or right hand as well as be-
tween one-handed and two-handed signs. The
tier Gloss Right Hand (RH) is annotated for one-
handed signs articulated on the right hand, while
Gloss Left Hand (LH) is annotated for one-handed
signs articulated on the left hand. Two-handed
signs are annotated in Gloss Both Hands (BH).
The hand dominance of the signer is stored in the
signer’s metadata.

Non-conventionalized signs, like gestures, are
annotated similarly to glosses and allocated to the
tiers of the hand used for articulation, identified by
the affix GEST_. Fingerspelling follows the same
approach as single signs, annotated with the affix
FA_ to the gloss.

Qualifiers are combined with glosses to indicate
variant forms, involving slight differences in the
phonological parameters (Konrad et al., 2012). The
form variance is reported in the corresponding Ham-

NoSys variance tier. For glossing and qualifier
addition, we adhere to the glossing conventions'
of our iLex DSGS instance and those described
in Konrad et al. (2012) and Ribeaud and Cicala
(2019).

Manual Components
Gloss RH
HamNoSys RH
HamNoSys variance RH
Gloss LH
HamNoSys LH
HamNoSys variance LH
Gloss BH
HamNoSys BH
HamNoSys variance BH

Table 2: Tiers of the manual components. RH: right
hand. LH: left hand. BH: both hands.

4.3. Non-manual Components

Non-manual activities undergo detailed annota-
tion in our scheme. Labels for each feature were
based on the scheme for non-manual components
in Hanke (2001), then determined on the most fre-
quently annotated forms in previous DSGS studies
and compared with those in studies outlined in Sec-
tion 2. Each label specifies the form, movement,
or both of a specific facial or body part compared
to a neutral position. All labels were assigned an
identifying code and accompanied by an image or

"https://dsgs—handbuch.ch/information/
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illustration available in iLex to facilitate the annota-
tion process. At this stage, assignments of these la-
bels to grammatical functions were not made. The
complete annotation scheme for non-manual com-
ponents is available in both German and English
on Zenodo.?

Table 3 displays the tiers included in the
non-manual components block of the annotation
scheme. The Mouthing tier captures lip move-
ments like those of spoken German words. As
mouthings are often not exact pronunciations of
words, the annotator inserts the letters represent-
ing what they observe during the lip movement of
the signer displayed in the video. For example, in
Figure 2, we can see how the mouthing “mito” was
written for the word Mittag (‘noon’) because the final
voiced velar consonant g does not involve any lip
movement.

For Mouth gestures, annotators have the option
to select from 81 labels. This is the most detailed
part in our scheme, reflecting various nuances in
the form and movement of mouth components such
as lips, cheeks, teeth, tongue, and their combina-
tions. These labels are grouped into nine macro
categories based on the form rather than function of
the labels, as was done for the Auslan corpus (John-
ston, 2019).

Regarding the Nose, seven labels are defined
and categorized as static or dynamic based on nose
movement characteristics, such as static wrinkled
nose.

In the Upper body tier, thirteen labels describe
main movements, such as leaning or moving the
torso in a specific way and subtly turning or rotating
the torso so that it faces a particular direction. The
direction is annotated from the signer’s point of view.
Shoulders can be annotated separately from the
upper body when their movements seem crucial
to be considered in isolation, featuring six labels
grouped under the macro categories of the upper
body.

Fundamental in defining the sentence function,
Head movements are segmented into twenty labels,
subdivided based on movement type or location.
Table 9 in Appendix B provides the list of head
component labels.

Eye-related movements, namely Eye gaze, Eye-
brow movements, and Eyelid motion, are seg-
mented and labeled separately. In most of the
tasks, the participant gaze is straight on the camera
(cf. tier “Blick” (‘gaze’) in Figure 2). The annotation
of gaze direction is crucial for marking the position
or differences in object location. Eight labels de-
note various eyebrow positions, mostly upwards or
downwards, while ten eyelid labels distinguish eye
aperture and motion.

2https://doi.org/10.5281/zenodo.10669
639

Non-manual components
Mouthing

Mouth gesture

Nose

Upper body

Shoulders

Head

Eye gaze

Eyelids

Eyebrows

Table 3: Tiers of the non-manual components.

4.4. Error Annotation

The error annotation tiers aim to capture produc-
tions by DSGS learners that deviate from the canon-
ical form (Table 4). They are divided into three main
categories: manual components, non-manual com-
ponents, and sentence level.

For manual components, we adopted error def-
initions and categories from Ebling et al. (2018).
These tiers, connected to gloss tiers, annotate de-
viations related to phonological parameters and
their combinations.

For non-manual components, deviations re-
garding eyebrow and head movements, mouthing,
mouth gestures, and their combinations are anno-
tated. These features play a crucial role in sentence
function definition.

The third category addresses sentence-level
error definition. Drawing from prior studies and
our main annotators’ long teaching experience, we
defined a restricted list of error categories to start
from: sentence construction, question construc-
tion, negation, affirmation, statement connection,
indexing, verbs, signing space, tempo and fluency,
combined issues, and others. Where one of the
latter two categories is chosen, the annotators de-
scribe the corresponding errors in a free-text field
of a separate tier.

Each deviation receives a degree of (nhon)-
acceptability (not acceptable, acceptable, fully
acceptable), indicating severity of the deviating fea-
ture and impact on sentence comprehension. Addi-
tionally, the entire sentence receives an acceptabil-
ity value, regardless of the number of annotated de-
viations. Figure 3 illustrates a simplified annotation
example of a sentence deemed as “not acceptable”
due to incorrect sentence construction, such as the
use of the mouthing “da” (‘there’) and the improper
use of eyebrows in the sentence.

The acceptability of the sentence tier is also anno-
tated for L1 data. The rationale behind this decision
is explained in the next section.
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Error annotation
Deviations Gloss RH
Acceptability
Deviations Gloss LH
Acceptability
Deviations Gloss BH
Acceptability
Deviations NMC
Acceptability
Sentence problem
Sentence acceptability

Table 4: Tiers of error annotation. NMC: non-

manual components.

Head: right | | shaking

Eye brows: | furrowed |

Mouthing: da | frau | | kei | auto ||

Glosses: IX-3

| FRAU | KEIN_bew

| KEIN | AUTO ||
woman not car
DE: Die Frau hat kein Auto.

EN: That woman does not have a car.

Figure 3: Example of the annotation of a “not ac-
ceptable” sentence.

4.41. Why Annotate Acceptability?

Assuming a single “ground truth” in spoken and sign
languages poses inherent challenges in achieving
high agreement on language interpretation and un-
derstanding (Plank, 2022). Variations in annota-
tion may arise from linguistic complexities, subjec-
tivity, or instances where multiple interpretations
are plausible (Plank et al., 2014; Manning, 2011;
Rottger et al., 2022; Basile et al., 2021; Pavlick
and Kwiatkowski, 2019; Nie et al., 2020). Sign lan-
guages are known to exhibit considerable structural
variability (Bayley et al., 2015).

In the absence of a definitive ground truth, spec-
ifying acceptability values becomes more mean-
ingful than assigning binary correct/incorrect val-
ues (Mehta and Srikumar, 2023). In the context of
sign languages, the concept of acceptability of intu-
itive judgments was explored by Arendsen (2009)
for the manual/phonological components of single
signs in relation with iconicity. We thus designate
sentences within an acceptable range from L1 data
as correct, establishing them as the ground truth.
Therefore, annotations of components in these ac-
ceptable sentences serve as a form of gold stan-
dard.

Having said this, we recognize that the annota-
tion of acceptability values, like in error annotation,
inherently entails a certain degree of subjectivity.

4.5. Additional Information

The additional tiers listed in Table 5 have not yet
been systematically annotated at the current stage.
This block of tiers is reserved for future rounds of
annotations following preliminary linguistic analy-
sis. In the interim, annotators may include com-
ments in the Comments tier or annotate straight-
forward features. The Translation tier involves in-
serting a literal translation in German of individual
signs and sentences. The Functions, Topic/Fo-
cus, Prosody, and Role tiers are designed to label
various functions of annotated components, not
only at the sentence level but also at the discourse
level.

Additional information
Translation

Comments

Functions

Topic/Focus

Prosody

Role

Table 5: Additional tiers.

5. Validating the Annotation

As discussed in Section 3, our data undergoes a
cross-checking step in which part of it is double-
annotated. This step allows for the calculation of
inter-annotator agreement (IAA) between the two
expert annotators (Section 3), to assess the consis-
tency of the (error) annotation labels, and to provide
a quantitative evaluation of the complexity of the
annotation task.

It is essential to recognize that agreement be-
tween annotators should not be mistaken with ac-
curacy, as annotators may share possible biases
present in the guidelines or cultural preconcep-
tions (Basile et al., 2021; Plank, 2022).

5.1. Method

Incorporating different agreement metrics enabled
us a thorough evaluation, considering various
facets of annotation agreement. Applying Gwet's
AC1 was motivated by specific limitations of Co-
hen’s x (Cohen, 1960), particularly its tendency to
underestimate coefficients for high-chance agree-
ments and its lack of robustness against imbal-
anced categories (Feinstein and Cicchetti, 1990;
Gwet, 2014).

In L1 data, we randomly extracted and duplicated
20% of the dataset, amounting to two transcripts.
Each expert annotator annotated the transcript as-
signed to them and the counterpart annotated by



the other expert. We then extracted the annota-
tions from iLex and computed agreement using the
following methods. First, in each transcript sen-
tence, we examined annotated time spans sharing
the same feature annotation, computed the over-
lap proportion of each feature and then calculated
the temporally weighted overlap ratio, as described
in Andersson and Sandgren (2016). We reported
the formula for calculating the ratio along with the
explanation and an example in Appendix C. As il-
lustrated in Figure 4 in Appendix C, we treated all
labels within the same feature as identical.

Second, we calculated Cohen’s «, Krippendorff’'s
a (Krippendorff, 2019), and Gwet AC1 score for
nominal data across all labels for each transcript.
This analysis utilized macro categories for each an-
notated component, disregarding the time variable.

For L2 data, we randomly selected 20% of the an-
notated L2 sentences for the first two data collection
points, amounting to a set of 38 sentences. Within
these selected sentences, we introduced new tiers
for error annotation while deactivating the original
error annotation tiers. The second annotator re-
viewed the annotation of manual and non-manual
components performed by the first annotator in the
first and second rounds, and then carried out a new
error annotation using only their initialized tiers. We
then extracted the annotations from iLex and as-
sessed reliability using Cohen’s «, Krippendorff's a,
and Gwet ACT1 for nominal data. Agreement con-
cerning acceptability values was evaluated using
Cohen’s &, Krippendorff's «, and Gwet AC2 score
for ordinal data.

For error annotation of non-manual components,
adjustments to the time span were made depend-
ing on the alleged occurrence of a non-manual
component. Thus, we computed the overlap ratio
and temporally weighted overlap ratio for this cate-
gory, as outlined in Appendix C. For glosses and
sentence-level annotation, we focused solely on the
annotation label without considering timing. This
choice stemmed from the consistent timing across
annotators, established through prior segmentation
and linkage of tiers in iLex.

5.2. Results

We acknowledge that direct comparison of the re-
sults from these methods is not feasible due to their
differences in computation. Nevertheless, this ini-
tial exploration represents our first step toward a
comprehensive evaluation of our annotated data.

Below, we present our preliminary findings re-
garding the validation of the data.

5.2.1. L1 Data

On average, the annotation of manual and non-
manual components in the L1 data achieved an

overlap ratio of 0.18, encompassing cases for which
the overlap duration is equal to 0. In instances of
zero overlap, distinguishing missed events from
misalignments was challenging. By excluding
these events, the average overlap ratio increased to
0.62. Specifically, manual components attained an
average of 0.64 (median: 0.88), while non-manual
components averaged 0.45, ranging from 0.01 to
0.97. We calculate the temporally weighted overlap
ratio for the events in each sentence. The average
is 0.52, ranging from 0.29 to 0.96.

The agreement on labels is detailed in Table 6.
Overall, the agreement between the two expert
annotators did not reach high values. Consider-
ing both manual and non-manual components and
excluding rows with zero overlap in time, the agree-
ment yielded a « score of 0.49 and a Gwet score of
0.52. Krippendorff’s values closely align with the
scores.

K a Gwet
manual 0.57 0.57 0.61
nmc 0.39 0.38 0.47
manual+nmc 0.49 0.44 0.52

Table 6: Reliability as measured by inter-annotator
agreement using «, o, Gwet ACT.

5.2.2. L2 Data

On average, the error annotation in the non-manual
components of the L2 data achieved an overlap ra-
tio of 0.35, ranging from 0.0 to 1 (median: 0.19).
After excluding cases with zero overlap, the ratio
increased to 0.55, ranging from 0.03 to 1 (median:
0.50). We calculated the temporally weighted over-
lap ratio for the events in each sentence obtaining
an averaged score of 0.66.

Regarding the assigned labels, as presented in
Table 7, agreement between the two expert anno-
tators is modest. « scores range from 0.16 for the
error annotation of non-manual components to 0.52
for the error annotation of manual components, indi-
cating a considerable degree of subjectivity in both
annotation tasks. Krippendorff's values closely mir-
ror the x scores.

Interestingly, the acceptability values for the error
annotation of non-manual components achieved a
Gwet score of 0.60, suggesting moderate to high
agreement between the two expert annotators in
assessing the severity of deviation for non-manual
features.

5.3. Discussion

The level of agreement depends on the task, com-
plexity of the annotation scheme, and the number
of annotators along with their degree of expertise.



K « Gwet
manual 0.52 0.53 0.56
accept_manual 0.32 0.33 0.34
nmc 0.16 0.15 0.25
accept_nmc 0.25 0.24 0.60

Table 7: Reliability as measured by inter-annotator
agreement using «, «, Gwet AC1 (for components)
or ACZ2 (for acceptability). Manual: error annotation
of the manual components; nmc: error annotation
of the non-manual components; accept: agree-
ment on the acceptability judgments.

Examining our results, the scores derived from our
preliminary agreement calculations lead us to re-
flect on the primary factors contributing to disagree-
ments.

Firstly, our findings underscore the inherent diffi-
culty in achieving high agreement in tasks involv-
ing video stream segmentation. The accurate seg-
mentation of signs presents challenges even for
trained annotators, resulting in slight time variations
in sign segmentation. However, these variations
can cause discrepancies in calculations. In addi-
tion, the detailed nature of our annotation scheme,
as described in Section 4, inherently amplifies dis-
agreement among annotators. In general, stud-
ies analyzing sign language datasets refrain from
reporting agreement scores, complicating efforts
to benchmark our results within the broader land-
scape of sign language reliability assessments.
The discrepancy between manual and non-manual
component values (cf. Table 6 and Table 7) under-
scores the heightened challenge associated with
annotating non-manual activities, possibly deriving
from ambiguous guidelines or unclear instances of
non-manual activity in videos.

Secondly, the complexity of the annotation task is
reflected in the complexity of calculating agreement
between annotators. Following the method outlined
by Andersson and Sandgren (2016), which involves
calculating the temporally weighted overlap ratio
only between events with the same label, we do
not assess whether there might be other annotated
events occurring simultaneously but labeled differ-
ently. For instance, in cases where Annotator A
annotated a time span with a label from the list of
the “Eyelid” feature while Annotator B annotated
the same time span with a label from the “Eyebrow”
list, this could mean missing an event by one or
both annotators. Considering the simultaneity of
components in sign language, it is plausible that
the time span involves both “Eyelid” and “Eyebrow”
movements simultaneously. A next step would be
to examine these “alternative classifications” with
an aim to agree on one way of annotating and ana-
lyzing them.

As suggested by Schembri and Crasborn (2010),

further exploration into agreement calculations for
sign language data is needed. Establishing an-
notation standards would facilitate comparison of
agreement values across different corpora, allow-
ing for the development of a systematic method for
calculating agreement in sign language data.

Despite the relatively modest agreement values,
it is imperative not to perceive them as a limita-
tion for dataset validation and subsequent use of
these annotations. Widely debated in the context
of spoken languages, human label variation (in
other words, disagreement) offers valuable data
insights to consider in the development of technolo-
gies, particularly those aimed at enhancing “tech-
nology which is by and for humans; inclusive and
reliable” (Plank, 2022).

6. Conclusion and Outlook

We have presented the annotation process and
scheme for L1 and L2 DSGS continuous data, fo-
cusing on the labeling of non-manual components.
We have introduced a method for annotating and
categorizing linguistic errors in L2 data, and pro-
posed our idea of creating a ground truth encom-
passing variability. Viewing sentence acceptabil-
ity as a facet of ground truth expands traditional
notions, accommodating the inherent variability in
sign language data analysis.

Our annotation scheme remains a work in
progress, open to modification and adaptation.
Statistical analyses are warranted to evaluate the
scheme’s efficacy and the utility of macro cate-
gories. Refinement on higher levels of annotation,
such as on the levels of sentence function and
semantic roles (some tiers are described in Sec-
tion 4.5), remains an area for future development.

While the scheme was created for DSGS, it can
be adapted to other sign languages by adjusting the
labels of each feature. To maintain the application
of cross-linguistic comparisons, the adjustments
would not change the content of the components
but only the names that are assigned to these com-
ponents.

We have described our first approach to data val-
idation, illustrating difficulties given by the different
variables to consider in the calculation. Agreement
calculation methods, particularly considering time
spans and labels, demand further exploration to
systematically analyze annotated events and spot
missed or erroneously annotated instances.

As we move forward, collaborative efforts and
continued refinement of annotation practices will fa-
cilitate the advancement of sign language research.
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Feature Labels | Macro categories
Mouthing - -
Mouth gesture 81 9
Nose 7 2
Upper body 13 2
Shoulder 6 1
Head 20 6
Eye gaze 30 6
Eyelids 10 3
Eyebrows 8 2

Table 8: Number of labels and number of macro
categories in our scheme.

Head Macro categories
NO: Head nod (up and down)
NU: Simple head nod up [dynamic] cat. 1
ND: Simple downward head nod [dynamic] Nodding
RL: Tilted to left or right nodding head
SH: Head shaking (left and right) cat. 2
SS: Tilted to left or right shaking head Shaking
NF: Tilted forward [static] cat. 3
PF: Shifted forward Frc;n t
OG: Head tilted forward (nodding)
NB: Tilted backwards
PB: Shifted backward cat. 4
LN: Head nod (up and down) left (up and down) Back
RN: Head nod (up and down) right (up and down)
SL: Turned to the left
SR: Turned to the right cat. 5
TL: Tilted to the left (static) Lateral
TR: Tilted to the right (static)
KD: Head rotation

; . . cat. 6
KK: Head tilt (dynamic) Strongly dynamic
LI: Head movement coupled to gaze [dynamic]

Table 9: Labels defined for the Head feature.

C. Temporally weighted overlap ratio

Equation 1 illustrates an example of the agreement
calculation with two events in the L1 data, as illus-
trated in Figure 4. Column A represents two events
for the feature “Blick” (‘gaze’) annotated by Annota-
tor A in one sentence, while Column B represents
the two events in the same sentence annotated by
Annotator B. We have:

E = {61, 62}
T = {t; = 0.39,ty = 2.76}
O = {01 = 0.05,05 = 0.95}

(1)

where F is the set of n = 2 events, each labeled
by Annotator A and Annotator B; T is the set of
maximum duration for each events in E, and O
represents the set of overlap proportions for the
eventsin E. The overlap proportion is calculated by
dividing the duration of the overlap by the maximum
temporal extent of the event.

The temporally weighted overlap ratio is then
calculated as follow:

SPOT;  (0.05%0.39) + (0.95 % 2.76)

—0.84
ST, (0.39 + 2.76)

()
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If we were to consider only the overlap propor-
tion without accounting for temporal duration, the
calculation for the overlap ratio would be as follows:
0.05 4+ 0.95/2 = 0.5, even though the length of the
annotated overlap varies.

A

Time span

00:08:33.06
00:08:33.35

Blick 1

00:08:33.35
00:08:33.37

00:08:33.37
00:08:33.45

00:08:33:45
00:08:35:53

00:08:35:53
00:08:36:11

00:08:36:11
00:08:36:21

Figure 4: Simplified representation of two events
in a same sentence, annotated by two annotators,
Annotator A and Annotator B.

Please note that even if the annotators assigned
two different labels for event ¢, they both annotated
the feature “Blick” (‘gaze’) in this timespan.
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Abstract

Sign language recognition models require extensive training data. Effectively anonymizing such data remains a
complex endeavor due to the crucial role of facial features. While pose estimation techniques have traditionally been
considered a means of yielding anonymized data, the findings reported in this paper challenge this assumption: We
conducted a study involving Swiss German Sign Language (DSGS) users, presenting them with pose estimates from
DSGS video samples. The participants’ task was to identify the signers’ language levels and identities from skeletal
representations. Our findings reveal that the extent to which sign language users were capable of recognizing familiar
signers depended on their language level, with deaf experts achieving the highest accuracy. We demonstrate that
an automatic classifier obtains comparable results in multi-label language level recognition (F1=0.64) and person
identification (F1=0.31). This emphasizes the need to reconsider the fundamentals of video anonymization towards
guaranteeing sign language users’ privacy.

Keywords: Data anonymization, sign language videos, pose estimation

1. Introduction Obscuring or masking non-manual components,

e.g., in the face would severely compromise the

In recent years, more and more studies have been  meaning and, consequently, the comprehension of
published in the area of automatic sign language  utterances.

processing (SLP), including Sign Language Trans- The SLP field widely uses pose estimation sys-
lation (SLT) (Bull et al., 2020; De Sisto et al., 2021;  tems that generate skeleton-like representations
Varol et al., 2021; Momeni et al., 2022; Miiller et al.,  from persons in videos (Stoll et al., 2020; Saunders

2022, 2023). The growth of this field has intensified et al., 2021, 2022). As such, there has been an
the demand for sign language data, opening a dis-  increasing perception that pose estimation systems
cussion about the privacy of sign language users  can be employed for anonymizing sign language
who share their data in research (Bragg et al., 2020)  data. Whether the skeleton-like representations
and on social media platforms (Mack et al., 2020).  do, in fact, sufficiently conceal the identity of the

The topic of anonymization of sign language data  signers underlying the pose estimates is an open
has thus become relevant in several areas of re-  question.

search, from the improvement of accessible de- Given this context, we conducted an online vi-
sign to the enhancement of SLP for new technolo-  sual perception study for Swiss German Sign Lan-
gies (Bragg et al., 2020; Lee et al., 2021; Xia et al.,  guage (Deutschschweizerische Gebérdensprache,

2022, 2023). The collection and use of sign lan-  DSGS) and investigated whether sign language
guage data is challenging due to privacy concerns  users were able to correctly identify the language
and ethical considerations (Bragg et al., 2020).  level (RQ1) and the identity (RQ2) of the signers
Sign language users may feel uncomfortable par-  displayed in short videos processed with pose esti-
ticipating in research and sharing data dueto alack  mation technology. We hypothesized that signers
of video anonymization methods that protect their  with different levels of DSGS could identify signers
privacy. to a different extent. We additionally assessed the
Enhanced privacy could lead to an increased  participants’ comprehension of the linguistic con-
participation of sign language users in research  tent of sentences represented in skeletal form and
and to an improvement of SLP results (Bragg etal.,  we used this information to train two classifiers to
2021). The development of effective anonymization = assess the automation of the tasks of language
techniques is therefore a necessary precursor. level recognition and person identification. Finally,
Anonymizing sign language data is not a trivial ~ we looked for patterns in the factors that led to cor-
task due to the visual-gestural nature of the lan-  rect identification in each group.
guage and the lack of a common writing system. It is worth mentioning that the DSGS community
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is relatively small, as is the case of many deaf' com-
munities around the world. There are an estimated
5,500 native signers/early learners? of DSGS and
an additional 13,000 hearing users with different
connections to sign language, such as through edu-
cation, social work, having a deaf family member, or
just being interested in the language (Boyes Braem
et al., 2012). Therefore, the chances of identifica-
tion, as well as the potential consequences, can be
considerable (Crasborn, 2008).

To the best of our knowledge, our study repre-
sents the first effort in addressing the identifiability
of sign language users through pose estimates.
This study is the first investigation to include DSGS
users, paying unique attention to a low-resourced
sign language. Lastly, the study provides pointers
to future work in sign language data anonymization,
highlighting important aspects to consider when
anonymizing videos to guarantee privacy to sign
language users.

2. Related Work

Existing computer vision algorithms used in pose
estimation for SLP often ignore privacy concerns
and rely on high-resolution image capture (Hinojosa
et al., 2021). Privacy-preserving pose estimation
typically involves reducing image resolution or dis-
torting the image, sometimes combining multiple
approaches (Jiang et al., 2022). However, these
strategies are not suitable for sign language data,
as they may compromise the linguistic content of
the videos.

Similarly, early sign language anonymization
techniques tended to compromise the linguistic
content by modifying or hiding visual features of
the individuals in the videos, which effectively pre-
vent facial identification (Bleicken et al., 2016; Isard,
2020). Appendix A shows examples of blackening
(Figure A.1a), blurring (Figure A.1b), and masking
with filter (Figure A.1c).

In contrast, newer systems, based on generative
neural networks, are capable of modifying signers’
appearances and reproducing facial expressions
while retaining the original linguistic content. Pose
estimation techniques receive a sequence of raw
images of a person as input and compute the posi-
tions and orientations of key body joints to generate
skeleton-like representations of that person (Cao
etal.,, 2021). In this way, information on the location

'We follow the recent convention of abandoning a
distinction between “Deaf” and “deaf”, using the latter
term also to refer to (deaf) members of the sign language
community (Napier and Leeson, 2016; Kusters et al.,
2017).

2In this group, we include not only signers born to a
deaf parent but also deaf signers who use DSGS as their
primary language and acquired it at an early age.
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of various body parts is retained, while information
on the appearance of the person and background
is discarded. OpenPose 3 (Cao et al., 2019) was
applied along with the above-mentioned blackening
method to anonymize the data of the Public Ger-
man Sign Language Corpus (Isard, 2020; Schulder
and Hanke, 2020).

Recently, skeletal representations have been
used to generate new images (Saunders et al.,
2021; Xia et al., 2023) and avatars (Tze et al., 2022).
Saunders et al. (2021) use pose estimates to elim-
inate the appearance of the input video, but re-
tain motion information to reproduce the linguistic
content of signed utterances (Figure A.1d). Their
system then synthesizes a sequence of images
of a signer with an appearance different from that
of the input video. In Lee et al. (2021), the au-
thors evaluate the effectiveness of various mask-
ing approaches and, consequently, their level of
anonymization. They exploit a system that changes
the identity of signers by replacing their face with
the face of another person, maintaining linguistic
information. Xia et al. (2022) extend this model
towards full-body anonymization. They perform a
similar process as in Saunders et al. (2021) but
without leveraging pose estimation. The resulting
model shows promising results, although preserva-
tion of linguistic content is not assessed.

Motion capture systems are capable of generat-
ing pose estimates as well (Gibet, 2018; Bigand,
2021). They utilize sensors to capture and replicate
the motion of an individual’s face and body, but their
implementation is expensive and invasive due to
the required equipment (Figure A.1e). These sys-
tems have found application primarily in the field
of kinematic studies (Loula et al., 2005; Bigand
et al., 2020). Within these investigations, it has
been demonstrated that movement serves as a
distinctive trait among individuals, facilitating their
identification based on motion patterns. In the con-
text of sign language motion studies, the work of Bi-
gand et al. (2020) has shown that deaf observers
are capable of recognizing signers based on mo-
tion capture data alone, emphasizing the need for
techniques to conceal movement aspects. While
Bigand et al.’s study focuses on identifying signers
through motion capture data to explore how human
traits are encoded in motion patterns, our study
shifts the identification challenge to the domain of
sign language research. Specifically, we target
the recognition of poses generated by pose estima-
tion techniques, by simulating a real-world scenario
within a relatively small deaf community. Our pri-
mary focus is practical, addressing the current level
of anonymity of pose estimates and assessing their
limitations.

Shttps://github.com/CMU-Perceptual-Com
puting-Lab/openpose
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3. Study Design and Data Collection

3.1.

In our study, we distinguished between two groups
of participants: signers (S), who appeared in the
study videos, and raters (R), who provided their
responses as part of the online survey.

We were interested in investigating whether the
language level affected person identification, there-
fore both signers and raters were grouped into three
groups according to the language level: deaf na-
tive signers/early learners of DSGS (referred to DE
for deaf expert), professional DSGS hearing inter-
preters with advanced language knowledge (I for
interpreter), and hearing learners of DSGS with
beginner skills (L for learners).

We recruited 21 raters by collaborating with re-
search initiatives focused on DSGS at two Swiss
universities. To participate in the study, IR and LR
had to have knowledge of DSGS to the extent of at
least level A1 (L group) and B2 (I group) according
to the Common European Framework of Reference
for Languages (CEFR) (Council of Europe, 2009)
and be familiar with all or part of the signers in the
videos used in the study (Section 3.3).

All signers and raters provided their informed
consent, with the option to withdraw from the study
at any time. Raters were compensated in the form
of either money or, for LR, course credits towards
their studies.

Table 1 reports the total number of participants
in the role of raters and signers for each language
level group. Six raters appeared in the study
stimuli themselves, i.e., they were also signers
(Rater=Signer column). This overlap allowed us
to investigate whether the signers were capable of
identifying themselves.

Participants

Language Level Raters Signers Rater=Signer

DE 4 3 2

| 4 3 1

L 13 3 3
Total 21 9 6

Table 1: Total number of raters and signers for
each language group. The last column on the right
shows the number of raters who also appeared as
signers.

3.2. Stimuli

We selected 45 videos from three existing datasets.
For each signer, we manually selected five seg-
ments that were trimmed so as to adhere to lin-
guistic content units. Each segment contained be-
tween 1 and 4 complete sentences (median: 2.0)
and between 5 and 25 glosses (mean: 13.91) in a
time span of 7 to 12 seconds (mean: 10.31 £2.17).

Pose sequences were generated from the front
view of the segments using MediaPipe Holistic (Gr-
ishchenko and Bazarevsky, 2020).* Figure A.1f
in Appendix A displays an example of a pose pro-
duced from one sample.

3.3. Survey

Raters were asked to watch the videos of the sign-
ers and answer a number of questions in the form
of an online survey. They completed the survey
on their laptops in a single session on the same
day. Three key aspects were evaluated through a
questionnaire combining qualitative and objective
assessment methods. First, raters were tasked with
assessing their comprehension and fluency of
the sentences displayed as pose sequences, rating
on a Likert scale ranging from 1 (Not at all compre-
hensible/fluent) to 4 (Very comprehensible/fluent).
Additionally, raters were requested to transcribe
utterances using DSGS glosses or translate them
into German for an objective comprehension as-
sessment. Second, the assessment focused on
language level identification, presenting pose se-
quences categorized under three signer language
levels, and offering options such as “deaf signer
who knows DSGS well”, “hearing person who is an
advanced user of DSGS”, and “hearing person who
is a beginning learner of DSGS.” Last, the survey
included questions related to signer identification,
prompting raters to identify and name the signers
depicted in skeletal representations, along with a
brief justification based on the factors contributing
to their identification.

To confirm whether the raters indeed knew all
of the signers, we conducted a follow-up survey in
which we showed them a video clip of each signer,
as opposed to a pose sequence representing the
signer.

4. Methods

Prior to explaining the methods, we present our
research questions in detail:

RQ1 Language level identification: RQ1.1 Are
sign language users capable of identifying
(other) signers’ language levels based on pose
sequences? RQ1.2 Where language level
identification is successful, what are the fac-
tors that contribute to it? RQ1.3 Can a classi-
fier identify the language level using the same
factors as sign language users?

RQ2 Person identification: RQ2.1 Are sign lan-
guage users capable of identifying signers

that are known to them from pose sequences?

“https://github.com/J22Melody/pose-pip
elines
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RQ2.2 Where person identification is success-
ful, what are the main factors that contribute to
it? RQ2.3 Can a classifier identify a signer us-
ing the same factors as sign language users?

4.1.

The goal of RQ1.1 was to assess the raters’ ability
to correctly determine the language level of the
signers based on pose estimates. Therefore, we
calculated the ratio of correct answers to the total
number of answers within each signer group to
measure identification accuracy for the language
level.

In order to answer RQ2.1, we computed identifi-
cation accuracy as the ratio of correctly identified
signers to the total number of answers for each
signer group. Additionally, we calculated accuracy
at the individual signer level, i.e., by dividing the
number of correct answers for each signer by the
total number of answers related to that signer.

To address both RQ1.2 and RQ2.2, we compared
the raters’ transcriptions of each content stimulus
with the gold standard for that specific utterance,
assuming that the comprehension of the linguistic
content could potentially affect the capability of (cor-
rectly) determining the language level and identity
of the signers. We hypothesized that higher simi-
larity values could correspond to improved compre-
hension of the linguistic content of the stimuli, po-
tentially enhancing the ability to identify the signer’s
language level and identity. For this, we calculated
cosine similarity scores comparing the sentence
embeddings (Reimers and Gurevych, 2019) of the
transcriptions and the gold standards generated
using a multilingual pre-trained language model,
suitable for German®.

Finally, we examined the distribution of compre-
hension and fluency values assigned by the raters
to each stimulus and related them to the identifica-
tion accuracy.

Calculating Identification Accuracy

4.2. Designing Identification Classifiers

Using the collected data, we trained two multi-label
support vector machine (SVM) classifiers: the first
for the task of determining the language level be-
tween the three language categories (“language
level classifier”; RQ1.3), and the second to dis-
cern signers (“signer classifier’; RQ2.3). We chose
SVMs for explainability reasons.

The language classifier predicted the language
level of the signers based on the raters’ comprehen-
sion and fluency ratings as well as the number of
glosses contained in the gold standard transcription

5https://huggingface.co/sentence—trans
formers/distiluse-base-multilingual-cas
ed-vl
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of the utterances. Including the latter feature was
motivated by our hypothesis that a higher quantity
of signs (as measured in glosses) produced by the
signer within a given time frame imparts greater
comprehension difficulty on the rater.

The signer classifier was trained to distinguish
among the nine signers. As with the language
classifier, it was based on comprehension and flu-
ency ratings and the number of glosses in the utter-
ances. As a baseline, we designed a dummy model
that makes predictions based on the most frequent
class label in the dataset, ignoring the input feature
values.

We then employed 10-fold cross validation to
test the performance of both classifiers, optimized
through grid search. Considering only the compre-
hension and fluency features, we speculated that
a deviation in performance between the classifiers
and raters might suggest the presence of factors in
human evaluation that were not explicitly collected
through our survey and could not be reproduced
by the classifiers.

4.3. Annotating the Justifications

To further investigate the factors that contributed
to successful identification of signers (RQ2.2), we
analyzed the data collected using qualitative and
quantitative methods. We performed an inductive
qualitative coding (Skjott Linneberg and Korsgaard,
2019) to identify common themes (factors) relevant
for the alleged identification of signers by the raters.

We used a collaborative process to code all free-
text answers and create the codebook. After a
first screening of all answers, we defined an ini-
tial set of codes that corresponded to the themes
expressed explicitly or implicitly in the responses.
Each answer was then allocated one or multiple
codes, depending on the content. Three of the au-
thors then iteratively refined and divided the list of
codes into main themes and sub-themes, following
fundamental concepts of sign language linguistics.
The annotations were performed separately and
then combined. Annotations that did not overlap
were discussed among the annotators to arrive at
a unanimous decision.

Overall, we labeled 195 answers; of these, 117
were based on correct identifications of signers.

The final codebook is shown in Appendix B. The
anonymized dataset and annotated justifications
are published on Zenodo.®

bhttps://doi.org/10.5281/zenodo.10669
768
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5. Results
5.1. Quantifying Language Level
Identification

To answer RQ1.1, we examined the responses per-
taining to all rater-signer pairs (i.e., including cases
where a rater had indicated not knowing a signer in
our follow-up survey), assuming that it is possible to
identify a signer’s language level even without being
familiar with them. Table 2 reports the number of
correct language level identifications and the corre-
sponding accuracy across rater and signer groups.
Different denominators resulted from different num-
bers of raters per group (Table 1). Overall, raters
correctly identified the language levels 616 out of
934 times, resulting in a total accuracy of 65.95%.
DERs achieved the highest accuracy (85%), with
particular precision in identifying the ISs (91.67%).
Among the signer groups, the learner language
level was the most correctly identified across rater
groups (85.48%).

5.2. Investigating Language Level
Identification
5.2.1. Factors Contributing to Identification

The distribution of correct and incorrect identifica-
tions against similarity values shows that higher
similarity values correspond to accurate language
level identifications, with variations among groups
(Figure E.3 in Appendix E). For the DER group, av-
erage similarity scores remain consistent between
correct and incorrect identifications (both around
0.7). In contrast, IRs and particularly LRs demon-
strate a link between accurate identification of lan-
guage levels and comprehension of the content,
leading to more precise transcriptions.

Focusing only on correct answers, the LRs easily
recognized the language levels of their peers and
obtained higher similarity scores in the transcrip-
tions of their utterances (Figure E.4 in Appendix E).
This pattern could be attributed to learners’ ten-
dencies to use simpler signs and sign at a slower
pace, resulting in sentences that are easier to un-
derstand. A statistically significant correlation of
0.324 (p = 0.0) between correct language level
identifications and similarity scores is found exclu-
sively for the LR group.

Examining only the comprehension aspect, we
observed a decrease in comprehension ratings as
rater language levels decline (Figure E.5 in Ap-
pendix E, left). DERs assigned higher comprehen-
sion scores, suggesting better subjective under-
standing, while LRs reported minimal comprehen-
sion. Regarding fluency, the ratings rise as signer
language levels increase (Figure E.5 in Appendix E,
right). LSs seldom achieve high fluency scores,
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aligning with the perception that lower language
level signers are perceived as less fluent. Espe-
cially, ISs received comparable high fluency ratings
to DESs, suggesting interpreters were perceived
as nearly as fluent as deaf experts.

5.2.2. Automatic Classification of Language
Levels

To answer RQ1.3, we explored the results of the
multi-label language classifier reported in Table D.6
in Appendix D. Figure 1 shows the confusion ma-
trix of the language classifier, over a 10-fold cross-
validation on all data: While LSs were almost never
confused, there is some overlap between DESs
and ISs. Similarly, LRs made the same mistake by
confusing DESs and ISs in the survey responses.

To deeper investigate this outcome, we designed
a binary classifier for each language level to predict
whether a signer had that specific language level
(e.g., DE), based on the same predictive features
of the language classifier. DESs were the most
difficult category to be recognized, obtaining an F1
score of 0.55. Conversely, the LSs were the most
correctly classified, with F1=0.85.

Real language level

36 19

DE

DE
Predicted language level

L

Figure 1: Confusion matrix for the language classi-
fier predicting signers’ language levels, evaluated
using 10-fold cross-validation.

The final classifier ‘DE+I+L obtained an F1 score
of 0.638 and reached an accuracy of 65.7%, which
is almost equivalent to the total accuracy of 65.95%
obtained by the raters (Table D.6 vs. Table 2).
In comparison, the dummy model obtained an F1
score of only 0.168.

5.3. Quantifying Person Identification

In addressing RQ2.1, the question on the correct
identification of familiar signers, our analysis con-
sidered raters who knew the signers. All raters were
familiar with all signers, except for one signer from
the | group and two from the L group (Figure C.2 in
Appendix C).



Groups DES IS LS Total
DER 44/60 (73.33%) 55/60 (91.67%) 54/60 (90.0%) 153/180 (85.0%)
IR 25/55 (45.45%) 45/59 (76.27%) 48/55 (87.27%) 118/169 (69.82%)
LR 102/195 (52.31%)  80/195 (41.03%) 163/195 (83.59%) 345/585 (58.97%)
Total 171/310 (55.16%) 180/314 (57.32%) 265/310 (85.48%) 616/934 (65.95%)

Table 2: Number of correct language identifications (percentages in brackets) across language groups.
Values in bold indicate the highest scores for each signer group, and the total score.

Table 3 illustrates that raters achieved a total of
117 correct identifications, resulting in an overall
accuracy of 13.64%. Accuracy exhibited a consid-
erable dependence on signer and rater language
levels. The better performance of the DERs com-
pared to the other two groups could be potentially
attributed to their more advanced receptive skills,
a characteristic well studied in sign language lin-
guistics, that improve along with the development
of language proficiency (Beal-Alvarez, 2016; Hall
and Reidies, 2021; Johnston, 2004).

Examining individual signers, Table 4 shows an
even higher variability in accuracy. DERs consis-
tently identified the three DESs correctly, with ac-
curacy ranging between 35% and 45%. Signer 5,
a well-known interpreter working for the Swiss na-
tional broadcaster, was correctly identified with an
accuracy of 55% by DERs, 73.7% by IRs, but only
3% by LRs.

LSs had lower identification rates, with DERs
achieving 80% accuracy for Signer 7. IRs never
correctly identified any of the learners, potentially
linked to lower familiarity.

Focusing on raters who also appeared as signers
in the stimuli, five out of six identified themselves
correctly in at least one instance. DERs achieved
80% accuracy, IRs 40%, and LRs 13%. This self-
identification trend may be tied to receptive sKill
development and the ability to recognize one’s own
movements, as supported by previous kinematics
studies (Bigand et al., 2020; Loula et al., 2005).

5.4. Investigating Person Identification

5.4.1. Factors Contributing to Person

Identification

To answer RQ2.2, we first investigated the distribu-
tion of correct identifications between signer groups
based on similarity scores to determine whether
a discernible pattern emerged (Figure F.6 in Ap-
pendix F). We found a weak positive Pearson cor-
relation of 0.175 (p — value < 0.005) between the
similarity scores and the correct signer identifica-
tions. Comprehension as manifested through ac-
curate transcription of the signed utterances did
not influence the correct identification of signers.
However, we observed a distinction between the
similarity scores obtained in the transcription of
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utterances produced in correct and incorrect identi-
fications within the LRs, as already described for
language level identification in Section 5.2. The
transcriptions in which the signer was identified ob-
tained a higher average similarity score compared
to the transcriptions of the utterances where the
signer was not correctly identified.

We investigated the comprehension and fluency
ratings. As with the linguistic level identification
task, for the signer identification task, we also no-
ticed analogous rating distributions for comprehen-
sion. Both DERs and IRs never assigned the lowest
comprehension score in conjunction with correctly
identified signers (Figure F.7 in Appendix F, left).

With regard to fluency (Figure F.7 in Appendix F,
right), the signer groups obtained high ratings, es-
pecially the interpreters. Among the correct re-
sponses, raters with higher language levels had
a better understanding of the linguistic content of
the stimuli, and signers with higher language levels,
both DESs and ISs, were assessed as more fluent.

5.4.2. Automatic Classification of Signers

To answer RQ2.3, we analyzed the results of
the multi-label signer classifier (Table D.7 in Ap-
pendix D). The multi-label classifier obtained an
F1 score of 0.312, meaning that it was able to cor-
rectly identify a signer one time in three, based only
on comprehension and fluency values, and on the
total number of glosses, outperforming the total
accuracy obtained by human raters.

Figure 2 displays the confusion matrix of the
signer classifier, over a 10-fold cross-validation on
alldata. The overlap in identification between DESs
and ISs that we described in Section 5.2.2 persists,
but in this case it was the ISs that were most fre-
quently mistaken for DESs. The greatest confusion
was between Signers 6 and 1 as well as Signers 2
and 5.

5.4.3. Justification Analysis

Whenever raters indicated having identified a
signer, they were asked to elaborate on the fac-
tors that had led to identification. This information
allows us to go deeper into RQ2.2. We qualita-
tively investigated the identifying factors that we
had coded in the justifications (Section 4.3).



Groups DES IS LS Total
DER 23/60 (38.33%) 21/60 (35.0%) 9/40 (22.5%) 53/160 (33.12%)
IR 5/55 (9.09%)  18/59 (30.51%) 0/49 (0.0%)  23/163 (14.11%)
LR 25/195 (12.82%) 2/155 (1.29%) 14/185 (7.57%) 41/535 (7.66%)
Total 53/310 (17.1%) 41/274 (14.96%) 23/274 (8.39%) 117/858 (13.64%)

Table 3: Number of correct identifications (percentages in brackets) across language groups; without
unknown familiarity. Values in bold indicate the highest accuracy scores for each signer group.

Signers DE

1 2 3 4

Signers |
5

Signers L

6 7 8 9

Raters DE
Raters |
Raters L

7720 (35.0%)
1/18 (5.56%)
9/65 (13.85%)

9/20 (45.0%)
4/19 (21.05%)
0/65 (0.0%)

7720 (35.0%)
0/18 (0.0%)
16/65 (24.62%)

6/20 (30.0%)

0/65 (0.0%)

11720 (55.0%)
2/20 (10.0%) 14/19 (73.68%) 2/20 (10.0%)

4/20 (20.0%) | 8/10 (80.0%)
0/19 (0.0%)

13/65 (20.0%)

0/15 (0.0%)
0/15 (0.0%)
1/60 (1.67%)

715 (6.67%)
0/15 (0.0%)
0/60 (0.0%)

2/65 (3.08%) 0/25 (0.0%)

Table 4: Number of correct identifications (percentages in brackets) per rater group for each signer.
Identification numbers in bold represent signers who were also raters. Values in bold highlight the signer
within each signer group who received the highest identification rate.

Real signer

0

7
Predicted signer
Figure 2: Confusion matrix for the signer classi-
fier, evaluated using 10-fold cross-validation. The
colored box indicates the language level of the sign-
ers.

Figure 3 shows the frequency distribution of the
factors in each group of signers. In general, the fac-
tors focused on intrinsic characteristics of signers,
such as the use of specific non-manual compo-
nents or posture. Only a few raters indicated a
non-descriptive factor, such as work, as an identi-
fying feature.

For each group of signers, we characterized the
main identifying features. The most important fac-
tors in identifying DESs were signing style, posture,
signing fluidity, and non-manual components such
as head movements. For instance, Rater 8’s obser-
vation of Signer 1 was as follows: “/ can recognize
them by the facial expression, positioning of the
head, by the way they move the mouth, and by the
fluidity of their signing."

ISs were mostly assigned a signing style label,
followed by the labels grammatical aspects, mouth
movement, and posture. The signing style feature
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may be attributed to the fact that the interpreters
chosen as signers work for the national broadcaster
and raters were familiar with seeing them on televi-
sion. Regarding Signer 5, Rater 8 remarked, “They
are recognizable by the look towards the monitor,
by the signing speed, and by the movement of the
body. This person uses many mouth actions. Also
knowing how to meaningfully formulate the sen-
tence content. Syntax is heavily influenced by Ger-
man syntax. All this is typical of TV interpreters."

For the LSs, work interactions were often men-
tioned as identifying reasons, indicating that raters
who correctly identified LS were familiar with their
signing style due to encounters in a work environ-
ment. The work code was used to label both the
teacher-student and student-student relations that
were indicated in the justifications. Gesture and
movements of the mouth were cited as further iden-
tifying features. Rater 9 stated on Signer 7 that they
were identifiable from "the way this person signs
the word NAME and the excessive way they use
the movements of the mouth."

Finally, we explored the self-identification cases.
Five out of the six raters who also appeared as sign-
ers successfully identified themselves and explicitly
stated this in their justifications. Rater 15 briefly
explained that they identified themselves based
on their movements. These statements broadly
demonstrate a certain degree of self-awareness
regarding the raters’ own movement or movement
in the action performed, a phenomenon previously
observed (Loula et al., 2005; Blasing and Sauzet,
2018).

6. Discussion

The rising concern for the privacy of sign language
users, particularly in smaller deaf communities,
prompted our study to inspect the assumption that
pose estimates are anonymous representations
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Figure 3: Matrix of the distribution of identifying factors across signer groups.

of sign language data. Contrary to this assump-
tion, our findings reveal that participants were able
to determine both the signer’s language level and
identity with a certain degree of accuracy.

Automation of identification tasks, simulating po-
tential applications in SLP, showed high F1 scores,
indicating that non-anonymized DSGS pose se-
quences could be correctly identified at least one
out of every three times. This result alone should
raise concerns regarding the sharing and utilization
of data without proper anonymization.

Our investigation also explored the role of sub-
jective comprehension and fluency as predictors
for identification tasks. The differences between
the results obtained by the raters and the classi-
fiers (e.g., Table 2 vs. Table D.6) prove that human
raters leverage some additional features during the
identification process that we did not collect with
our survey, and thus could not be replicated by the
classifiers.

Qualitative analysis of justifications highlighted
factors like familiarity, movement, and signer-group-
specific characteristics contributing to identification
accuracy. Specifically, movement proved to be an
identifying factor, aligning with existing studies in
kinematics.

Considering the privacy concerns of sign lan-
guage users, often hesitant to participate in
research, our study emphasizes the need for
anonymization methods, both at the visual ap-
pearance and individual motion levels. Striking
a balance between data usefulness and privacy
preservation is crucial as the field of SLP expands.
While transforming sign language datasets into
anonymized pose estimates presents a potential
solution, its integration with novel systems and the
acceptance of these strategies in sign language
communities remain unexplored.

Acknowledging limitations such as the small par-
ticipant pool and potential impacts of cultural and
educational backgrounds, our findings stress the
necessity of ongoing efforts to ensure the well-
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being and protection of sign language users in the
evolving landscape of sign language research.
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A. Example Anonymization Methods
Figure A.1 shows six examples of techniques ap-

plied in research to (pseudo-)anonymize sign lan-
guage data (Section 2).

B. Annotation Codebook

Theme Sub-themes
Non-manuals mouth, gaze, eyebrows, head, torso
Signing signing style, gesture, handedness,

grammar, posture

Self-identification  self-identification

Movement movement type

Fluency signing fluidity, pauses, signing speed
Appearance body, facial expression

Other work, TV, family, guessing

Table B.5: Codebook containing themes and sub-
themes identified in the justifications. Note that
sign language movement was coded as movement,
while upper body movement was annotated using
the code non-manuals: torso.

C. Familiarity

Figure C.2 shows the results of the follow-up sur-
vey, in which each rater was required to indicate
their familiarity with each signer using a “yes” or
“no” response (Section 3.3). The three DESs were
known by all raters, while there is a degree of vari-
ability regarding the reported familiarity for the two
other groups of signers, especially for the LSs.
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Figure C.2: Plot comparing the familiarity of signers
across raters. Values in brackets indicate the num-
ber of persons in the group. Values within the cells
denote the proportion of familiarity of familiarity be-
tween the raters and the signers, while the color
gradient indicates the corresponding percentage.

D. Classifier Results

Table D.6 reports the results for the “language
classifier” described in Section 5.2.2. Table D.7
presents the results for the “signer classifier”, de-
scribed in Section 5.4.2.

Precision Recall F1 Accuracy
DE 0.606 0.588 0.559 0.594
| 0.778 0.811 0.776 0.784
L 0.847 0.866 0.852 0.865
Dummy DE+l+L 0.112 0.333 0.168 0.336
DE+I+L 0.645 0.657 0.638 0.657

Table D.6: Average scores for the binary classi-
fier, dummy multi-label classifier, and multi-label
language classifier, evaluated with a 10-fold cross-
validation. DE+I+L is the final classifier.

Precision Recall F1 Accuracy
Dummy 0.012 0.111 0.022 0.108
Signer 0.342 0.336 0.312 0.336

Table D.7: Average scores for the dummy multi-
label signer classifier and multi-label signer classi-
fier, evaluated with a 10-fold cross-validation.

E. Plots RQ1

Figures E.3, E.4, and E.5 are visualizations dis-
cussed in Section 5.2, concerning RQ1 on identify-
ing the language level of signers.

F. Plots RQ2

Figures F.6 and F.7 are visualizations described in
Section 5.4 regarding RQ2 on person identification.
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(a) Blackening (b) Blurring (c) Tiger filter

- o

(d) Point Light Displays (e) Pose estimates  (f) Generated image

Figure A.1: Examples of methods used for anonymizing sign language data. Picture (a) from (Isard, 2020);
picture (b) from (Camgoz et al., 2021); picture (c) from (Bragg et al., 2020); picture (d) from (Saunders
et al., 2021); picture (e) from (Bigand et al., 2020); picture (f) from our study.
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Figure E.3: Distribution of similarity scores for correct and incorrect identifications of the signers’ language
levels, across rater and signer groups.
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Figure E.4: Distribution of similarity scores for correctly identified language levels across signer groups.
Each subplot corresponds to a different rater group and illustrates the distribution of similarity values (on
the y-axis) obtained by rater groups in transcribing the content of the utterances from videos where they

correctly identified the language levels of the signers.
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Figure E.5: Left: Bar plot showing the distribution of comprehension levels among rater groups. The
y-axis represents percentages and the x-axis displays the four comprehension values across the rater
groups. Right: Bar plot showing the distribution of fluency ratings among three signer groups. The y-axis
represents percentages, and the x-axis displays the three signer groups and the four assigned fluency
ratings, ranging from Not at all fluent to Very fluent.
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Figure F.6: Distribution of similarity scores for correct and incorrect signer identifications, across rater and

signer groups.
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Figure F.7: Right: Bar plot showing the distribution of the comprehension ratings assigned by the raters
to the stimuli whose signers were correctly identified. Left: Bar plot showing the distribution of fluency
ratings among three signer groups.
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Abstract

This article aims to explain how latency is captured in sign language dialogue via videoconferencing and how
recorded data are integrated and annotated using an annotation tool (ELAN). First, we present two examples of
the analysis to clarify basic theoretical issues that affect turn-taking via videoconferencing systems focusing on the
sequence structure of ‘greetings’ and ‘encounters.’ Videoconferencing dialogues often begin with the participants
greeting each other, which may be delayed because of the nature of online communication or the technical
specifications of each individual's device. Next, to discuss sequential issues with videoconferencing dialogue, we
introduce how the fundamental adjacency pair, such as question (first pair part: FPP) and answer (second pair part:
SPP), appears to each participant on their computers with latency. This research shows that recording
videoconferencing dialogues with latency is useful for next-generation data collection in vision-sensitive sign
languages, as well as audio-centred spoken languages with gestures.

Keywords: latency, videoconferencing, sign language dialogue

1. Introduction

This article aims to explain how latency is
captured in sign language dialogue via
videoconferencing and how recorded data are
integrated and annotated using an annotation tool
(ELAN). Since the start of the coronavirus
disease 2019 (COVID-19) pandemic, online
conferencing has become a part of daily life for
many people. This lifestyle change applies to
hearing people and Deaf people. How have Deaf
individuals, who essentially communicate in
three-dimensional space, experienced this shift?
To address this question, the present study
recorded online conversations between Deaf
people using the videoconferencing tool Zoom.

Before the coronavirus disease 2019 (COVID-19)
pandemic, Deaf people would meet in so-called
Deaf spaces, where they could communicate
using sign language—thus, they formed their own
society (Kusters, 2015). The pandemic forced
Deaf people to meet online, and the Deaf
community, which values face-to-face
communication, was inspired to extend Deaf
space into two-dimensional spaces such as
videoconferencing. The long COVID-19
pandemic facilitated human familiarity with and
adoption of videoconferencing systems in daily
life, resulting in a stable world where Deaf people
worldwide can communicate across spatial and
distance barriers. Deaf people have been using
videoconferencing before COVID-19, and it has
been reported that they have unique linguistic

1 There are already projects documenting the
experiences of Deaf communities in the time of COVID-
19 for American Sign Language.
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and ethnographic ways of integrating such new
technologies into their lives (Keating and Mirus,
2003). Before Corona, the Deaf who participated
in online communication were a small group of
people with strong computer skills, and their use
was not stable and continuous. The increase in
use and adaptation of online communication in
the wake of the coronavirus disaster raises long-
term observation needed theoretical questions in
Communication Studies regarding the effects on
how Deaf people, who have essentially
communicated in three-dimensional space,
communicate with others in two-dimensional
digital space via sign language?.

In terms of linguistic resources for natural
language processing research, videoconference
recordings of dialogues could be useful for next-
generation data collection. Data recording using
videoconferencing systems, which do not require
participants to meet in person, will prevent the
spread of unknown viruses in the future and allow
data recording by people from different regions.
For example, the geographic distance between
the UK and Japan meant that contact between
their respective sign languages was impossible in
face-to-face situations. However, now that online
communication is commonplace, Deaf people in
the UK and Japan can meet more easily and
frequently than before.

Here, we report the preliminary results of part of
the  3-year international joint  project
‘Understanding cross-signing phenomena in
video conferencing situations during and post-

https://doi.org/10.6084/m9.figshare.22340830.v1
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COVID-19 in rural areas’ 2 between the United
Kingdom (UK) and Japan, which began in 2022.
The goal of this project is to observe online cross-
signing phenomena among non-shared language
situations (Bono and Adam, 2023); it consists of
two phases. In the first phase (2022/23), data
collection was conducted in the respective
countries (UK and Japan) using
videoconferencing systems. During the second
phase (2023/24), Deaf people in Japan and the
UK, who do not have a shared sign language, will
meet and interact with each other through a
videoconferencing system.

In this article, we describe data integration,
annotation, and transcription methods for video
clips with videoconferencing-specific latency that
were designed by the Japanese team during the
first phase. First, we present two examples of the
analysis to clarify basic theoretical issues that
affect turn-taking via videoconferencing systems
focusing on the sequence structure of ‘greetings’
and ‘encounters.’” Videoconferencing dialogues
often begin with the participants greeting each
other, which may be delayed due to the nature of
online  communication or the technical
specifications of each individual's device. To
discuss theoretical issues with videoconferencing
dialogue, we introduce how the fundamental
repair sequence, such as question and answer,
appears to each participant on their local
computers with latency. This research helps to
show that recording videoconferencing dialogues
with latency is useful as next-generation data
collection for vision-sensitive sign languages, as
well as audio-centred spoken languages with
gestures.

Section 2 describes the methods used to process
the delays; section 3 gives an overview of the
data collection; and section 4 demonstrates the
actual qualitative analysis of the data. This paper
is the first report to show how latency is essential
for qualitative analysis research on online sign
language dialogues.

2. Latency in Videoconferencing

From a technical perspective, many
videoconferencing systems seek lower latency to
more closely resemble in-person conversations.
However, depending on internet speeds and
computer specifications, latency may be high in
an individual's home. Many sociological and
conversation analytical studies of video-mediated
interactions have focused on the lack of shared
space in conversations that occur via
videoconferencing systems (Heath and Luff,
1993). Even in spoken conversation, if the space
is not shared, it becomes difficult to use gestures
such as eye contact and pointing, which can
typically be used without difficulty during face-to-

2 https://www.ukri.org/news/uk-japanese-collaboration-
to-address-covid-19-challenges/

27

face interactions. In the aftermath of the COVID-
19 pandemic, Seuren et al. (2021) observed a
remote medical interview conducted using
Skype ®, which had been the predominant
videoconferencing platform before COVID-19—
rather than Zoom # —using the Conversation
Analysis (CA) method. They concluded that
conversation participants communicating via
videoconferencing platforms behave as though
they inhabit a shared reality.

We believe that two issues must be considered
here. The first issue is the importance of latency
in interactions such as medical counselling,
where the goal is ‘solving’ or ‘curing’ a problem.
During social interactions, in which the explicit
goal is achievement of the objective regardless of
latency or transmission problems, these
problems may be tolerated if the goal is achieved.
The second issue arises in situations where Deaf
people use videoconferencing systems. When
hearing people use videoconferencing systems,
they have the option to cease using the video
component if latency or video outages occur;
however, Deaf individuals do not have that
option. Additionally, Zoom has a function that—if
the audio transmission ceases for a certain period
of time—allows users to increase the audio speed
and transmit all speech that can be understood
and heard. Conversely, Zoom does not have a
function to reduce the video frame rate and
transmit language-understandable and readable
video in a single transmission. Thus, when
latency or video outages occur, the Deaf person
must be able to clearly resolve these troubles so
that they can follow the conversation.

The 'greeting’ and ‘encounter’ situations in online
communication are the first places where latency
due to the recipient's internet environment and
personal computer specifications can be
identified. If latency in the recipient's video
transmission is recognised, it will be necessary
for the speaker to consider such latency. When
discussing delays in online communication, it is
important to discuss this system-induced trouble,
which can be termed ‘basal latency'. Basal
latency results in different ways of viewing
sequence organisation between oneself and
others in a videoconferencing dialogue. In this
paper, we focus on basic adjacency pairs such as
guestion (first pair part; FPP) and answer (second
pair part: SPP) and raise theoretical issues
regarding sequence organisation in CA
(Schegloff, 2007).

3. Data Collection

The details of data collection during the first
phase have been published elsewhere (Bono and
Adam, 2023). This section introduces the method
of data collection, focusing on latency and

3 https://www.skype.com/en/
4 https://zoom.us/
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components of the analysis detailed in Sections 5
and 6. Participants were selected from three
geographically distant regions in Japan:
Hokkaido, Shikoku, and Okinawa. Three
participants were selected from each of the
abovementioned regions, and then divided into
groups A, B, and C for each region (see Table 1).
Dialogue pairs were composed of one participant
from each group and the other participant from
one of the remaining two groups—for example,
the ‘Hokkaido (HK) and Shikoku (SK) pair’, the
‘SK and Okinawa (ON) pair’, and the ‘HK and ON
pair’ in Group A.

Region Gr;)II.]l)p A Gr;)Illl)p B Gr;)Il]l)}‘) C
Hokkaido HK-A HK-B HK-C
Shikoku SK-A SK-B SK-C
Okinawa ON-A ON-B ON-C

Table 1: Regions, groups, and identifications
(IDs)
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Figure 1: Video Duration Distribution

The online dialogue was recorded locally on the
participants’ computers using the recording
function in Zoom at three sites: the locations of
both participants and the monitoring staff (Zoom
host). Using the ‘hide non-video participants’
feature in Zoom, the monitoring staff faded from
the Zoom view of the participants as the
conversation/experiment began. However, the
monitoring staff actually participated in the Zoom
call to gauge and monitor the participants’
dialogues. The reason for recording at each site
was to avoid missing any discussion of latency
issues during online communication that might
have affected the turn-taking process (Seuren et
al., 2021). By recording at three sites, it was
possible to process and analyse the timings of
various communication phenomena; this allowed
the researchers to determine how each
participant saw their recipient's image and

5Available at: https://support.zoom.us/hc/en-
us/articles/202920719-Accessing-meeting-and-

phone-statistics
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identify any differences in the way they might
subsequently view each other.

After the monitoring staff member turned off their
camera and appeared to have left the session,
the participants commenced their online
dialogue. At the appropriate time, as the
conversation was ending (e.g., as indicated by
topic shifts; approximately 15 minutes), the
monitoring staff member would turn on their
camera to terminate the ongoing dialogue. Figure
lillustrates the distribution of the video durations,
showing that most dialogues concluded within
approximately 15 minutes but sometimes
continued for up to 20 minutes.

4. Latency in Analysis

Latency has a noticeable impact on the
conversation process: a certain degree of latency
can make the conversation impossible. Thus, this
study tracked latency during the data collection
process.

4.1 Capturing Latency in Zoom

Latency has a noticeable impact on participant
satisfaction with the conversation process. If the
delay reaches 400 ms, the conversation will
become unacceptable for participants (ITU-T,
1996). Garg et al. (2022) reported that
participants were able to adapt to higher latency,
but they exhibited increased fatigue and
frustration associated with higher cognitive load
during visual tasks. In the context of data
collected from sign language dialogues held via
videoconferencing, latency tracking and reporting
are essential for future conversation analyses.

The built-in tools for latency tracking and
reporting in Zoom have an ambiguous
description® and unclear export capabilities; a
requirement for participants to use these tools
would add unwanted complexity to the recording
process. For post-collection latency
measurement, we chose a three-way setup—two
participants and a monitor—as shown in Figure 2.

Using this setup, the delay between the two
participants could be fully observed only by a
monitoring party. The observation was also
shifted along the absolute timeline because the
observer had its delay. Nonetheless, this
observation added context to each participant’s
recordings, allowing us to synchronise them
within the absolute timeline.

Zoom has a function that allows conversations to
be recorded and stored in the cloud or in the local
memory. The difference between the two options
is crucial: if a participant records to the cloud, a
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Figure 2: Three-way latency conversation
schema, adapted with permission from Hosoma
and Muraoka (2022)

delay will be added to his camera view, and the
video quality will be reduced. Recordings stored
in local memory have superior quality and no
delay; thus, this storage is a critical requirement
for post-collection latency computation.

The synchronisation is performed by calculating
the time shift between the participants’ and
monitor's records. The participants’ recordings
are trimmed accordingly, after which they begin
simultaneously in the absolute timeline and are
effectively synchronised with the monitor's
record. They may then be used to measure
latency between participants.

The latency and synchronisation time shifts were
calculated using cross-correlation within SciPy®.
For this purpose, we reduced each video to a
one-dimensional signal by calculating the
Euclidean distance between each frame and an
average frame of the entire video.

Participants’ recordings were compared with the
received version in the other recordings. Each
corresponding piece of the frame with the
participant’s view was cropped to the view size
prior to calculation. For synchronisation with the
monitor’s record, we collected a small portion at
the same video position (250 frames). A sliding

6 Available at:
https://docs.scipy.org/doc/scipy/reference/generated/s
cipy.signal.correlation lags.html#scipy.signal.correlati
on _lags

7 This ELAN annotation is a preliminary step before the
ELAN integration adjustment method is applied based
on absolute time, as described in Section 4.2. In this
context, M-view means monitoring view, HK-view
means Hokkaido view, and ON-view means Okinawa
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window of 120 frames was used to determine
participant latency at each frame.

4.2 ELAN Integration

ELAN Software, which is used to annotate the
sign language corpus, has a built-in function that
allows time series to be displayed along the video
timeline. We utilised this functionality to display
the calculated latency in the recordings, as
illustrated in Figure 3. The output facilitates
comprehension of the delay and reaction time.

Delayed annotations may be created by adding
latency to the start and end times in the
annotation within the absolute timeline. This
addition may be done automatically using the
Python pympi-ling module.

1200 ] 0.0,
Latency P1 / 1200
Latency P2 [

60.0

0.0

00.0042.000 00:0003.500

—r— —
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Figure 3: Latency display in ELAN

Delay P2
1]

5. Analysis of "Greetings" and
"Encounters” in
Videoconferencing

5.1 Analysis 1: Sequential “Hi” or
floating “Hi” (Hokkaido—Okinawa)

Analysis 1 focuses on dialogue of greeting
scenes between Hokkaido and Okinawa in Group
B (hereafter HK for the Hokkaido participant and
ON for the Okinawa participant). Observing the
results annotated with ELAN in Figure 4, 7 a
sequential relationship can be identified in the
monitoring view (recorded in Tokyo) and the
Hokkaido view, where HK says ‘Hi’ first; ON then
responds, ‘Nice to meet you'.® Conversely, inthe
Okinawa view, it appears that ON said the words
‘Nice to meet you’ first, whereas HK said ‘H/’
almost simultaneously (with a delay of

view on the ELAN tiers’ names. Because the absolute
time has not been adjusted, analysis between the
different participant’s views is impossible. Therefore,
we compare the results between the same participant’s
views.

8 Schegloff (2007) does not apply the concept of
adjacency pairs to greeting sequences, so we follow
this here and describe them as a 'sequential
relationship' rather than adjacency pairs. We describe
the concept of adjacency pairs in Section 6 more detail.
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Figure 5: Analysis 2: Showing a positive attitude (Hokkaido—Shikoku)

approximately 120 ms from the ‘Nice to meet you’
by ON).

Next, in the transcript based on the CA notation,
we described these differences (Excerpts 1 and
1). ® Theoretically, in CA, the monitoring and
Hokkaido views indicate that the ‘Hi’ uttered by
HK is in a sequential relationship with the ‘Nice to
meet you’' next uttered by ON (see lines 01 and
02 in Excerpt 1). Conversely, in the Okinawa
view, HK’s ‘Hi’ completely overlaps with ON’s
‘Nice to meet you’. In this scenario, it appears that
ON’s ‘Nice to meet you’ is uttered first; HK then
responds, ‘Nice to meet you’ (see lines 01 and 03
in Excerpt 1’). Accordingly, HK’s ‘Hi’ is considered
to be floating in the sequence structure.
Subsequently, it appears that HK says
‘Nice...Nice to meet you' in line 03 following and
imitating ON’s greeting in both Excerpts 1 and 1°.
Thus, in a dialogue occurring via
videoconferencing, HK and ON may hold
completely opposite perceptions of who issued
the first greeting.

As a part of the ELAN annotation in Figure 4, HK
should feel that ON is responding 600 ms after
the onset of his ‘Hi’ utterance. However, ON
would have felt as though he had initiated his
salutatory utterance 120 ms earlier than HK’s ‘Hi’.
Simply adding these together, ON’s salutatory
utterance is conveyed to HK with a delay of 720

9 The transcript of Excerpt 1 does not use the word
glosses of the signs separated by slashes because this
analysis does not aim to show temporal relations; it
uses the Japanese translation.
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ms. How does a delay of > 0.7 seconds (sec)
affect the interaction? Analysis 2 continues the
observation by examining another case.

Excerpt 1 (Monitoring and Hokkaido view)
01 HK: HJi

02 ON: [Nice to [meet you

03 HK: [Nice...Nice to meet you

Excerpt 1’ (Okinawa view)

01 ON: Ni[ce] to meet [you

02 HK:  [Hi]

03 HK: [Nice...Nice to meet you

5.2 Analysis 2: Showing a positive
attitude

The data examined in Analysis 2 are derived from
the beginning of the third dialogue experiment
(Figure 5). It is an encounter, rather than a
greeting, and HK initially apologises for his own
connectivity problems. Similar to the data in
Analysis 1, there is minimal latency between the
monitoring view (recorded in Tokyo) and the
Hokkaido view, but the recipient’'s video
transmission exhibits latency in the Shikoku view.

Simple observation of the beginning of ‘Hi’ uttered
by HK in the Hokkaido view and Shikoku view
indicates a basal latency of 400 ms between them.
Further analysis reveals that SK’s ‘No worries
(OK (rep) 0y overlaps with the final 30% of HK’s

10 The signal of (rep) added after the word gloss means
that the sign expression is repeated. Thus, [OK] is
repeated several times here.



‘Excuse me’ utterances (‘Excuse me’: duration
920 ms, overlap time: 280 ms) in the Hokkaido
view. In the Shikoku view, this percentage
increases to 54% (‘Excuse me’: duration 960 ms,
overlap time: 520 ms). SK’s action in the Shikoku
view, which overlaps by more than 50% with HK's
utterance and responds to it, may be assumed to
indicate a positive attitude towards the recipient.
Accordingly, SK is repeatedly and quickly
expressing ‘No worries’ to HK.

After SK's reply with repeated OK, HK closes the
sequence by saying ‘Alright’ (sequence-closing
3rd). However, there is another difference
between the Hokkaido and Shikoku views: in the
Hokkaido view, HK closes SK's ‘No worries’ with
‘Alright’ without a pause (after a short gap of 80
ms). Conversely, in the Shikoku view, the
transmission of HK’s ‘Alright’ is delayed, and the
sequence appears to terminate after a lengthy
pause of 320 ms. Although this difference is
minor, subtracting the actual gap of 80 ms from
320 ms results in a latency of 240 ms, indicating
that HK’s response, ‘Alright’ (sequence-closing
3rd), was not transmitted at the appropriate time.
Thus, the influence of basal latency is present in
these interactions. In the Shikoku-view, because
of latency caused by the system, HK’s reaction in
line 04 has a weak relationship with the previous
sequence, which is also floated from the
fundamental sequence organisation.

Excerpt 2 (Hokkaido view)

01 HK: Hi/Excuse-[me/ (Hi, Excuse me)
02 SK: [OK (rep) (No worries)
03 (gap: 80 ms)

04 HK: OK (Alright)

Excerpt 2’ (Shikoku view)

01 HK: Hi/Excu[se-me/ (Hi, Excuse me)
02 SK: [OK (rep) (No worries)
03. (long pause: 320 ms)

04 HK: OK (Alright)

In Excerpts 2 and 2’ formed as a CA transcript,
Excerpt 2 in the Hokkaido view sequentially
appears better than Excerpt 2’ in the Shikoku
view; SK’s response in line 02 terminally overlaps
HK’s apologies in line 01. Then, after an 80 ms
gap, HK expresses ‘Alright’ (sequence-closing
3rd). In Excerpt 2’, however, SK gives responses
in line 02 with a positive attitude; there is no rapid
sequential feedback from HK. In summary, this
encounter is smooth for HK, whereas it is slightly
awkward for SK.

6. Analysis of Sequence
Organisation with Latency

As mentioned in footnote 7, Schegloff (2007)
does not apply the concept of adjacency pairs to
a sequence of greetings. Therefore, we should
not analyse greetings or encountering; we should
focus on the contents of the conversation
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sequence after greetings to understand what
occurs in an online dialogue with latency from the
perspective of sequence organisation.

In Analysis 3, we focus on differences in the
appearance of a simple question—answer
adjacency pair between the two views. Analysis 4
shows how the theoretical issues raised in
Analysis 3 may be treated in terms of the repair
sequence (Kitzinger, 2013; Schegloff et al.,
1977).

Recently, several researchers, mainly the
language and cognition research group at the
Max Planck Institute, have applied comparative
and quantitative analysis to repair sequences,
especially other-initiated repair (OIR), in several
languages as a universal and fundamental
system of human communication that transcend
differences across cultures and communication
modality, in spoken, signed, and tactile
conversations (Bono et al.,, 2023; Byun et al.,
2018; Dingemanse and Enfield, 2015;
Dingemanse, Kendrick and Enfield, 2016;
Dingemanse, Torreira and Enfield, 2013; Floyd et
al.,, 2016; Haakana et al., 2021; Hayashi et al.,
2013; Kendrick, 2015; Manrique and Enfield,
2015; Manrique, 2016). This article focuses on
more fundamental issues on CA such as
adjacency pairs in Analysis 3, and self-initiated
self-repair sequence not OIR in Analysis 4.

6.1 Analysis 3: Question-answer
adjacency pairs

The data in Figures 6 and 7 were obtained from
the first session, 26 s after the beginning. SK asks
ON, LIVE/PLACE/WHERE, ‘where do you live?’
with questioning facial expressions. After the
qguestion, she maintains her hand shape and
holds it in signing space, which is annotated as
‘post-stroke-hold’, while looking at the recipient.
The concept of post-stroke-hold arises from
Gesture Studies (McNeill, 1996; Kita et al., 1998;
Kendon, 2004). In spoken conversation, post-
stroke-hold functions to hold a topic in discourse,
whereas it has several grammatical functions in
sign language. Here, SK holds the conversational
floor and connects her sequence-closing third,
OKINAWA ‘Okinawa (I see)’, to line 03 in Figures
6 and 7. Sequence-closing thirds (SCTs) are
placed in the third position of question-answer
adjacency pairs by the person who asks a



01 SK-C: Where do you live?
(0.5sgap)

02 ON-C: (I live in) Okinawa

03 SK-C: Okinawa (Il see)

— = 04 ON-C: (I live in) Okinawa
R e e
Figure 6: Q—A adjacency pair (Shikoku view)
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Figure 7: Q—-A adjacency pair (Okinawa view)

guestion to evaluate the answer provided by the
interlocutor and close the current adjacency pair.

During SK’s post-stroke-hold, ON answers,
OKINAWA, (I live in) Okinawa’. There is a
difference in the gap before answering between
the views of Shikoku and Okinawa. In the Shikoku
view, the gap is 0.5 s, whereas it is 0.2 s in the
Okinawa view. We do not consider this a large
difference in an adjacency pair.

The theoretical issue is the explanation for
repetition of ON’s answer in line 04. In the
Okinawa view (Figure 7), the explanation is
visible in SK's SCT, ‘Okinawa (I see), which
arrives slightly later. There is a 0.4-s gap between

lines 02 and 03. Consequently, ON repeats the
answer in line 04. We add more detailed sign
movement annotations, prep (preparation), str
(stroke), and ret (retraction) to SK’s SCT (Kikuchi
and Bono, 2013). From the detailed annotations,
we observe that when ON begins the repetition,
SK continues to prepare for OKINAWA as the
SCT. In this context, we consider SK’s reaction to
ON'’s answer to be slightly delayed; subsequently,
ON repeats her answer again in the Okinawa
view. This is an example of self-initiated self-
repair by ON (Schegloff et al., 1977; Kitzinger,
2013). ON notices her answer is not conveyed to
the recipient, then tries her answer again.

In contrast, in the Shikoku view, SK’s reaction is
less delayed. SK begins the SCT, ‘Okinawa (I
see)’, immediately after ON’s answer. There is no
gap here. This is the shortest time to close the
sequence. Our question here is how ON’s
repetition in line 04 appears to SK.
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First, some sign language linguists insist that
repetitions constitute a form of grammar, such as
stress in sentence, for Deaf people (Covington,
1973). A repetition in answer position appears to
be part of the answer to the question; thus, ON
does not place any emphasis on her answer by
repeating it. Second, we observe that ON tends
to repeat some expressions in the overall data. It
is possible that the repetition is her signing
characteristic. We plan to conduct more
guantitative analysis comparing other signers in
our corpus.

In Analysis 4, we discuss online-communication-
specific issues related to the repair sequence in
ON’s repetition.

6.2 Analysis 4: Self-initiated self-repair
for a frame-out issue

Figure 8 shows one of the dictionary forms of
OKINAWA. In line 02 of Figure 6 and Figure 7,
ON’s two fingers for answering OKINAWA (I live
in) Okinawa’ are frame-out, as shown in Figure 9.
Her signing scale is excessively large. In line 04
of Figure 6 and Figure 7, ON reduces her signing
scale. This is a successful frame-in, as shown in
Figure 10. As the evidence that ON consciously
modified her signing scale, after the question—
answer adjacency pair, she adjusts the camera
position to be captured the upper space of her
signing.



This is an example of self-initiated self-repair. In
an in-person setting, this type of repair initiation
related with frame-out issue does not occur,

g

&>

EF2ELT.2HNHEHLHD
BB3LIICEANLEIFS

Figure 8: An example of dictionary form of
OKINAWA (English translation of caption: Hold
up the index and middle fingers of the right hand
and twist upwards from the temple.) Japanese
Federation of the Deaf (2010: 242)

Figure 9: OKINAWA (frame-out, big)

Figure 10: OKINAWA (frame-in, small)

because the signing space is completely opened
to between signer and recipients. In online
communication, signers monitor how their own
signings are viewed by recipients. Occasionally,
the signings are frame-out and should be
adjusted. This is an online-specific phenomenon.

In the Okinawa view of Figure 7, ON'’s
modification matches as the second pair part
(SPP), answering, of the question—answer

sequence because SK’s SCT in line 03 is delayed.

So, line 03 and line 04 are produced almost
simultaneously. In the Shikoku view of Figure 6,
however, ON’s repetition is not placed the second
pair part. because SK’s SCT in line 03 is not
delayed. Because of that, ON’s repetition in line
04 floats from the ongoing conversational
sequence.
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In addition, we notice that some Deaf people tend
to increase repetition in online communication
more than in-person communication in some
small observations of our data-set. At this
moment, we plan to compare this type of

phenomenon in online and in-person
guantitatively for future works.

7. Discussion
Levinson (2016) modelled the cognitive

mechanisms of turn-taking in everyday human
conversation. He estimated intervals of 200 ms to
conceptualise one's thoughts, 75 ms to retrieve
the lexicon, and 325 ms to encode the form
before taking a turn to speak for a total of 600 ms.
However, when the timing of turn-taking was
measured from actual linguistic data collected
worldwide, the start of the response turn was
normally distributed with a peak approximately
200 ms after the end of the recipient’s turn. He
points out that to achieve this, humans plan their
own speech production while anticipating their
opponent's speech; they also anticipate the end
of the turn and follow signals that provide clues to
the end of the turn.

Our research question is as follows: What
changes would ensue if videoconferencing
systems were introduced to the turn-taking
process supported by the highly organised
human cognitive mechanisms? This is a general
guestion that is common to both spoken
dialogues and signed dialogues occurring via
videoconferencing systems. Future studies of
online communication should consider how
recipients accept system-induced latency when
basal latency occurs, and how they subsequently
interact with each other. Online sign language
interaction is an ideal research target to approach
this problem because it uses only a video channel
without a speech channel.

A limitation of this study is that it is difficult to
ascertain whether and how the conversation
participants themselves notice and perceive the
minute differences in the conversation sequence
due to this latency. However, conversation
analysis is a research method that analyses how
the other party followed the next action in
response to a previous action in order to
understand the state of awareness of the
conversation participants themselves, etc. We
will continue to collect data and propose a theory
of turn-taking and repair sequences in online
communication.

8. Conclusion

The technological development of
videoconferencing systems, such as Zoom,
prioritises the enhancement of usability primarily
for hearing people. However, some usability
innovations have also been implemented to
support  the Deaf  minority.  Although



videoconferencing systems and everyday
conversations are not required to be completely
equivalent, phenomena including  which
participant ‘greets’ the other first or reactions that
convey a positive attitude towards the other’s
utterance, and how the repetitions appear to the
remote recipient, as demonstrated in this article,
can be significantly inhibited by latency. The
sense of accomplishment and satisfaction during
a conversation is obtained through a series of
interactions with the recipient. We hope that
analyses of this nature will be utilised in future
efforts to develop video transmission technology.

Thus far, we have merely established the data
collection method and data annotation
environment. In future studies, we intend to
gualitatively and quantitatively analyse the
recorded data, then continue the exploration of
how Deaf people living in the visual world were
forced to confront communicative and cognitive
challenges during the COVID-19 pandemic.
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Abstract
The Swedish Sign Language (STS) Corpus mainly contains segmentations on the lexical level (i.e. signs), which
makes it difficult to extract information at clause- or utterance-like levels. In this paper, | evaluate three different
methods of segmenting the data into larger units: prosodic, syntactic and translation-based utterance units.
The results show that none of the utterance units have particularly high accuracy in their alignment with the
others, illustrating the challenges facing researchers who are looking to extract meaningful units above the lexical
level. In a second step, | extract articulation information from the corpus videos using computer vision meth-
ods, but find no clear alignment of articulatory features of the hands and head with the boundaries of the utterance units.

Keywords: sign language, corpus, segmentation, clause, utterance, alignment, prosody, computer vision

1. Introduction

Today, there is an increasing number of corpora of
sign languages in the world (Fenlon and Hochge-
sang, 2022; Kopf et al., 2022, 2023). Technical
approaches can benefit from these resources, as
well as facilitate their future expansion (see Mor-
gan et al., 2022). Substantial information can be
extracted even from very basic annotations, such
as simple lexical level annotations —i.e. segmenta-
tions and annotations of each individual sign pro-
duced —which tend to be the initial steps of sign lan-
guage corpora annotation work (Johnston, 2014).
While such annotations can provide important in-
sights into, e.g., lexical frequency, collocations and
duration (Bdrstell, 2022b), it is more challenging to
use lexical annotations alone to investigate gram-
matical constructions. This is mainly due to the
fact that many sign language corpora lack any form
of syntactic segmentation of the signing. One ex-
ception is the Auslan Corpus, which features so-
called clause-like units that internally also have an-
notations for grammatical functions, enabling more
detailed investigations into the syntactic organiza-
tion of the language (Johnston, 2019). From the
perspective of Conversation Analysis, Bono et al.
(2020) annotated various layers of linguistic infor-
mation — e.g., pragmatic, syntactic and phonetic —
to segment a corpus of Japanese Sign Language
(JSL) dialogues into utterance units based on those
combined layers, facilitating research on the inter-
actional aspects of sign language communication.

In this paper, | look at the Swedish Sign Lan-
guage (STS; svenskt teckensprak) Corpus (Mesch
et al., 2012), which does not feature any clause- or
utterance-unit segmentations on the whole. How-
ever, a small subset of the corpus has previously
been annotated for syntactic relations (Ostling et al.,
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2017), which can be used to infer clause or sen-
tence units for that specific subset. Prosodically
motivated segmentation of the corpus has been
piloted as well, but was deemed inefficient as a
method (Bérstell et al., 2014). Without dedicated
segmentations above the lexical level, research
that required sentence-based segmentations has
instead used the translation tier segmentations as
an approximation of sentence units (Sjons, 2013;
Ostling et al., 2015). To date, there has been no
evaluation of how past approaches to sentence-
or utterance-unit segmentation/approximation align
with one another. The goal of this paper is thus to
evaluate the equivalence across approximations of
utterance units in the STS Corpus, namely those
based on available or inferred prosodic, syntactic
and translation segmentations.

2. Background

The Swedish Sign Language (STS; svenskt teck-
enspradk) Corpus (Mesch et al., 2012) has been
available for research since 2011, and has since
been published as an online interface (Oqvist et al.,
2020). The STS Corpus has mainly been anno-
tated for sign glosses and idiomatic translations into
written Swedish (Mesch et al., 2012; Mesch and
Wallin, 2015), but has later been enriched with word
class annotations (Ostling et al., 2015). Smaller
subsets have in addition been annotated for other
properties such as backchannel responses (Mesch,
2016), mouthings (Mesch et al., 2021) and syn-
tactic segmentations and relations (Bérstell et al.,
2016). However, there is no comprehensive type of
segmentations beyond the original sign and trans-
lation tier annotations. In Borstell et al. (2016),
we attempted a basic syntactic annotation of the
STS Corpus, which involved segmenting clause-
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like units on the basis of a combination of syntactic,
semantic and prosodic properties of the signing.
The definition centered around predicate-type signs
as the core, and expressing a single idea within
a single prosodic unit, definitions that were fur-
ther used in later cross-linguistic research (Bérstell
et al., 2019). In Borstell et al. (2016), the first step
was identifying and segmenting a syntactic unit, fol-
lowed by annotating their internal relations for each
sign. This proved to be quite time-consuming, and
it involves simultaneous bottom-up and top-down
approaches. That is, you need a segmentation
to know which signs can relate to each other, but
the signs that relate to each other also define the
segmentation itself. In several other studies, utter-
ances were inferred on the basis of the translation
tier segmentations — i.e. the span of the Swedish
translations across signs were used as approxi-
mate utterance units (defined here as a unit of seg-
mentation corresponding to a level above the sign)
— cf. Bono et al. (2020). For example, this was
used in approaches to automatically word class tag
the STS Corpus (Sjons, 2013; Ostling et al., 2015).
The translations are, however, not segmented sys-
tematically based on the signed articulation, but
rather conversational content. In fact, translation
annotation was mainly done independently of the
sign gloss annotations, based on what could be
conveniently expressed in written Swedish. Fur-
thermore, translation segments do not always even
correspond to a full sentence in neither Swedish
nor STS, as many of them are partial sentences or
fragments.

In Borstell et al. (2014), we experimented with
ways of segmenting units based on visual prosodic
cues, and whether these would correspond to
syntactic units. A number of deaf signers were
recruited to segment a subset of the STS Cor-
pus based on visual prosodic cues alone, and
these were compared to a syntactic segmentation
made on the same subset. The results showed
a lot of variation in the prosodic segmentations,
and whereas some major prosodic breaks aligned
across participants, it was deemed less reliable
and inefficient as a method for segmenting the cor-
pus data for syntactic purposes. Instead, the work
from Borstell et al. (2016) was expanded on later in
Ostling et al. (2017), when we submitted a subset
of the STS Corpus data to the Universal Depen-
dencies (De Marneffe et al., 2021) dataset collec-
tion, making it the first sign language corpus to be
added.! There, we instead worked in a bottom-up
fashion, annotating grammatical relations between
signs individually and later linking them together
into a dependency tree automatically, thus skipping

STS is the only sign language represented in Univer-
sal Dependencies to date, but see Caligiore et al. (2020)
for work on Italian Sign Language (LIS).
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the explicit segmentation step in the annotation pro-
cess. The STS dataset in Universal Dependencies
is still very small, consisting of 1610 sign glosses
across 203 sentences.

Although the Universal Dependencies STS
dataset provides syntactic segmentation of clause-
like units through its dependency trees, there has
not been any evaluation of how well these syntactic
units correspond to other units. For instance, to
what extent do the syntactic units align with the
translation units that have been used as place-
holder sentence segmentations in previous work?
Would either type of utterance unit, whether syn-
tactic or translation-based, have any meaningful
prosodic properties — e.g., notable pauses or other
articulatory features around the start-/endpoints.
We know from other research that sign language
utterances display a multitude of prosodic features
that can be used to segment and identify them,
such as body, head and eyebrow movements and
eyeblinks (Crasborn, 2007; Fenlon et al., 2007;
Hansen and HeBBmann, 2007; Herrmann, 2010;
Sandler et al., 2011; Ormel and Crasborn, 2012;
Puupponen et al., 2015; Puupponen, 2019; Kim-
melman et al., 2020; Dachkovsky, 2022). Such fea-
tures have in recent years been used in computer
vision-based analyses of sign language data, as
part of automatically extracting articulation and po-
tentially segmenting continuous signing (Susman,
2022; Moryossef et al., 2023).

In this paper, | aim to:

1. compare and evaluate the alignment of
prosodic, syntactic and translation utterance

units in the STS Corpus

. use computer vision-based tools to investigate
articulatory correlates of these units

3. Methodology

For this study, | use the six original ELAN (Witten-
burg et al., 2006) annotation files (.eaf) used in
the annotation of the STS Universal Dependencies
dataset (Ostling et al., 2017). The six corpus files
consist of 12 signers engaged in different types
of conversation, between 1.5 and 3 minutes long
(14 minutes and 5 seconds in total), comprising
1621 sign tokens: two free conversations (more
dialogue) and four stories (more monologue).

The data processing, analysis and visualiza-
tions were done in R (R Core Team, 2023)
with the packages ggtext (Wilke and Wiernik,
2022), glue (Hester and Bryan, 2022), pracma
Borchers (2022), scales (Wickham and Sei-
del, 2022), signglossR (Bérstell, 2022a), tidy—
verse (Wickham et al., 2019) and udpipe (Wijf-
fels, 2023). The data and code for this study can
be found at: https://osf.io/fw825/.
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3.1.

The STS data as represented in the Universal De-
pendencies dataset contains the original sign an-
notations from the corpus as well as dependency
relations between them. These dependency trees
form a type of utterance unit segmentation of the
STS Corpus data. The utterance units as defined
by the Universal Dependencies dependency trees
are in the following called syntactic utterance units.
| compare these syntactic utterance units to the
so-called translation utterance units. The transla-
tion utterance units are defined as the sign anno-
tations that fall within or overlap with the temporal
span of translation tier segmentations. | compare
these two unit types also to a third type of utter-
ance unit, labeled prosodic utterance units. The
prosodic utterance units are defined as the sign se-
quences without any substantial pauses between
signs. Here, the pause duration threshold has been
set to the median duration of sign pauses between
the syntactic units in the Universal Dependencies
dataset: 322 milliseconds. Any pause between
signs larger than that value forms a segmentation
point marking a new prosodic utterance unit. The
three types of utterance units — prosodic, syntactic
and translation — result in slightly different numbers
of utterance units, spanning different numbers of
sign annotations (see Table 1).

Defining units

Unit # of units # of signs
Prosodic 264 1621
Syntactic 203 1610
Translation 217 1611

Table 1: The number of utterance units per type
and the number of sign annotations covered.

As is visible from Table 1, the largest number of
signs is 1621, which is the same as the total number
of tokens in the six corpus files of the dataset. This
is only found for the prosodic unit segmentation,
which is due to the fact that the prosodic segmen-
tation is by definition done on the full dataset of
(manual) sign annotations. The translation units
have a slightly lower number, because some sign
sequences have not been translated (generally
short backchannel utterances). The syntactic units
have the lowest sign counts because a few sign
sequences in the dataset were never annotated for
the Universal Dependencies dataset — e.g., due to
the annotators being uncertain of the dependency
analysis.

While the prosodic and syntactic utterance units
always align exactly with the start and end of some
sign annotations, since they are defined on the ba-
sis of those (sign) annotation segmentations, the
translation utterance units do not necessarily align
with sign annotation endpoints. Instead, the trans-
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lation utterance units are treated as temporal seg-
mentations, which can be aligned to the sign an-
notations based on overlap: if a sign annotation is
completely within the boundaries of a translation
unit, it is assigned to it; if a sign annotation overlaps
with more than one translation unit, it is assigned to
the first overlapping translation unit (see Figure 1).

@ ﬁEﬂ Sign
Translation

Figure 1: Assignment of signs to translation units.

3.2. Measuring Alignment of Units

Alignment across types of utterance units is ana-
lyzed in two ways.

First, the content equivalence of segments
across tiers is defined as the intersection between
unit types with regard to how many identical seg-
ments of sign annotations they share. That is, if the
sequence of signs ABCDE is segmented as ABC,
DE on one tier and A, BC, DE on the other, the two
tiers share exactly one segment (i.e. DE).

Second, the temporal alignment and number of
segmentations across the types of utterance units
are analyzed with the Staccato algorithm (Lick-
ing et al., 2011) as implemented in ELAN (Version
6.2) [Computer software] (2021). The Staccato
algorithm is an implementation of the Thomann
graph-theoretical method of segment alignment.
This method looks at the so-called degree of orga-
nization of linear segments across tiers, defined as
the correspondence of segments into temporally
overlapping “shared nuclei” (core overlapping seg-
ments).? The metric of agreement (degree of orga-
nization) is based on the amount of overlap as well
as the number of identified segments, compared to
a chance baseline from iterated Monte Carlo Simu-
lations, thus arriving at a metric between —1 (low)
and 1 (high), where 0 is equal to chance levels in
the degree of organization across tiers. Here, the
algorithm is run for each pairwise utterance unit
tier combination (per file and signer) with 1000 it-
erations (granularity = 10; « = .05). Thus, a value
is obtained for every combination of utterance unit
segmentation tiers (n=30).

3.3. Prosody with Computer Vision

Additionally, | extracted articulations through body-
pose estimations of the signing in each of the six

2See also Rasenberg et al. (2022) for an example of
this method used for inter-annotator reliability testing.



corpus files through the computer vision tool Medi-
aPipe (Lugaresi et al., 2019). MediaPipe was used
to estimate the location of various body landmarks
in each of the front-facing videos linked to the ELAN
files — thus 12 videos, as there are two signers with
one main front-facing video file each for each cor-
pus file. MediaPipe has previously been shown to
be successful in analyzing articulatory properties
in sign language videos, such as extracting sign
articulation onsets and locations (Bérstell, 2023)
and comparing phonetic features of different text
types (Kimmelman and Teresé, 2023).

Here, | focus on the distance moved across
frames by 1) the two hands (based on wrist po-
sitions in two dimensions) and 2) the head (based
on nose position in the vertical dimension), re-
spectively. That is, how far in signing space have
the hands and head moved between every se-
quence of two frames in the video? This is done
to identify prosodically prominent points in man-
ual and non-manual articulation — points in time
in the files where the hands and/or head move
more than usual. The metric used for distance
moved is the raw Euclidean distance moved in the
MediaPipe coordinate system, but z-scored within
each file and signer for cross-signer and cross-
file comparison. The measurements for distance
moved by the hands and head were then analyzed
for peaks to find sequences of increased activ-
ity in relative movement. This was done with the
pracma: : findpeaks function, extracting peaks —
defined as frames with a previous increase and fol-
lowing decrease in movement activity (+3 frames)
—in the hand and head movement data. With this
method, 369 peaks were found in the hand move-
ments across files, and 329 peaks were found in
the head movements.

4. Results

As seen in Table 1, the syntactic and translation
units are more closely overlapping in the total num-
ber of units segmented, even though the prosodic
unit segmentation was performed on the basis of
the median pause duration between syntactic units.
When looking at the sign sequences that corre-
spond to each utterance unit (i.e. overlapping sign
annotations in the case of translation units), there
is a similarity in unit contents that corresponds to
the number of units. Table 2 shows the intersection
of sign annotation sequence segmentations across
utterance unit types, illustrating that the syntactic
and translation units have just over 30% overlap in
sign sequences resulting from the segmentations,
whereas the prosodic utterance units only overlap
at around 13-20% with the other utterance unit
types. Thus, in terms of content equivalence of
sign sequences, it seems the syntactic and trans-
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lation segmentations have the highest agreement.

Turning to the general temporal alignment be-
tween utterance units, Figure 2 shows all segmen-
tations temporally aligned across the six corpus
files. There is, unsurprisingly, agreement on when
there is articulation happening in general, but the
segmentation endpoints are not always aligned. Al-
though the prosodic utterance units are the most
numerous, there are examples where they span
much longer stretches of signing than either syn-
tactic or translation units, illustrating sequences
with only very short “pauses” between sign annota-
tions. However, we can also see that the translation
units are the ones most often entirely mismatched
in terms of content, such as including an annotation
where the others do not. This happens, for example,
by translating non-manual content (e.g., translat-
ing visible laughter at the end of file SSL.C02_332)
or failing to add a translation annotation in cases
of short turns (e.g., several missing annotations
in file sS1,C01_104 that constitute short response
tokens). The missing segments on the syntactic
tier are stretches of glosses that are missing from
the dependency annotations, thus lacking a corre-
sponding syntactic unit.

As a second type of alignment measure, | used
the Staccato algorithm (Llcking et al., 2011) im-
plemented in ELAN to evaluate the agreement be-
tween annotation segmentations across utterance
unit types. Figure 3 shows the distribution of scores
achieved by each comparison, where circles rep-
resent each annotation tier comparison and their
relative size corresponds to the number of seg-
ments per tier (smaller size means fewer segments
to match for those tiers). As is visible from Figure 3,
the scores obtained in terms of degree of organi-
zation are all quite poor, mostly falling at or below
chance levels. Opposite to the patterns found for
content equivalence in Table 2, the highest scores
come from the alignment between prosodic and
syntactic units, followed by syntactic and transla-
tion units, and lastly prosodic and translation units.
Generally, tiers with only a single annotation (usu-
ally a single response token or comment by the
addressee at the end of a narrative) receive per-
fect alignment scores, but tiers with many more
annotations display much lower agreement.

Turning to the MediaPipe data, Figure 4 shows
the movement (distance traveled) of hands and
head (solid and dotted lines) within each of the six
corpus files. It also shows the major points of seg-
mentation agreement (vertical lines; n=89), defined
as points in time at which all three utterance unit
types have marked the start or end of an annotation
segment. The movement data is z-scored within
signers to show relative movement and smoothed
with a LOESS function: the solid lines show the
articulation of the hands (distance moved by the



Unit 2 (comparison)

Prosodic Syntactic Translation
~ | Prosodic 41/264; 15.5% | 34/264; 12.9%
‘E [ Syntactic 41/203; 20.2% 65/203; 32.0%
S [Translation | 34/213; 16.0% | 65/213; 30.5%

Table 2: The overlap of sign annotation sequences between utterance unit segmentations.

Alignment of

) and

utterance units
Major gaps and discrepancies marked with red circles

SSLCO1_104
Signer 2 OO O
Signer 1

SSLCO1_391
Signer 2 £
Signer 1

SSLC02_332
Signer 2
Signer 1

SSLCO1_320

SSLCO2_331

SSLCO02_409

D)

Relative time within file

Figure 2: Alignment across utterance units. Red circles mark areas of major discrepancies.

wrist landmarks) and dotted lines show the articu-
lation of the head (vertical distance moved by the
nose landmark). The articulation activity can clearly
show the main contributor in a text, thus show the
major turn-taking events in a conversation (see file
SSLC01_320; NB: Signers with minimal signing in
a file have been filtered out here).

Based on Figure 4, there are no obvious vi-
sual correlations between the major segmentation
points across utterance units and the articulatory
activity of the hands and head. Despite some of the
segmentation points matching up with either peaks,
valleys or changes in overall contour, the picture is
too varied to show any obvious patterns of align-
ment. Out of the identified peaks in the MediaPipe
movement data, only 7 (1.9%) of the hand peaks
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and 9 (2.7%) of the head peaks occurred within 3
frames of a major segmentation points (i.e. start-
or endpoints aligned across all three utterance unit
types). Similarly, only 7 (8.1%) and 8 (9.3%) of
segmentation points occurred within three frames
of a hand or head peak, respectively.

5. Discussion and Conclusion

The goal of this study was to evaluate the equiv-
alence and potential usefulness of various types
of utterance units in the STS Corpus based on
prosodic, syntactic and translation-based segmen-
tations. Seeing as a subset of the STS Corpus is
annotated syntactically, these segmentations could
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Figure 3: Degree of organization between utterance types using the Staccato algorithm. Circles represent
each annotation tier comparison, sizes corresponding to number of annotations per tier. Box plots show
the distribution of scores. Dashed lines show chance level.

form a starting point for analyzing the distribution
of clause-like units in the corpus, potentially inform-
ing automated methods of extracting them. Before
such syntactic segmentations were available, the
translation tier segmentations had been used as
a proxy for a more clause- or sentence-like unit.
Segmenting sign annotations into utterance units
based on pauses between annotations is another
approach, using a type of prosodic (pause duration)
information to identify segmentation points.

In this study, it was found that the three methods
for identifying utterance units arrive at quite different
exact sequences of signs, with at most around 30%
overlap in the sequences of signs identified through
the different segmentation methods. This shows
a low degree of content equivalence between the
methods, suggesting that the translation segmen-
tations used in some previous work as a proxy
for a sentence-like unit (cf. Sjons, 2013; Ostling
et al., 2015) do not correspond very closely to the
clause-like units identified through manual syntac-
tic annotation ((")stling et al., 2017). Nonetheless,
the overlap across sign sequence segmentations
was higher between syntactic and translation units
than any other pairwise comparison. However, the
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agreement of segment alignment using the Stac-
cato algorithm (Llcking et al., 2011) pointed to a
higher similarity between prosodic and syntactic ut-
terance units than any other pairwise comparison.
| suspect this to be the result of the start- and end-
points of these units always aligning exactly with
sign annotation start- and endpoints, whereas the
translation segments are made independently of
the sign gloss annotations and rarely align exactly
with them at the ends. Additionally, the transla-
tion tier segmentations had more instances of com-
plete mismatches compared to the other two tiers,
by either adding translations where there were no
manual sign annotations or lacking annotations for
short manual response tokens (see Figure 2). It is
possible that the algorithm is less suitable for this
type of data, for which there is often a continuous
stream of annotations (i.e. many throughout the
file) rather than fewer annotations more sparsely
spread out in time. If so, it may not be ideal for
evaluating segmentations if the goal of a segmen-
tation is to find the contents of what falls within its
span, rather than finding its exact endpoints. An-
other issue is that the number of segments matters
for the Staccato algorithm, and the granularity of
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Figure 4: Relative distance moved by hands and head. Solid lines show hand articulation and dotted lines
show head articulation (both smoothed with a LOESS function). Vertical lines correspond to utterance
unit segmentation points (start or end) matched across all three utterance unit types.

the different methods is quite different as they are
based on different motivations: what matters syn-
tactically, what is a convenient content chunk, or
what is defined as “pauses”.

The second part of this study looked at prosodic
correlates between the identified utterance units
and articulatory data extracted from the corpus
videos using MediaPipe (Lugaresi et al., 2019).
Whereas the extracted data can clearly show pat-
terns such as major turn-taking events between
signers in conversation, it was not possible to iden-
tify any obvious correlations between shared seg-
mentation points (start or end) across utterance
unit types and articulatory patterns in the move-
ment of hands and head. However, seeing as this
dataset is only a small subset of the STS Corpus,
the lack of found patterns/correlates may simply
be due to the lack of sufficient data. A type of hy-
brid approach was proposed by Chizhikova and
Kimmelman (2022), who in their analysis of head-
shakes and negation used computer vision-based
methods together with manual inspection. As the
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STS Corpus continues to grow in terms of features
annotated for, there will be better opportunities to
measure correlations between manually annotated
prosodic features and those extracted automati-
cally, as well as using aggregated data from multi-
ple layers of linguistic information — e.g., prosodic,
semantic and interactional (cf. Bono et al., 2020) —
to arrive at meaningful utterance units.

In summary, this study has shown that the cur-
rently available utterance units (whether annotated
or inferred) in the STS Corpus do not align to any
greater extent. This means that researchers using
these units — possibly as a proxy of “sentences” —
need to take great care in choosing motivated unit
types and be aware of their limitations. The future
goal for the STS Corpus should be to segment the
sign annotations into some meaningful larger unit,
whether conversational turns or utterances or syn-
tactic sentences or clauses. This would increase
the potential of the corpus as a language resource
substantially, as it would allow for analyses of lan-
guage structure beyond the individual signs.
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How to Approach Lexical Variation in Sign Language Corpora

Carl Borstell
University of Bergen
Bergen, Norway
carl.borstell@uib.no

Abstract

Looking at lexical frequency and, by extension, lexical variation is often among the first objectives after compiling a
sign language corpus, since the only prerequisite is existing sign gloss annotations. However, measuring lexical
frequency in a theoretically and statistically meaningful way can be a challenge. In this paper, | provide an overview
of how to approach lexical variation in sign language corpora. The aim is to show ways of tackle lexical variation from
different angles, from data collection to statistics and visualization, and how to motivate choices based on the data
available and the research goals, thus serving as a practical guide for sign language corpus research. Drawing from
previous work by different sign language corpus project teams, various approaches to measuring lexical variation are
illustrated with data from the Swedish Sign Language (STS) Corpus, with examples that can easily be adapted to any
sign language corpus.

Keywords: sign language, corpus, lexical frequency, variation, sociolinguistics

1. Introduction 2. Data and Methods

The number of available sign language corporain ~ For the examples in this paper, | use data from
the world is constantly increasing, and many cor-  the STS Corpus (Oqvist et al., 2020) presented
pora of individual sign languages are also growing N different ways depending on the approach to
in size (see, e.g., Kopf et al., 2021, 2022, 2023; Fen-  INvestigating lexical variation.
lon and Hochgesang, 2022). The first step of anno- T_he STS Corpus data (Mesch et_al., 2012) was
tating a sign language corpora is often to segment ~ retrieved from The Language Archive (https://
and annotate individual signs in the data (Johnston, ~ @rchive.mpi.nl/tla/)in July 2023 and con-
2010). With annotation of individual lexical items ~ Sists of 189,679 sign tokens across 298 annotation
(i.e. signs), an easy first exploration of the corpus  files and 42 signers.
data is to look at lexical frequencies — which signs The data was retrieved, processed and visual-
are used the most, by whom and in what context? ~ ized using R v4.3.2 (R Core Team, 2023) and the
Lexical frequency has been studied for a number ~ Packages patchwork v1.2.2 (Pedersen, 2022),
of sign languages already, with datasets of varying ~ scalesV1.2.1(Wickham and Seidel, 2022), sign-
size (e.g., Morford and MacFarlane, 2003; McKee ~ 91lossR v2.2.4 (Borstell, 2022), tidylo v0.2.0
and Kennedy, 2006; Johnston, 2012; Fenlon et al.,  (Schnoebelen et al., 2022) and t idyverse v2.0.0
2014; Borstell et al., 2016). (Wickham et al., 2019).

It is well known that the distribution of words in Simulated example data and code for calculating
language(s) is extremely skewed, with a small num- and plotting frequencies and variation can be found

ber of words occurring frequently but most words 26 Dttps://github.com/borstell/r_
occurring fairly rarely (Zipf, 1935). This skew in ~ functions/blob/main/plotting _corpus_
token frequencies needs to be taken into account ~ Veériation.R

when looking at lexical frequency, and makes it

more challenging to look at lexical variation, espe- 3. Approaches to Lexical Variation
cially in smaller corpora — and most sign language

corpora are still relatively small. Thus, there are  In order to look at lexical variation in any language,
several aspects to consider when investigating lex-  one needs to have enough data, such that it cov-
ical variation within individual sign languages, and  ers the relevant variables involved in variation —
I will in the following provide concrete examples  whether, e.g., age, gender or geographic belong-
of approaches taken in previous work, and oppor-  ing (Bayley et al., 2015). While variation can be
tunities and issues that come with them. While  studied separately from a corpus, through inter-
mostly illustrated with examples from the Swedish ~ views and elicitation with the signing community
Sign Language (STS; svenskt teckensprak) Corpus  directly (Lucas et al., 2009; Fisher et al., 2016; Sa-
(Oquist et al., 2020), the methods could be applied  far, 2021) or indirectly through distributed surveys
to any sign language corpus. Finally, the paper  online (Kimmelman et al., 2022), the focus in this
concludes with a summarized list of benefits and  paper is data collected within a sign language cor-
downsides to different approaches and metrics. pus project. However, even within corpus projects,
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similar alternative data collection approaches have
been used. For example, several projects have
included a targeted lexical elicitation task as part
of the corpus data collection —i.e. tasks alongside
the collection of naturalistic conversational data.
The targeted interview/elicitation approach facili-
tates comparisons of signs in domains known for
variation, such as color terms in British Sign Lan-
guage (BSL) (Stamp et al., 2014) and German Sign
Language (DGS) (Langer, 2012), as it results in a
larger target sample. Some corpus projects have
also adopted a method of crowdsourcing signs and
lexical variation as well as perceptions about vari-
ation and usage of already documented variants
through direct or online community involvement
(Kankkonen et al., 2018; Wahl et al., 2018; Hanke
et al., 2020). Targeted elicitation tasks are suitable
for comparing variation between different groups
with regard to specific items/domains since it re-
sults in a higher number of data points per item and
a better coverage with many signers being repre-
sented (cf. Section 3.4). However, elicited data will
not be directly comparable to other items/domains
found only in the conversational portion of the cor-
pus data, as the distribution of occurrences will look
very different.

In the following sections, | will mainly focus on
how to approach and measure lexical variation in
naturalistic, conversational corpus data.

3.1.

As was mentioned in the introduction, the Zipfian
distribution of lexical items in a corpus means that
token frequencies will be extremely skewed: some
items are very frequent whereas most items are
very infrequent. Thus, raw counts of frequencies
are often quite uninformative as they are only mean-
ingful for a particular corpus (or, corpus size) and
will have a huge range between items in the upper
vs. lower end of the frequency span. For exam-
ple, saying that there are 10,846 occurrences of
PRO(1 (first-person pronoun), 414 occurrences of
TYP@b (‘kinda’; fingerspelled) and 7 occurrences
of ALG(Jbt) (‘moose’) in the STS Corpus is quite
meaningless unless they are compared to the to-
tal number of tokens in the corpus (n=189,679) or
possibly to each other. Nonetheless, in the online
STS Dictionary (teckensprakslexikon, 2023), the
only currently available information about corpus
frequencies of dictionary entries is raw corpus fre-
quencies, available for those entries that have been
linked to the corpus (cf. Mesch et al., 2012). This
was why we in Bérstell and Ostling (2016) devel-
oped a search tool for exploring meaningful lexical
frequencies and variation in the STS Corpus by
rather focusing on relative frequencies within and
across groups of signers or text types, which is
discussed further in Section 3.2.

Counts: “How Many Have You Got?”
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3.2. Proportions: “It’s All Relative!”

One way of approaching relative frequencies in a
corpus is to simply say how many times an item
occurs relative to the total, usually rescaled to ar-
rive at a more interpretable number, e.g., occur-
rences per 100,000 tokens. This means that we
could reformulate the frequencies in Section 3.1
and say that PRO1 occurs 5,718 times per 100,000
tokens, TYP@b 218 times per 100,000 tokens and
ALG(Jbt) about 4 times per 100,000 tokens. This
metric is more intuitive and more useful as it is
comparable across corpora or subcorpora of differ-
ent sizes. However, it does not address the issue
of variation, as it does not differentiate where the
tokens come from within the corpus.

In Bérstell and Ostling (2016), we identified the
need to obtain relative frequencies of signs in the
STS Corpus with attention to sociolinguistic varia-
tion. Thus, we developed an online search tool',
parallel to the STS Corpus, that would display rela-
tive frequencies within different grouping variables
that were likely to exhibit variation in lexical fre-
quency distribution: age, gender, region and text
type. Thus, frequencies were relative to the total
number of tokens by subgroup. This allowed for
comparisons across groups of different sociolin-
guistic variables very easily. For example, there
was anecdotal evidence of the sign TYP@Db (‘kinda’;
fingerspelled) being more frequent among younger
signers, and this was corroborated with our search
tool illustrating relative frequencies, showing that
the sign is much more frequent among younger
age groups. Figure 1 shows the same pattern in
the current version of the STS Corpus, with over
twice the number of tokens annotated compared to
what was reported in Bérstell and Ostling (2016).

One potential feature that was not available in
the search tool by Bérstell and Ostling (2016) was
directly comparing relative proportions between
multiple forms for the same meaning. Many sign
languages exhibit variation in specific domains
(e.g., numerals and color terms), such that the
same meaning may be expressed by multiple forms.
Such variation may consist of either completely dif-
ferent lexical items or phonological variants of a
similar base (or iconic mapping), sometimes with
sociolectal differences in their distribution (see, e.g.,
McKee et al., 2011; Langer, 2012; Stamp et al.,
2014; Wahl et al., 2018; Safar, 2021; Lutzenberger
et al., 2021, 2023). A rather straightforward way
of comparing differences in the distribution of sign
variants for the same meaning is to compare the

"The tool, SSL-lects, has been offline for a few years
due to server replacements and anonymization concerns
with the raw STS Corpus data, but there have been plans
to integrate a similar tool directly in the online corpus and
dictionary resources.
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Figure 1: Relative frequencies of the sign TYP@Db (‘kinda’; fingerspelled) across sociolinguistic groupings

in the STS Corpus.

proportion of tokens they each have relative to their
combined total, distributed across the sociolinguis-
tic groupings of interest. For example, Figure 2
shows the relative proportions between a one- and
two-handed (phonological) variant of the sign for
‘(an)other’in STS. Based on the relative proportions
alone, it is quite clear that the one-handed variant
is more common overall but that the oldest signers
have a slight preference for the two-handed variant.

Searching for lexical variants or any signs with
related meanings is, however, not necessarily
straightforward. Glosses are often selected on the
basis of a written word with similar meaning, but
semantic extension and polysemy may mean that
signs are related without sharing a similar gloss (cf.
Johnston, 2010; Ormel et al., 2010). Because of
this, searching for variants or related signs may al-
ready require some knowledge about the language
as well as the annotation conventions of the corpus
(e.g., how glosses are used).?

With these approaches, one issue is that they
mainly target specific signs (individually or paired)
that we already suspect may display some type
of sociolectal variation in their distribution. In Sec-
tion 3.3, we will see how other metrics can be used
to identify interesting distributional variation directly
from the data.

3.3. Ratio: “What Are the Odds?”

Looking at frequencies relative to sociolinguistic
groupings made it possible to visualize variation
differences for items suspected to exhibit varia-
tion. However, in Bérstell and Ostling (2016), we
also wanted to find ways of identifying potential
variation-exhibiting items without necessarily know-
ing about them through previous — often anecdotal
— evidence. Thus, we applied a Bayes factor ap-
proach, calculating distributions relative to token
counts among the same sociolinguistic groupings
and could identify certain signs that were overrepre-
sented in some subgroup. While this metric was not

2] thank a reviewer for raising this point.
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available in the search and visualization tool itself, it
could be an interesting addition since it is possible
to see both positive and negative values, and as
such the directionality of frequency: higher or lower
than expected. In Figure 3, a similar implementa-
tion is used in a visualization, but with weighted log
odds using a Bayesian prior estimated from the data
itself, which accounts for differences in sampling
variability (see Monroe et al., 2008; Schnoebelen
et al., 2022). With this approach, we can confirm
that age is a major factor in the distribution of to-
kens, with TYP@Db being skewed towards younger
age groups. The gender distribution here is less
informative, seeing as the STS Corpus has more
women in the younger age groups and more men in
the older age groups. Somewhat surprisingly, the
text type distribution in Figure 3 is switched com-
pared to Figure 1, which is a consequence of the
informative prior taking the sampling variability into
account — using an uninformative prior will instead
correspond more closely to the relative frequencies
in Figure 1, albeit on a different scale.

A log odds approach was also taken by Stamp
etal. (2014), who looked at larger groups of signs in
specific domains (e.g., numerals and color terms)
to see differences in the use of traditional (often re-
gional) signs for concepts in these domains, finding
that age was an important factor, with older signers
being more likely to use the traditional signs with re-
gional variation, while younger signers exhibit less
variation, pointing to dialectal leveling.

3.4. Spread & Coverage:
“The One with All the Tokens”

As has been mentioned earlier, lexical variation in
corpus data can be a challenge due to the low to-
ken frequency of most lexical items even in large
corpora, which means it is difficult to find items
that occur across, e.g., sociolinguistic groupings
in spontaneous, conversational data. This is why
several corpus projects have opted to include an
explicit lexical elicitation task as part of the data col-
lection — this is, however, not the case for the STS
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in the STS Corpus.

Corpus. It also means that any grouped metric,
such as relative frequencies per age group, should
also include a measure of spread across signers,
at least for low-frequency items — that is, how many
signers in the data use the sign at least once (i.e.
signer coverage). As an example, in Borstell and
Ostling (2016) we discussed the known regional
variation between two signs for ‘moose’ in STS:
one that depicts the horns (considered the more
general and widespread sign) and one that depicts
the snout/muzzle (considered a northern variant).
In our paper, we noticed that only the “northern”
variant was present in the data, found in the north-
ern (Norrland) region as expected. However, not
only is it impossible to establish the source of vari-
ation, due to the lack of tokens for the other variant,
the signer coverage was very pootr, with all occur-
rences being produced by a single signer. In the
current, larger STS Corpus dataset, the pattern is
unfortunately still the same, with only one of the two
variants being produced with 7 occurrences in the
whole corpus, all produced by the same signer: an
older man from Norrland. Since it is clearly impos-
sible to generalize from a single signer, it can be
wise to include signer coverage in a visualization
or simply checking the distribution across signers
when looking at any token frequencies, but partic-
ularly lower ones. Figure 4 shows an example of
the signer coverage for three signs, PRO1, TYP@b
and ALG(Jbt), with dots representing each of the 42
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signers in the STS Corpus, where the blue ones rep-
resent signers with attested tokens (darker means
a higher proportion of total tokens) and grey ones
represent signers without attested tokens. As this
figure shows, highly frequent signs such as PRO1
will have a large and fairly even spread across sign-
ers, whereas signs such as ALG(Jbt) cannot be
generalized in their usage despite having more oc-
currances (n=7) than the global median number of
tokens (n=1) in the whole corpus.

3.5. Topics & Representativeness:
“What Are We Talking About?”

Small(er) corpora, such as most sign language cor-
pora, are quite susceptible to idiosyncrasies skew-
ing the data. For example, multiple sign language
corpora have included the same elicitation tasks to
elicit narrative texts. Because of this, it comes as
no surprise that signs for concepts such as ‘snow-
man’ and ‘frog’ may be much more frequent than
expected from any regular conversation within the
deaf community, simply due to the influence of the
contents in the elicitation stimuli. Specific topics,
and consequently associated words/signs, will al-
ways be subject to sampling procedures in the data
collection, regardless of the type of corpus. Since
sign language corpora involve members of the deaf
or signing community, it is expected that concepts
such as ‘deaf’ and ‘hard-of-hearing’ may be orders
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signers with attested tokens, with the darkness of
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of magnitude more frequent in a sign language cor-
pus than any spoken language corpora. This is not
a problem as it directly reflects themes and topics
that are relevant in the community, but other topics
that are introduced due to targeted tasks in the data
collection procedure will often result in some lexical
items being overrepresented in a way that is not
representative of issues of particular significance
to the community at large.

While the use of similar topics/content across
sign language corpora is a great resource for cross-
linguistic work on, e.g., grammatical and discourse
structure (cf. Ferrara et al., 2022), it inadvertently
leads to a skew in particular lexical items, which
should be taken into account when looking at lexical
frequency and variation.

3.6. Conventions & Conventionalization:
“That’s Not Even a Word!”

As discussed in more detail by Langer et al. (2016),
not all tokens are necessarily representative of the
regular usage of the individual signer who produced
them. For example, some signs are used metalin-
guistically, in the sense that sign variants are pro-
duced i) to illustrate how others sign something, ii)
as a direct copy of the interlocutor’s sign choice,
or iii) to emphasize how the signer themself does
not sign (Langer et al., 2016, 140). Similarly, signs
may also be produced in a manner different from
established lexical items in the language, such as
being produced in a context showing, e.g., how
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non-signers or learners are attempting to sign or
gesture (Langer et al., 2016, 141).

Furthermore, Langer et al. (2016, 141) also men-
tion slips of the hand (i.e. errors in producing the
target sign form). This is a question that very much
concerns the annotation process in building a cor-
pus, whether to mark accidental deviations/errors
explicitly or to simply annotate target forms (if iden-
tifiable). In the Auslan Corpus, the procedure for
fingerspelling has been to annotate both target form
and actual realization in the same sign gloss (John-
ston, 2019, 45). This way, the researcher could
choose whether to focus on target forms or ac-
tual realization, which in itself would be relevant
for lexical variation. In the STS Corpus, uncertain
or interrupted glosses have been marked with spe-
cial tags (“@z” and “@&”, respectively), but there
is also a dedicated tag for so-called home-made
signs (“@hg”), which are not considered estab-
lished signs of the community as a whole (Mesch
and Wallin, 2021, 25—-26). While such sighs make
great candidates for a detailed analysis of lexical
variation, they will not be generalizable to the larger
community. Thus, a researcher interested in inves-
tigating lexical variation would need to know the
annotation conventions of the specific corpus to
be able to accurately match sign glosses to actual
forms, and to motivate their reasons for including
or excluding specific items.

4. Discussion & Conclusions

In this paper, | have given a brief introduction to
the question of how to approach lexical variation in
sign language corpora. The goal has been to pro-
vide anyone interested in doing research on a sign
language corpus with concrete examples of issues
to consider both theoretically and practically. How
the data is annotated will directly influence what
can be researched, and which analysis method is
applied will affect the usefulness and interpreta-
tion of the results. For example, can related signs
(e.g., lexical variants) be matched and compared
based on glosses alone? Can glosses and search
patterns easily distinguish phonological from lexi-
cal variants of the same meaning? Are we able
to search lemma forms but still account for the
frequency of different morphological forms (e.g.,
inflections) of that lemma? Can we easily attribute
tokens to individual signers, and group signers and
files by metadata features? These issues are con-
cerns of the researcher using and searching the
corpus as much as of the developer of the corpus
resource itself, and require users to be familiar with
both the language and the corpus conventions.
Unfortunately, few sign language corpora have in-
tegrated tools for directly querying a database and
receiving a table or visualization of the search re-



sults in a meaningful way, such as regional variation
visualized on a map (however, see Hanke, 2016;
Hanke et al., 2023). Since lexical variation is an
important part in applied areas such as language
teaching and interpreting, it would be useful to incor-
porate simple search tools into the sign language
corpus resources — see Isard and Konrad (2022)
and Isard and Konrad (2023). Such tools could
display not only raw search hits of sign glosses, but
also relevant summaries of results presented as
tables, graphs or maps, based on variables and
metrics selected by the user. In the case of the
STS Corpus (Oqvist et al., 2020), the current on-
line interface with streamed videos and glosses is
a great resource for teachers and students, but it
unfortunately does not allow the user to query the
database about relative frequencies or proportions
between variants, nor export raw search results
to be investigated externally, which renders it less
accessible to the corpus linguist.

For the researcher who wants to approach ques-
tions of lexical frequency and variation in a sign
language corpus, here are some points to consider
when retrieving, interpreting and reporting the re-
sults:

* Raw frequency: Numbers will naturally be
very skewed due to the Zipfian distribution of
lexical items in any corpus and language. Log-
arithmic scaling can help for visualization pur-
poses.

+ Relative frequency: Metrics such as occur-
rences per 100,000 tokens will be more use-
ful for comparisons across corpora/languages
than raw frequencies, but will nonetheless be
skewed across lexical items (i.e. signs).

* Relative proportion: A useful metric when
comparing lexical or phonological variants for
the same meaning, but will often suffer from a
lack of data unless targeted lexical elicitation
was part of the data collection.

* Log odds: Log odds are useful to show dif-
ferences in frequency distributions based on
some grouping variable (e.g., gender, region,
text type) by accounting for imbalances in raw
frequencies for different items, but will not dis-
tinguish form variation from differences in con-
versational content (i.e. topics). Note that the
weighting and priors used will impact the re-
sults, so choose a method that suits your pur-
poses.

+ Signer coverage: Group-based variation
(e.g., gender or region) in corpus data should
preferably also account for signer coverage to
ensure that the usage reflects the group as a
whole rather than a single individual (signer)
within it.
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» Type of usage: Some items may be used
incorrectly (e.g., slip of the hand) or metalin-
guistically (e.g., commenting on how others
sign (see Langer et al., 2016), and it is thus im-
portant to investigate how and why individual
items occur in a specific context — especially
for low-frequency items.

+ Annotation conventions: Know the annota-
tion conventions of the corpus you are using,
as this directly impacts both what questions
you can ask with the data and how to interpret
the results.
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Abstract

Growing research in sign language recognition, generation, and translation Al has been accompanied by calls for
ethical development of such technologies. While these works are crucial to helping individual researchers do better,
there is a notable lack of discussion of systemic biases or analysis of rhetoric that shape the research questions and
methods in the field, especially as it remains dominated by hearing non-signing researchers. Therefore, we conduct
a systematic review of 101 recent papers in sign language Al. Our analysis identifies significant biases in the current
state of sign language Al research, including an overfocus on addressing perceived communication barriers, a lack of
use of representative datasets, use of annotations lacking linguistic foundations, and development of methods that
build on flawed models. We take the position that the field lacks meaningful input from Deaf stakeholders, and is
instead driven by what decisions are the most convenient or perceived as important to hearing researchers. We end
with a call to action: the field must make space for Deaf researchers to lead the conversation in sign language Al.

1. Introduction

Applications of machine learning (ML) and artifi-
cial intelligence (Al) to sign languages have ex-
ploded over the past few years. As large-scale sign
language datasets emerge, a growing number of
works apply data-driven Al methods from computer
vision and natural language processing to solve var-
jous problems including sign language recognition,
translation, and generation (Bragg et al., 2021; Yin
et al., 2021; Borstell, 2023).

At the same time, the field has been shaped by
systemic barriers causing the historical and present
exclusion of Deaf! people from it (Angelini et al.,
in press). This includes the ableism and audism
that shapes perceptions of Deaf communities and
signed languages, as well as larger trends in STEM
education that exclude Deaf individuals from being
involved in research about them. Borstell (2023)
shows that as many as 12% of papers in sign lan-
guage computing contain basic ableist terms, dou-
ble the incidence of such terms linguistics papers.

Towards more equitable research, previous work
has identified major issues in papers, and issued
recommendations on how to improve sign language
Al research from multiple perspectives, including
ethical considerations in datasets, linguistic as-

'We use ’'deaf to refer to audiological status, and
‘Deaf’ to refer to cultural identities. While the field of Deaf
Studies is moving away from the use of deaf vs. Deaf
(Kusters et al., 2017a), here we prefer a more explicit
signposting of identity. While we aim to be precise, the
miscible nature of identity means at times, our usage is
interchangeable, but our intent is not to use terms as a
means to exclude.

54

pects, and community engagement (e.g., Fox et al.
(2023); De Sisto et al. (2022); Bragg et al. (2021);
De Meulder (2021)). While these efforts are critical
to addressing the ableism and audism that perme-
ates the field, they generally focus on individual
interventions encouraging authors to do better.

In our work, we reasoned that the systemic im-
pact of excluding Deaf researchers from sign lan-
guage Al research may be more subtle, and that a
critical interrogation is needed of the assumptions
and rhetoric that shape the research questions and
methods in the field. In principle, even if each in-
dividual paper and research project followed best
practices in responsible (sign language) Al, the col-
lective direction of the field may still be misaligned
with the interests and perspectives of most Deaf
stakeholders. Collectively, what problems and as-
pects of signed languages are considered worth
studying, and who decides such?

In other emerging fields, critical literature reviews
have been crucial in redirecting research (e.g.,
Mack et al. (2021); Spiel et al. (2022); Froehlich
et al. (2010)). Inspired by these works, we con-
ducted a hybrid literature review and position paper
analyzing over 100 papers in sign language Al.

Our analysis identifies systemic biases in the cur-
rent state of sign language Al research. We show
that the majority of papers are motivated by solving
perceived communication barriers for Deaf individ-
uals, use datasets that do not fully represent Deaf
users, lack linguistic grounding, and build upon
flawed models. From these results, we take the po-
sition that the field suffers from a lack of intentional
inclusion of Deaf stakeholders. Lacking meaningful
and ongoing input from Deaf stakeholders, the field
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is instead driven by what approaches and model-
ing decisions are the most convenient. We end
with a call to action: the field must make space for
Deaf researchers to lead the conversation in sign
language Al.

2. Positionalities and lived
experiences

Our analysis and positions are shaped strongly by
our identities and positionalities. We are a group
of five researchers: we all identify as deaf, Deaf or
hard-of-hearing (DHH). Two of us are white, three
are Asian. Our interdisciplinary team spans a range
of fields and research interests, including machine
learning and computer vision, Deaf Studies and
applied language studies, linguistics language doc-
umentation/corpora, phonetics/phonology, HCI and
accessibility, psycholinguistics, language acquisi-
tion, developmental psychology, and cognitive sci-
ence. We recognize that we come from positions of
literacy and educational privilege, which may not be
representative of Deaf communities. Our daily com-
munication encompasses a blend of signed, written,
and for some of us, spoken languages. Collectively,
our linguistic repertoires include ASL, International
Sign, NGT, VGT, KSL, English, Dutch, Gujarati and
Hindi, along with other languages. Our experiences
with assistive hearing technologies vary, with some
of us having used hearing aids in the past while oth-
ers continue to use them. We have varied lived ex-
periences, but share the experience of growing up
deaf or hard-of-hearing and going to mainstreamed
schools for all or most of our education. Some of
us grew up signing. For some of us, signing has
been a part of our lives from an early age, while
others began signing in their teenage years.

That all authors of this paper are DHH is inten-
tional. Our aim from the outset was to approach
this research from explicitly DHH positionalities and
to bring different viewpoints. Since deaf people are
the primary stakeholders in sign language tech-
nologies, we believed it essential to foster a space
where DHH researchers could engage in open dis-
cussions about biases in ML applications to sign
languages. The act of suggesting that hearing col-
laborators may be contributing to systemic bias
seen in the field puts undue burden on DHH au-
thors to carefully manage what they say. Because
every member was DHH, we were able to openly
discuss systemic bias and extend our discussion
to not only include very clear instances of ableist
works but also delve into the more subtle effects
of ingrained biases in sign language Al research.
Similar spaces created by other DHH scholars have
generated insightful discussions of issues central
to Deaf stakeholders (Kusters et al., 2017a; Chua
et al., 2022; O'Brien et al., 2023).
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3. Methods

3.1. Corpus creation

Sign language computation research lies at the
intersection of Natural Language Processing,
Computer Vision, and Human-Computer Interac-
tion/Accessibility. As no dedicated venues cen-
tralize the majority of relevant work, we turned
to arXiv, where computational researchers often
share preprints of their work. We retrieved all pa-
pers containing the term “sign language” in CS field
on arXiv, scoping our search to papers January
2021 to November 2023. This yielded 222 papers.

As our review focuses on sign language Al, we
exclude works that exclusively study human fac-
tors. For papers in sign language Al, we focus
on “receptive” sign language models, models that
accept a recording or representation of sign lan-
guage as input. Although work that focuses on
sign language generation or avatars is also inter-
esting and contributes to language understanding,
these methods are relatively less developed (Yin
et al., 2021). We reasoned focusing on receptive
models would provide more diversified design de-
cisions for analysis while reducing the volume of
papers. We also exclude works that do not center
sign language (e.g., uses sign language to demon-
strate how methods generalize). Since our work
focuses on sign language, we include work that
focuses on fingerspelling only if they explore finger-
spelling in the context of a longer sentence, or if
the work (erroneously) claims fingerspelling to be
a complete language system. We exclude reviews,
theses, and non-English works.

Three authors reviewed paper abstracts against
our inclusion criteria. Initially, two authors were
assigned to each abstract. If there was a disagree-
ment, a third author broke the tie. After filtering
through inclusion criteria, we had 137 papers.

A limitation of arXiv is that works have not nec-
essarily been peer reviewed. We only include pub-
lished works from 2021-2022 (excluding 26 papers).
As 2023 arXiv papers might be currently undergo-
ing review, we include all preprints from that year
that match our inclusion criteria. This gave us a
total of 111 works for our systematic analysis.

3.2. Systematic Literature Review

We developed a codebook iteratively through dis-
cussion between authors (see appendix). We track
the datasets used in each paper alongside inputs to
models and outputs of the model (i.e., labels). We
also note any prior models that papers build on (i.e.,
pretraining). We additionally read the abstracts and
introduction to understand how the paper is mo-
tivated. Two annotators coded each paper, and
disagreements were resolved by a third annotator.



4. Results and Discussion

We excluded 10 papers from our initially compiled
list on further review as we found they did not match
inclusion criteria. Our review thus consisted of a to-
tal of 101 papers, 21 from 2021 (peer-reviewed), 29
from 2022 (peer-reviewed), 51 from 2023 (arXiv).
Most of these works focused solely on sign lan-
guage recognition or translation as their main task,
with a few looking at additional tasks like segmen-
tation, sign spotting, etc.

Of the 101 papers in our review, we find that 60
work with continuous sign language datasets, 26
work with isolated sign language datasets, 3 with
a combination of isolated and continuous sign lan-
guage datasets, and 11 work with fingerspelling
data. Most datasets used are publicly available.
Seven works collect their own private dataset. Be-
low we discuss themes from our systematic review.

4.1. Papers are motivated by perceived

communication barriers

In our review, we find that 64 papers primarily moti-
vate their work as addressing barriers in commu-
nication between deaf people and hearing society
or spoken language resources. Navigating a hear-
ing world and resulting communication barriers are
undeniably a central component of the lived deaf ex-
perience. However, sign languages are not merely
“communication tools” (Hu et al., 2023b), they are
full languages, with a long history of being recog-
nized as such (De Meulder et al., 2019). When
ML research focuses singularly on the role sign
languages play in provisioning access, it overlooks
the history and diverse lived experiences of Deaf
people, and misses out on exciting avenues for
research, as we discuss below.

We find in most papers, the description of com-
munication barriers encountered by deaf individu-
als either implies or directly establishes an inherent
connection between sign language use and hear-
ing ability. First, many papers claim that sign lan-
guages are the “primary form” (Walsh et al., 2023)
or “natural means" (Varol et al., 2021) of communi-
cation for deaf people. However, not all deaf individ-
uals know and use a signed language, and the sign-
ing communities extends beyond those who identify
as Deaf. Even as individuals should have the right
to self-determine what communication modalities
they use in what contexts, the systemic suppression
of sign languages means that many deaf people
are not given sign language as an option in the first
place. By presenting an oversimplified claim that
“deaf people use sign language”, authors fail to pay
credence to this long-standing oppression (as well
as movements seeking equal status for signed lan-
guages) that complicate this relationship (Murray
et al., 2019).
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Second, there is a frequent narrative in the pa-
pers that suggests the primary hurdle in communi-
cation between ‘deaf’ and ‘hearing’ people is the
‘lack of a shared language’, with some papers claim-
ing that deaf people largely lack fluency in written
languages (e.qg., “the globe’s [430 million DHH peo-
ple] largely do not benefit from modern language
technologies” (Wang and Nalisnick, 2023)). This
framing diminishes the multilingual and multimodal
capabilities of deaf people (Kusters et al., 2017b).
Often, deaf and hearing people do share a common
language, but deaf people might not have physical
access to auditory languages. Most sign languages
do not have a commonly used written form and so
deaf signers often learn to read and write in another
language (Gardenfors, 2021), even as some face
(and overcome) barriers in acquisition of spoken
languages. Additionally, by fixating on how deaf
people communicate exclusively, this framing por-
trays communication as one-sided when it is usu-
ally reciprocal and multimodal. ‘Communication’
for deaf people is much more complex than a mere
translation between signed and spoken languages.

Third, perceived communication barriers are of-
ten used to argue that deaf people are not included
into hearing society, and therefore experience ad-
verse consequences. For example, in their discus-
sion of broader impact, Hu et al. (2023a) state that
deaf people may “feel isolated, lonely, or [have]
other mental health issues when they face the com-
munication barrier in daily life”. While it is true
that inaccessibility impacts deaf people on a sys-
temic and individual level, claims like these portray
deaf people as deficient and in need of techno-
logical interventions (termed by Morozov (2013)
as ‘technosolutionism’), instead of more accurately
recognizing that most deaf individuals already have
developed strategies to navigate hearing society,
and that any emerging technology will at least ini-
tially only be a small supplement to these strategies.
Thus, this framing of deaf individuals is ideological,
allowing authors to overstate the importance of their
contributions to the daily lives of deaf people, at the
expense of diminishing their existing repertoires.

We note that not every paper that focuses on
communication barriers frames poorly. For exam-
ple, Hossain et al. (2023) are careful to scope their
claims to barriers in STEM education and design a
method well aligned with the application. However,
we believe there are two distinct issues: first, in
our reading, the majority of papers that do motivate
their work as addressing communication barriers
do have oversimplified or inaccurate views. But sec-
ond is the overall proportion of papers in the field
that focus on mitigating communication barriers.

Addressing the second issue, in our view, this
means the field disproportionately focuses on a sin-
gle story: mitigating accessibility barriers, which is



primarily understood to be “deaf people’s access to
spoken language”. This means that receptive sign
language models are mostly studied in the context
of translation, overemphasizing the role of spoken
language. While this is an important issue, it is not
the only framework in which sign language recog-
nition can occur. In our review, we find a few works
that are motivated by exploration of sign language
as a language in its own right, including models
that annotate phonology (Tavella et al., 2022), or
predict the iconicity of signs (Hossain et al., 2023),
but these are far less represented than translation
works. Sign languages are different in many ways
than spoken languages, and rather than consider-
ing these differences as inherent limitations that
make building sign language technologies difficult,
there is an opportunity to develop Al technologies
that understand and center these differences to
further our scientific understanding of the human
capacity of language. For example, as we further
discuss in Section 4.3, most translation annotation
schemes focus on flattening phonological differ-
ences between users to prioritize semantics, but
differences in phonology can induce differences
in meaning, as well as connect to the identity of
the signer. Applications like these are currently
underserved by sign language Al.

4.2. Models use datasets misaligned with
target users

Across all papers, we identified 43 different publicly
available sign language datasets. 16 datasets use
solely DHH contributors, 3 datasets use solely inter-
preters, 11 datasets include a mix of contributors,
and 12 datasets do not specify contributor qualifi-
cations. While this heterogeneity in dataset con-
tributors seems promising at the surface, it raises
several concerns. First, most papers claim to build
technologies to solve communication barriers for
deaf people, but many (12 of 43) datasets do not
disclose who they collect data from. This indicates
an underlying assumption: that everyone signs the
same way or that variations in signing are insignifi-
cant. We unpack additional concerns below.
Second, even as datasets are diversified in terms
of contributors, their usage is not. The three
datasets that use interpreters only (Albanie et al.,
2021; Forster et al., 2014) are long-standing bench-
marks in the field, and are used by 41 of the 60
continuous sign language recognition works in our
systematic review. All three of these datasets are
continuous sign language and draw from existing
media broadcasts. While these works offer large-
scale annotated datasets to advance sign language
recognition (which has known to be constrained by
lack of data), the question arises whether is is ap-
propriate to use interpreted datasets as source ma-
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terial to develop sign language Al. First, the majority
of sign language interpreters are hearing users who
may not sign in a manner that aligns with usage pat-
terns in Deaf communities. Instances have been
documented where Deaf viewers face challenges
in understanding the interpreters in the same broad-
casts used for ML purposes (Alexander and Rijck-
aert, 2022). Secondly, the nature of scripted and
interpreted language use, especially under the con-
straints of simultaneous interpreting, diverges sig-
nificantly from language in the wild. This may result
in a distorted representation of sign languages in
Al systems (see also SignOn (2022)). We note that
authors of some of these datasets discuss limita-
tions — e.g., Albanie et al. (2021) (BOBSL dataset)
remark on “translationese” extensively — but most
works that use these datasets do not. These dis-
tortions have broader implications. Deaf end users
may find themselves compelled to adjust their sign
language use to accommodate the limitations of Al
technologies trained on this data, a form of linguistic
subordination to technology.

More recent datasets have recognized this gap
between training data and target users, and sought
to collect more representative data — ASL Citizen
(Desai et al., 2024) and Sem-Lex (Kezar et al.,
2023) are both large scale isolated sign language
recognition datasets of ASL, and aim to collect data
from “fluent” DHH signers. While this is an improve-
ment, details in how participants were recruited re-
veal that the notion of “fluency” is more subjective
than what is discussed in either paper. ASL Citi-
zen claims to recruit “fluent signers” from “trusted
groups” but does not state what/who these are. In
contrast, Sem-Lex defines “fluent” signers as those
who acquired sign language in childhood. While
people who acquired sign language in childhood
are a portion of contemporary Deaf communities, it
is not the only group, and not even the largest one.
95% of deaf children are born to hearing families.
Often these children do not learn sign language un-
til later in life or at all, because medical practitioners
often discourage parents from using a signed lan-
guage (Murray et al., 2019). This illustrates the
ideological meaning of “fluency”. While later or dif-
ferent acquisition paths means they might sign dif-
ferently from the ideological "norm", excluding them
from datasets means we exclude them as users
of designed technologies. While targeting subsets
of the community can help scope data collection,
our concern is how this bias is framed: Sem-Lex
argues for data representative of “deaf signers” in
general, without explicitly discussing how their data
may not be representative of many signing Deaf
people. Without this disclosure, we worry this may
lead to applications that inadvertently marginalize
a large proportion of Deaf communities.

Overall, perhaps the biggest driver in mis-



matches between data and applications is the op-
posing goals of data as needed for machine learn-
ing applications and language as it happens in the
world. First, finding an optima for machine learn-
ing necessitates scoping multi-dimensional and nu-
anced realities to something neat and tractable.
Datasets make decisions about what variation is
desirable to collect, and what is out-of-scope for a
particular dataset. For example, ASL Citizen con-
siders variation in background, illumination, and
camera angle of recorded videos desirable, and
Sem-Lex considers signer diversity across race
and gender axes. At the same time, the prompt-
ing and labelling procedures in both datasets both
seek to minimize label noise for signs for each cat-
egory. In ASL Citizen, contributors are prompted to
copy a seed signer’s production of a sign, instead
of providing their own sign for a concept. Simi-
larly, in Sem-Lex, if a contributor provides a sign
that is not included in a pre-defined corpus, it is
discarded. This creates tension in the decision to
collect a racially diverse dataset: even if Deaf peo-
ple of color are represented, if a dataset only retains
signs they produce that are present in dictionaries
historically biased towards language used by white
people (Hill, 2023), signs they use within their own
communities may be discarded.

Clean data and high quality annotations are
therefore in direct tension with procedures that fos-
ter agency and authenticity from signing contribu-
tors. This tension plays out in many different ML
fields (Bender and Friedman, 2018), but we are
more concerned with how characterizations for de-
sirable and excluded variation for datasets tie to
a larger societal rhetoric of “good” and “bad” lan-
guage. Revisiting our earlier discussion of fluency
as an ideal, we note the concept of fluency is fre-
quently entangled with notions of racial and ableist
privilege, often being contingent upon closeness
to whiteness and normative physical ability (Hen-
ner and Robinson, 2023). Without a critical ex-
amination of what constitutes “fluency”, there is a
risk of elevating those who, by virtue of early expo-
sure to sign language and alignment with privileged
identities (e.g., racial, able-bodied), are considered
the “purest” or most “ideal” users (also see ‘native’
signer bias discussed in Hochgesang et al. (2023)).
This paradigm risks overshadowing the diverse lin-
guistic realities of deaf people and can again perpet-
uate a form of linguistic subordination to technology,
where users are compelled to conform their signing
to that of the “ideal”, “fluent” model. This further
overlooks the varied experiences of Deaf people
with additional disabilities that might influence their
interaction with sign language Al technologies, or
even for Deaf people considered “fluent” if they
need to modify their signing (e.g., they’re signing
one-handed because they’re holding an object), in
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contravention with a goal of accessible design.

But second, the need for large scale training
data may engender reliance on more scalable data
collection procedures (Bender et al., 2021) (e.g.,
collecting data from hearing interpreters, scraping
from publicly available videos on the Internet, using
subtitles) and result in suboptimal datasets that do
not capture language as used by deaf people. We
discuss this more in the next section, but for now,
we ask the question: who gets to decide whether
using or collecting more data outweighs the possi-
bility that data may lead to biases that marginalize
(Bender et al., 2021)?

4.3. Labels lack linguistic foundation

Next, we looked at the annotation schemes used
by models, which we found to be a good proxy for
understanding how models use (or misuse) prior lin-
guistic knowledge. We find that half of the papers
(51) rely on glosses — a written language repre-
sentation of signed language intended to preserve
original meaning and structure (Comrie et al., 2008)
— as either their main output or intermediary repre-
sentation. Specifically, we find 30 papers that use
glosses alone, with an additional 17 using glosses
alongside spoken language translations, 4 using
glosses alongside phonological features or other
annotations.

We find that sign language Al research has
adopted the use of glosses without discernment,
and without following best practices pioneered in
linguistics (Hodge and Crasborn, 2022). Glossing
conventions in linguistics are closely tied to projects:
there is no singular gloss system, and gloss sys-
tems vary depending on the theoretical framework
and questions of the research team. This simi-
larly happens in sign language datasets, regard-
less of whether the gloss system is intentionally de-
signed, or a consequence of data processing. For
example, WLASL (Li et al., 2020) (an ISLR dataset)
merges gloss systems from different scraped online
resources, and this leads to a final gloss system
largely based on their English literal - in this gloss
system, the sign for PRESENT meaning gift, and
PRESENT meaning time are represented by the
same gloss®. This is distinguished from ASL Citi-
zen and Sem-Lex, which use a gloss system from
ASL-LEX (Sehyr et al., 2021), which distinguishes
signs by their semantics (e.g., BOW_1 meaning
hair ornament, and BOW_2 meaning archery are
given distinct glosses?®). There are still other gloss-
ing systems that would be useful for and employed

2PRESENT - gift - handspeak . com/word/3783/
PRESENT - time - handspeak.com/word/2751/

SBOW 1 - asl-lex.org/visualization/?si
gn=bow_1 BOW_2-asl-lex.org/visualization
/?sign=bow_2


handspeak.com/word/3783/
handspeak.com/word/2751/
asl-lex.org/visualization/?sign=bow_1
asl-lex.org/visualization/?sign=bow_1
asl-lex.org/visualization/?sign=bow_2
asl-lex.org/visualization/?sign=bow_2

by linguists in some contexts (e.g., those that make
finer distinctions between phonological variants of
the same sign), that we did not find represented
in current sign language Al research. Ciritically,
glosses cannot represent all linguistic phenomena
in signing, e.g., signs that point or depict, name
signs, etc. Researchers often rely on internal or
current practices for additional conventions.

Second, while glosses generally make source
languages accessible to those in the field who
may not be fluent in both languages, they do not
stand alone as a complete representation, and lose
meaning like any translation. In linguistic research,
glosses often accompany the source language as
to provide some access to meaning for those not
fluent. Unfortunately, in sign language research,
glosses are often used as the only representation
of signs, without any direct link to the source (be it
video, photos or drawings), even when the issues
with this representation are known —a phenomenon
called the “tyranny of glossing” (Hochgesang, 2019,
2022b)*.

Here, we are concerned that the use of glosses
in sign language Al research goes one step fur-
ther, where many papers treat glosses as an ac-
tual translation, rather than a context-dependent
representation. This is evidenced by several ob-
servations. First, virtually no paper describes the
underlying design of the gloss system they are pre-
dicting. Without knowing what is being predicted,
models lack usefulness for linguistic applications.
Second, many papers build predictors on several
independent datasets. We consider this to be pre-
dicting several independent, if correlated and not
fully disclosed, tasks - e.g., WLASL predicts the
English word associated with a sign, whereas ASL
Citizen predicts semantic categories of phonologi-
cally distinct signs. However, many of these papers
claim these predictors are accomplishing sign lan-
guage translation, effectively claiming these distinct
and disparate gloss systems as complete represen-
tations of sign language. Third, for continuous sign
language, the field often approaches sign language
translation as a two-phase pipeline consisting of
movement from sign2gloss and gloss2text. How-
ever, discussion is often not given to how the gloss
system may bottleneck information (e.g., if spatial
and temporal components are represented).

Even works that do not use glossing may face
the same issues. 11 papers do not specify what
kind of annotation system they use, but attempt
ISLR through a classification framework. The target
here impacts task difficulty and the final application.
We also find papers that use different systems — 4
works use phonological features, and 5 use other

4(with gratitude to Bérstell for coining "Glossgesang")
twitter.com/c_borstell/status/1177498599
99261082325=20
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notation systems like HamNoSys — systems which
are also specialized, noisy, and tied to specific the-
oretical perspectives on signs (Hochgesang, 2014).
Our point is not that glosses are inherently bad,
rather that they are partial and subjective represen-
tations of sign language and deeply shape the task
at hand. When researchers focus on improving
model performance without contextualizing what
they are even predicting, they fail to engage with
a core part of the research. ML scholars need to
be explicit with their design choices and articulate
trade-offs between systems.

We also note a growing trend of end-to-end trans-
lation, where works use spoken language transla-
tions as targets (18 works in our review). This is
largely motivated by the difficulty and expense in
acquiring high quality annotations for sign language
data. These works instead often rely on subtitles for
supervision. While one might think this avoids the
issues above, it adds other considerations. First,
there is no guarantee that the subtitles reflect the
same content or order of content, for a number
of reasons. In simultaneous work, the captionist
or interpreter may miss content; in translation, the
interpreter may need to inject additional context
depending on audience; and if captions are au-
tomated, biases from technology can be injected
(e.g., automated captioning struggles with technical
terms and accents). But even in situations where
the subtitles reflect reliable translations, translation
itself may not be perfect. For example, the lyrics
of a song used in a sign language music video are
technically accurate, but will miss the expressive
art of the signer. Generalizing on this example,
by relying heavily on spoken corpora, we limit our-
selves only representations that align with spoken
language conventions, paralleling issues raised
in Section 4.1. Finally, that most work focuses
on mapping sign languages to spoken languages
(including glossing) is uncomfortable, because it
echoes misconceptions that sign languages are not
independent, but analogues of spoken languages.
As mentioned in section 4.1, translation is not the
only possible framework under which sign language
recognition can occur, and there is opportunity to
center other tasks like sign language understanding
instead.

Overall, despite sign language modeling being
framed as an computer vision and natural language
processing problem, we find there is a lack of lin-
guistic awareness and incorporation of linguistic
knowledge into research approaches. This leads
to researchers appropriating annotation schemes
without context (such as glossing), prioritizing ease
rather than quality (such as subtitles), and over-
relying on semantic representations (tied to spoken
languages, rather than other representations that
offer other applications).
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4.4. Modeling decisions inherit biases

Next, we looked at machine learning modeling de-
cisions. Of the 101 papers in our review, we found
that 59 models use vision-based inputs (i.e., RGB
video or images), 34 use pose-based inputs (i.e.,
joint keypoints estimated from videos by a pose ex-
tractor), and 10 use other input representations
(e.g., manually assigned features or 3D sensor
data). Note some works use multiple inputs.

Data-driven Al-approaches typically rely on large
amounts of annotated data to train. As most sign
language datasets are small, many works will em-
ploy transfer learning approaches, where sign lan-
guage models will fine-tune or rely on outputs
from previous models pretrained in another setting,
where data is more abundant. However, transfer
learning is not without its risks: pretraining can
introduce biases into models that are inherited by
fine-tuned models (Wang and Russakovsky, 2023).

From this perspective, it is concerning that 34 of
the papers use pose-based inputs, which are ex-
tracted from pre-trained pose estimators (Lugaresi
et al., 2019; Cao et al., 2017; Fang et al., 2022).
These are models not trained on sign language
data, but using action or gesture videos. Moryossef
et al. (2021) show failure models and biases when
applying them to sign language: for example, hand-
shapes in sign language are typically much more
fine-grained than what these models encounter in
pre-training. Furthermore, by construction, many
pose-based models exclude information necessary
to understand sign language: for example, even
though MediaPipe (Lugaresi et al., 2019) extracts
facial landmarks, Selvaraj et al. (2021) advocate for
the use of a reduced set of keypoints that include
no information about facial expression, even in con-
tinuous sign language settings where the face is
critical to grammar.

Similarly, many of the vision-based models (42
of 59 models) also employ pre-training. 24 of
these models only pre-train on non-sign language
datasets (with ImageNet (Deng et al., 2009), a nat-
ural image dataset, and Kinetics (Carreira and Zis-
serman, 2017), a human action dataset being most
common). Again, it is unclear what biases are in-
herited with this approach: previous work by Desai
et al. (2024) shows that models pre-trained on Ki-
netics provide no capability to recognize isolated
signs beyond random chance, and work by Shi et al.
(2022) suggests that pre-training on ImageNet may
in some cases, degrade performance. While the
other 18 models do explore pre-training on sign
language datasets instead, the majority of these
works pre-train on BSL (8 models) or ASL (8 mod-
els). These models often then evaluate on other
sign languages, and although we consider this pre-
training to be a closer domain than e.g., action
videos, it is unclear if this introduces any biases
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in phonology shared between the sign languages
versus distinct. In our analysis, we identified no
paper that provided a quantitative analysis of po-
tential biases from pre-training: even though as
papers compare pre-training versus training from
scratch (Jang et al., 2022) or different pre-training
datasets (Shi et al., 2022), all papers report overall
metrics on datasets exclusively, without seeking
to understand if performance increases come with
trade-offs (e.g., reporting metrics class-by-class to
understand if improving recognition of some signs
comes at the expense of others).

Beyond pre-training, a second sub-theme that
we observed is that even as some papers claim
to produce general methods, it is unclear if meth-
ods are correcting issues cascading from previous
design decisions. An interesting case example is
in Zuo et al. (2023), which argues that semantic
similarity in English glosses can be used to improve
sign language recognition, as sometimes signs re-
lated in meaning share phonology. However, to
demonstrate this claim, this paper relies primarily
on internet-scraped datasets that rely upon English
glosses to merge and distinguish signs, including
WLASL (Li et al., 2020). Our exploration of this
dataset suggests that this procedure creates arti-
facts where distinct glosses refer to identical signs
in ASL (e.g., “DORM” and “DORMITORY”), and it is
unclear if improvement from the proposed method
is due to correcting these artifacts versus general
linguistic properties of sign languages.

Overall, we observe the majority of sign lan-
guage Al works build off previous methods, with
known issues and flaws in how they represent sign
language. While this point is understandable be-
cause re-inventing every design aspect of a new
sign language model is unreasonable for any indi-
vidual paper, this means that issues are inherited
by future models, often uncritically. Echoing per-
spectives from previous sections, we argue that in
many cases this is because authors lack the lin-
guistic expertise to fully identify where modeling
decisions not be representative or general. This
creates systemic biases in modeling that align with
decisions made due to convenience (e.g., it's eas-
ier to use existing pose-based models, rather than
training one specialized to sign language), but ul-
timately become standards as new papers do not
re-assess if these design decisions align with sign
language, but uncritically adopt them as defaults.
While foregoing pretraining entirely might not be
feasible given the data gap, works can analyse im-
pacts of pretraining more closely and explore how
one might mitigate inherited biases.



5. Calls to Action

Synthesizing our results, we take the position that
as afield, sign language Al research lacks intention-
ality: collectively, problem formulation and model
design is not guided by what best aligns with Deaf
stakeholder interests or growing trends in sign lan-
guage research that center the complexities of lived
deaf experiences. In the absence of these guiding
principles, these decisions are left to researcher
preference and ease. We showed that in spite of a
range of possible problem formulations, datasets,
targets, and models, most works narrow to a few
defaults. Although our point is that this is prob-
lematic even if every paper is well-executed, we
expose numerous issues to demonstrate that these
biases are likely induced by positionality, as most re-
search is led and conducted by hearing non-signing
researchers. That most research is motivated by
communication barriers is tied to the issue that
many researchers view deaf people as being ‘defi-
cient’. That most papers use datasets or prediction
targets that misalign with broader Deaf languaging
patterns connects to how many authors lack linguis-
tic knowledge and actual engagement with Deaf
communities. Some of these misaligned decisions
are now baked-in as standards, such as the use of
interpreter-only datasets as benchmarks, or the use
of pretrained models without fully understanding
their biases. These misalignments have the po-
tential to marginalize the very target users of sign
language technologies. Moreover, as Deaf sign-
ing communities are a wide spectrum, they may
marginalize subsets of the community even as they
serve others.

Towards addressing this systemic issue, we ad-
vocate that the field foster Deaf leadership. Previ-
ous works have advocated for including Deaf col-
laborators (Yin et al., 2021), and while we agree
that Deaf-hearing collaboration is essential to make
meaningful progress in the field, we also believe
that including Deaf people in each individual project
is not a structural solution. First, just including Deaf
collaborators does not necessarily mean they are
driving the research agenda. In most cases, they
are not. In the first-hand experience of the authors
of this paper, Deaf researchers are often only asked
to collaborate often well after the idea has been
conceived, the team built, the research conducted,
or even near the project write-up as sometimes
the sole "deaf" person. In this paper, we showed
that there are often tensions between how to al-
locate limited resources in projects and making
decisions that are linguistically and culturally appro-
priate. Currently, most of these decisions are made
by hearing (often non-signing) researchers, and
sometimes this is done even without awareness
that an impactful decision is being made. “Lead-
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ership by the most impacted” is one of the core
principles of Disability Justice (Berne et al., 2018) :
even if Deaf researchers may not have all the an-
swers in these complex trade-offs, enabling us to
lead research means these decisions are at least
being made by those with a larger stake.

But second, Deaf researchers are underrepre-
sented in the field, and even if exclusionary struc-
tures are fully addressed, may still persist as a
minority for demographic reasons. Asking DHH
scholars to be involved in each individual project
creates burden given the overwhelming number
of sign language Al works relative to the number
of DHH researchers, and may distract them from
other priorities or create tensions where they feel
declining a project harms their community (Angelini
et al., in press). Instead, the field needs to contend
with how to amplify Deaf perspectives, even as
they may continue to form a minority of research
outputs. Towards this end, hearing researchers
should reassess their role in work involving Deaf
signing communities. Rather than being the ones
to dictate the agenda and be the public face, hear-
ing researchers can transition these opportunities
to Deaf researchers, and instead switch to a role of
supporting Deaf researchers like taking on the re-
sponsibility of accessibility or promoting their train-
ing.

For this to be possible, all researchers in sign
language Al research need to be transparent about
their positionalities. This imperative extends be-
yond a ‘confession before a crime’; aspiring instead
to weave positionality deeply into the research, en-
hancing transparency and underscoring the impact
of researchers’ backgrounds, experiences, privi-
leges, and biases in their work. Transparency about
one’s positionalities is an increasingly recognized
practice in sign language linguistics, sociolinguis-
tics, interpreting studies, and Deaf Studies research
(Hou, 2017; Kusters et al., 2017a; Kusters and Lu-
cas, 2022; Mellinger, 2020; Hochgesang, 2022a),
where the lived experience of researchers (DHH
or hearing) can significantly differ from those of
their participants in aspects such as ethnicity, race,
other disabilities, and educational and linguistic
backgrounds. Positionality statements are not a
standard for sign language Al research (although
some works informally disclose (Bragg et al., 2021;
Desai et al., 2024)), but given how the field con-
tends with similar issues with potential mismatches
between researchers and target users, we recom-
mend it become adopted as practice.

At the same time, we are cautious about our
call for Deaf leadership. While we believe it is a
meaningful step forward, it is not a full solution in
itself, and followed uncritically, it risks corruption
of the very principles we issue this recommenda-
tion under. We've noted that calls for and projects



that claim Deaf collaboration or leadership have be-
come tokenizing (De Meulder and Kusters, 2021).
We worry that our call for Deaf leadership may be
similarly impacted. Without carefully considering
whose voices to include, how to meaningfully build
consensus, and how to reconcile disagreements,
attention might focus on those who already have
the most power, glossing over inequalities within
the community. Deaf researchers themselves must
acknowledge there are gaps, and Deaf leadership
must come from a wide range of perspectives and
backgrounds. We are careful to note our own posi-
tionalities (e.g., educational and literacy privilege).
We further found critiques of our own work upon
reflection (e.g., ASL Citizen, which two authors on
this paper worked on). Just because we are DHH
doesn’t mean we are immune to participating in
systemic biases.

Thus, our call for Deaf leadership is intended to
be a call for ongoing conversation, one in which
we continuously re-evaluate how positionality influ-
ences research, and where stakeholders need to
be in charge of decisions. For example, even as
we ask hearing researchers to transfer visibility and
accountability to Deaf researchers, to what extent
does this depend on the project, the discipline(s),
and other people involved? And to which Deaf re-
searchers? Even now, these are questions we do
not fully have the answers to. But to find answers,
there first has to be a conversation taking place,
which is currently absent from large swaths of the
field. We invite all sign language Al researchers to
join the conversation.
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A. Methods Supplementary and
Datasets

We used an iterative process to develop questions
for our systematic analysis, guided by an in-depth
qualitative review of a few papers by all authors. Pa-
pers for this qualitative analysis were nominated by
authors based upon individual authors’ beliefs that
they were representative of current modeling work,
or would generate multidisciplinary discussion. Our
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final questions focused on four different themes:
framing of the research in abstract or introduction,
datasets used by the papers and other inputs for
modeling, annotation or labeling schemes used for
model outputs, and the use of pretrained models
anywhere in the ML pipeline. Two annotators coded
each paper, and a third annotator was called in to
resolve disagreements. Two of the annotators have
a background in ML and are familiar with reading
such papers, one annotator has a background in
psycholingusitics.

Of the 101 papers in our review, we find that
60 work with continuous sign language datasets,
26 work with isolated sign language datasets, 3
with a combination of isolated and continuous sign
language datasets, and 11 work with fingerspelling
data (8 focus on recognition from images, 3 study
fingerspelling in a continuous signing context aka
in-the-wild).

There are a total of 43 publicly available datasets
used across our corpus (each used to varying
degrees). Seven works collect their own private
dataset. The sign languages studied in the public
datasets include the following: American Sign Lan-
guage (ASL), Deutsche Gebéardensprache (DGS),
Chinese Sign Language (CSL), British Sign Lan-
guage (BSL), Turkish Sign Language (TSL), Rus-
sian Sign Language (RSL), Indian Sign Language
(ISL), Lengua de sefias argentina (LSA), Greek
Sign Language (GSL), Lengua de Signos Espariola
(LSE), Arab Sign Language (ArSL), Bangla Sign
Language (BdSL), Vlaamse Gebarentaal (VGT),
along with some multilingual datasets (JWSign, SP-
10). We note that along with disparities in who
contributes data, not all sign languages are equally
represented.
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Abstract
This paper is part of a larger project that aims to create a standardized procedure for annotating non-manual

markers (NMMs) in sign language data.

The paper describes two approaches to evaluating inter-annotator

agreement, the event-based approach and the frame-based approach, and uses a combination of these two
approaches to evaluate the annotation guidelines introduced in Oomen et al. (2023). The evaluation reveals
that for several labels in the annotation scheme inter-annotator agreement is rather low. This indicates that the
annotations guidelines need to be further improved. We present concrete recommendations for how this may
be achieved, and intend to implement these recommendations in future work. All data and analysis scripts are available.
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1. Introduction
This paper is part of a larger project that aims to cre-
ate a standardized procedure for annotating non-
manual markers (NMMs) in sign language data.
The initial steps we took as part of this project—
developing annotation guidelines and creating a
dataset annotated according to these guidelines
by two annotators—were previously reported in
Oomen et al. (2023). In the present paper, we
report on the next step: a thorough evaluation of
inter-annotator agreement, yielding substantial rec-
ommendations for improvement of the guidelines.
In Section 2, we outline our general motivations
for developing a new protocol for annotating NMMs.
Section 3 provides a brief summary of the first steps
towards such a protocol as reported in Oomen
et al. (2023). In Section 4, we describe two gen-
eral methods for evaluating inter-annotator agree-
ment which can be applied to sign language data.
Section 5 discusses the results of applying these
methods to our test dataset, leading to several rec-
ommendations for further improving our annotation
guidelines. This is the main contribution of the pa-
per. Sections 6 discusses some methodological
prospects and limitations of the evaluation meth-
ods we adopted, and Section 7 concludes. Before
the bibliography, we provide pointers to all sup-
plementary materials: the annotation guidelines,
evaluation data, analysis scripts, and a technical
report with extensive discussion of all results.

2. Motivation for the Larger Project

In sign languages, facial expressions, body move-
ments, and other NMMs serve a wide range of
linguistic functions, in addition to the gestural and
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affective functions they may fulfil more generally.’
There are plenty of examples in the literature tying
particular NMMs (or clusters of NMMs) to partic-
ular grammatical functions (for a recent overview,
see Wilbur, 2021). For instance, Bahan (1996) has
argued that eye gaze (or head tilt in the case of
first person) can be used to mark verb agreement
in American Sign Language (ASL); Goksel and
Kelepir (2013) have claimed that (forward or back-
ward) head tilt in Turkish Sign Language marks
interrogative mood while specific combinations of
head tilt and head movement distinguish polar (for-
ward + head nod) and content (backward + head-
shake) questions; Wilbur and Patschke (1998) have
proposed, again for ASL, that body leans are used
to convey contrast at the prosodic, lexical, semantic,
and pragmatic level. Works such as these provide
highly valuable descriptive, analytical and theoreti-
cal insights, but they tend to be based on relatively
small sets of examples, for which it is often un-
clear exactly how they were obtained or analyzed.
The analyses also generally do not involve detailed
qualitative annotation of NMMs, or the annotation
procedure is not discussed.? Moreover, (individ-
ual) variation in NMMs use is often not considered.
This means that many claims about NMMs and
their properties and functions in sign languages still
await robust empirical verification, which cannot be
done without in-depth analysis of NMM patterns by
means of careful annotation of linguistic data.
Facial expressions and other NMMs also play

This section overlaps to a large extent with Section 2
from Oomen et al. (2023).

2Notable exceptions include Pendzich (2020) on lexi-
cal NMMs in German Sign Language and Lackner (2017)
on the various functions of head and body movements
in Austrian Sign Language.

Proceedings of the 11th Workshop on the Representation and Processing of Sign Languages, pages 66—76
25 May 2024. © 2024 ELRA Language Resources Association: CC BY-NC 4.0


https://orcid.org/0000-0002-4077-1120
https://orcid.org/0000-0002-3420-6432
https://orcid.org/0000-0002-3224-5251

an important role in multimodal communication,
where they have been shown to be connected to a
wide variety of semantic, pragmatic, and social func-
tions (e.g., Bavelas and Chovil, 2018; Gonzalez-
Fuente et al., 2015; Nota et al., 2021; Tomasello
et al., 2019). Thus, research in this domain like-
wise requires (and sometimes already includes;
e.g., Gonzalez-Fuente et al. 2015, Nota et al. 2021)
fine-grained annotation of facial expressions and
other visual cues in video data.

Annotation of NMMs is highly time-consuming
and also poses challenges for data analysis, given
the considerable number of possible NMMs and
the fact that temporal information is ideally also
taken into account. Even so, as we have discussed,
such work is vital both for empirical assessment of
theoretical claims as well as to gain more insight
into the factors that lead to variation in NMMs use
in sign language and multimodal communication.

Currently, the field lacks standard guidelines
for annotating NMMs. That is to say, guidelines
for annotating NMMs do exist, but none have
been thoroughly validated and have become a
community-wide standard. Researchers studying
NMMs often end up devising new annotation proto-
cols tailored to their specific research objectives.?
Furthermore, we also lack a standard method to
quantify inter-annotator agreement. In fact, pub-
lications in sign language linguistics rarely report
inter-rater agreement scores. For instance, ten
out of the seventeen research articles published
in Sign Language & Linguistics in 2021-2023 in-
vestigate properties of sign languages based on
annotated video data, but just one of them reports
inter-annotator agreement scores. Adopting a stan-
dard method for this purpose would benefit the field
by increasing data transparency, and would enable
us to iteratively evaluate and improve our annota-
tion guidelines.

The general project that the present paper is part
of therefore pursues (i) the development of a reli-
able protocol for the annotation of NMMs, and (ii) a
procedure for evaluating inter-annotator agreement.
This paper focuses on the second project pillar. In-
deed, it does not really matter for the purpose of
this paper which annotation protocol we evaluate.

3A reviewer made us aware of an extensive annotation
protocol for both manual and non-manual markers that
was developed in the context of the SignStream project
(Neidle, 2002). While this annotation scheme has to
our knowledge not been evaluated for inter-annotator
agreement, some of the general and specific insights and
recommendations discussed in these guidelines overlap
with those discussed in the present paper. We thank the
reviewer for pointing us to this work, and we will briefly
return to it in our discussion on the distinction between
poses and movements in Section 5.1.
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3. Summary of Oomen et al. (2023)

In Oomen et al. (2023) we presented a first version
of the annotation guidelines, according to which
two coders annotated a test set of 60 interrogative
sentences in Sign Language of the Netherlands
(NGT), which came from a larger dataset created
in the context of another study. The annotations
were produced in ELAN (2023). Coder 1 (C1) an-
notated 585 events over the 12 tiers specified in the
guidelines, and Coder 2 (C2) annotated 564 events.
The tiers concerned the eyebrows, eye shape, eye
gaze direction, shoulder position, body position,
head position and movement, mouth configuration,
lip corner configuration, and nose wrinkle.

In Oomen et al. (2023), we already briefly evalu-
ated the reliability of the resulting annotations and
included a few recommendations for the improve-
ment of the annotation guidelines. However, the
discussion was limited to one annotation tier (con-
cerning the eyebrows) and one evaluation method.
In the present paper, we provide a more in-depth
evaluation, and offer more extensive recommenda-
tions to improve the guidelines.

4. Evaluation Methods and Measures

Video-recorded sign language data represents so-
called timed-event sequential data (Bakeman et al.,
2009; Bakeman and Quera, 2011). In general, such
data involve recordings of sequences of events,
each with a particular time duration. Besides sign
linguists, researchers investigating other phenom-
ena (e.g., speech, multimodal communication, or
animal behavior) also work with this kind of data,
make similar use of annotations, and have de-
vised several methods to assess inter-annotator
agreement for this type of data. Broadly, two ap-
proaches can be distinguished: frame-based ap-
proaches and event-based approaches (Bakeman
et al., 2009).* In both these approaches, inter-
annotator agreement is quantified using confusion
matrices and agreement indices. We briefly explain
each of these methods in this section.

4.1. The Event-Based Approach

In the event-based approach, we treat all annota-
tions as ‘events’, and first determine the temporal
overlap between annotations of the two coders,
who we refer to as C1 and C2. This is done sep-
arately for each tier. For this approach, the anno-
tation label ‘neutral’ (used when a particular facial
feature or body part is in a neutral position) is not
classified as an event, so these labels are disre-
garded. Two annotations are taken to ‘match’ if their

*Frame-based approaches are also referred to as
time-based approaches (Bakeman et al., 2009).
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Figure 1: Annotations for the eyebrow tier of a sen-
tence. Red lines show the percentage overlap be-
tween all annotations; the thick lines show the per-
centage overlap between ‘matching’ annotations.

overlap exceeds a pre-defined overlap threshold.
At this stage, the label values are not considered:
matches are established purely based on tempo-
ral overlap. We use an overlap threshold of 51%.
Overlap between two annotations i and j is calcu-
lated according to the following formula (Holle and
Rein, 2015):

~__ min(offset;, offset;) — max(onset;, onset;)
Y max((offset; — onset;), (offset; — onset;))

In words, O;; is the length of the overlap between ¢
and j divided by the length of the longest of the two
annotations. If O;; does not exceed the threshold, i
and j are not regarded as a match. If an annotation
by C1 does not have any matching annotations by
C2, that annotation is regarded as ‘unmatched’.

Figure 1 shows the annotations by C1 and C2
for the eyebrow tier of an example sentence in our
test dataset. The red lines show the percentage
overlap between all annotations of C1 and C2, re-
spectively. The thin transparent lines show the per-
centage overlap between ‘unmatched’ annotations,
while the ‘matching’ annotations are illustrated by
the thick opaque lines. Again, note that ‘matching’
annotations do not necessarily involve the same
label, the only criterion is that they have sufficient
temporal overlap. We turn to quantifying the extent
to which matching annotations agree in terms of
their labels in Section 4.3.

4.2. The Frame-Based Approach

On the frame-based approach, we simply consider
each individual frame in all videos annotated by
C1 and C2, and then determine whether the labels
applied by C1 and C2 to each of these frames
correspond. We do this separately for each tier.
On this approach we do take ‘neutral’ labels into
account, so that for each frame we can compare
the labels that the two coders assigned.
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4.3. Confusion Matrices

Both on the event-based approach and on the
frame-based approach, the first step in quantifying
inter-annotator agreement is to compile a so-called
confusion matrix. For examples of confusion matri-
ces for two of the tiers we evaluated, see Section
5.2 and 5.3. Cell 5 in a confusion matrix displays
the number or the percentage of events/frames
which C1 labeled as i and C2 labeled as j. When
displaying percentages, a confusion matrix is ei-
ther constructed from the perspective of C1 (which
means that all rows add up to 100%) or from the
perspective of C2 (all columns add up to 100%).

4.4. Agreement Indices

Besides confusion matrices, another way to quan-
tify inter-annotator agreement is to compute agree-
ment indices for each label. Here it is important
to note that so-called raw agreement indices are
insufficient. To illustrate this, suppose that two an-
notators = and y label 100 items. To 50 items they
both apply label A, to 20 items only = applies label
A, to 20 items only y applies label A, and to the final
10 items they both apply another label. Then, x and
y agree in 50 + 10 = 60 of the cases as to whether la-
bel A applies or not. The raw agreement index for la-
bel A, then, is 0.6. However, this does not take into
account the possibility that, at least in some cases,
x and y may have agreed on the application of label
A by mere chance. Both = and y applied label A to
70% of the items, and other labels to 30% of the
items. If they would randomly assign label A to 70%
and other labels to 30% of the items, they would
agree 58% of the time as to whether A applies or
not (because (0.7 x 0.7) + (0.3 * 0.3) = 0.58). So
the raw agreement index, ..., = 0.6, is just slightly
higher in this case than the chance agreement in-
deX, ichance = 0.58. Chance-corrected agreement
indices take this factor into account.

One widely used chance-corrected index is Co-
hen’s x (Cohen, 1960). It is computed by dividing
the difference between 4,4, and icpance by the dif-
ference between i.j.... and the index for perfect
agreement, which is 1.

R = (iraw - Z'chance)/(]- - ichance)

In the example above, x would amount to
0.02/0.42 = 0.05. To give some other examples, if
traw = 0.7 @Nd icpance = 0.5 then k = 0.4, and if
traw = 0.9 @nd ichance = 0.6 then k = 0.75.

It is important to note that it is not straightforward
to interpret agreement indices such as Cohen’s k.
Some researchers have proposed specific inter-
pretations. For instance, a frequently cited inter-
pretation is that of Landis and Koch (1977, 165),
who posit that a x score of 0.21-0.40 amounts
to ‘fair agreement, 0.41-0.60 to ‘moderate’ agree-
ment, 0.61-0.80 to ‘substantial’ agreement, and



0.81-1 to ‘almost perfect’ agreement. However, it
has been noted in the literature that such absolute
interpretations are arbitrary and problematic, be-
cause k scores can be affected by label prevalence
(whether the labels are equiprobable or not), coder
bias (whether the marginal probabilities for the two
coders are similar or different), and the number of
possible labels for a given annotation tier (Bakeman
et al., 1997; Sim and Wright, 2005).

Thus, not too much should be read into any sin-
gle x score on its own. Rather, a « score should
always be considered relative to other  scores. For
instance, if there are three roughly equiprobable
labels for a given annotation tier (A, B, C), and the
x score for A is much lower than that for B and C,
then we can conclude that the instructions for label
A in the annotation guidelines were less reliable
than those for B and C. Another possibility is to
compare k scores across iterations of the annota-
tion guidelines. With every new iteration, we hope
to obtain higher « scores. If we do, this confirms
that the adjustments we made indeed succeeded
in making the protocal more reliable. The latter
type of comparison is our main intended use of
scores. That is, we mainly report « scores here for
comparison with future iterations of the guidelines.®

5. Results and Recommendations

We have compiled confusion matrices and « scores
for all twelve tiers in the annotation guidelines,
based on the test dataset from Oomen et al. (2023)
described above, both under the event-based
approach and under the frame-based approach.
Based on our analysis and comparison of these
twelve tiers, we formulate a number of general rec-
ommendations for improvement of the annotation
guidelines in Section 5.1. For reasons of space, we
cannot discuss the results for all tiers individually;
they are presented in a technical report which is
available in the supplementary materials. Here, we
only discuss two specific tiers, head y (with labels
‘up’, ‘down’ and ‘neutral’; Section 5.2) and head
move (with labels ‘nod’, ‘nodding’, ‘shake’, ‘shak-
ing’, ‘sideways’, and ‘neutral’; Section 5.3), as they

5The event-based method of Holle and Rein (2015)
that we have described in this section is implemented
in ELAN and can be performed straightforwardly by se-
lecting File — Multiple File Processing — Calculate Inter-
Annotator Reliability. The output is a .txt file with agree-
ment matrices and Cohen’s x. We have re-implemented
the method in R with additional visualisation functionali-
ties (see Section 9 for a link to the documented R script).
Advantages of the R script over the ELAN functionality
are (i) that it is fully transparent and (ii) that it can easily
be modified and extended (see Section 6 for some sug-
gestions in this direction), and (iii) that the results can be
visualised in various ways.
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relate to many issues that we target with our general
recommendations.

5.1.

The most important general insight we obtained
is that a methodical distinction should be made
between two types of NMM, which we refer to as
poses and movements. As a reviewer pointed out,
a similar distinction is made in the SignStream an-
notation protocol (Neidle, 2002), namely a distinc-
tion between ‘positions’ and ‘movements’. The for-
mer involve some part of the face or body ‘first
moving to a target position and then maintaining
that position’ for some time, while the latter involve
‘continuous (potentially repeated) movements’ (Nei-
dle, 2002, p.24).

Very much in line with this, we define a pose as
a non-manual feature which can be characterized
in terms of a single configuration of part of the face
or body, which is held for a certain amount of time.
Disregarding transitional movements in and out of
a pose (see below for discussion on how to treat
such transitions), a pose itself does not involve
inherent movement. Clear examples of poses are
the features ‘head up’ and ‘head down’ on the head
y tier (see Section 5.2). Poses can in principle be
labeled on a frame-by-frame basis.

On the other hand, we define movements as
non-manual features for which a temporal progres-
sion from a certain starting configuration, possibly
through certain intermediate configurations, to a
certain target configuration is characteristic. Move-
ments typically happen within a relatively short
amount of time. Many movements are oscillatory;
in this case the target configuration is the same as
the starting configuration. Clear examples of move-
ment NMMs are head nods and headshakes on the
head move tier (see Section 5.3), and eye blinks.
Since movements cannot be characterized in terms
of a single configuration but involve a temporal pro-
gression through multiple configurations, they can
never be identified based on a single video frame
only. Labeling a video segment as involving a cer-
tain movement is thus qualitatively different from
labeling it as involving a certain pose, as the entire
sequence of frames within the given segment—and
not each frame individually—determines the anno-
tation value.®

This discussion yields three concrete recommen-
dations that should be integrated in future versions
of the annotation guidelines.

Firstly, in the current version of the annotation
guidelines, certain tiers contain labels for both
poses and movements, as exemplified by the head
move tier discussed in Section 5.3. Given the

General Recommendations

®An analogy: movement labels are like collective pred-
icates, while pose labels are like distributive predicates.



qualitative differences between poses and move-
ments that we just identified, annotation tiers should
comprise either poses or movements, not both. It
should also be made explicit for each annotation
label whether it describes a pose or a movement.
This is lacking in the current guidelines, and it is
evident that this sometimes led to confusion among
coders. For instance, the label ‘closed’ on the eye
gaze tier was applied differently by our coders. One
coder used it only to label longer segments where
the signer kept their eyes closed (an eye pose).
The other coder used the label in such cases too,
but also applied it to short eye blinks (an eye move-
ment). Section 5.2 discusses another example.

Secondly, on pose tiers, both neutral and non-
neutral configurations (e.g. ‘head neutral’ vs. ‘head
up’ or ‘head down’) should be annotated, because
neutral configurations are poses as well. As a con-
sequence, pose tiers are typically continuous, in
the sense that every video segment is given some
label.”-8 In contrast, on movement tiers, only move-
ment events should be annotated; if there is no
movement that corresponds to one of the labels
on the tier, nothing should be annotated. For ex-
ample, on a tier for eye blinks, each blink should
be labeled, but no further annotations should be
added; ‘neutral’ is not a useful label in this case
since it does not describe a movement.

Finally, the guidelines should specify what it
means for a pose to be held “for a certain amount
of time”, and for a movement to occur “within a
relatively short amount of time”. For instance, if
we specify within which time frame a signer’s eyes
should close and re-open for it to be considered
an movement, i.e. a blink, instead of a pose, then
coders can make a principled distinction between
these two labels in situations where there may other-
wise be confusion. We plan to undertake empirical
work to determine suitable thresholds.

Relatedly, there is the issue of when a pose or
movement should start and end. This issue is par-
ticularly tricky when it comes to poses: at what
point should a coder decide that a signer’s eye-
brows are no longer in, say, a ‘neutral’ position, but
have rather become ‘raised’? As a basic principle,
we propose that pose annotations should include
the transition movement into the pose but not the
one out of that pose (and into the next one).®

"There are exceptions to this. For instance, on the
pose tier for eye gaze direction, segments in which the
eyes are closed need not be given a label.

8What we suggest here for poses differs from the treat-
ment of ‘positions’ in the SignStream protocol; neutral
positions are not regarded there as true positions and as
such are not annotated.

9This differs, again, from the SignStream protocal,
where transition movements in and out of positions are
coded separately, as ‘s(tart)’ and ‘e(nd)’, respectively.
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Another important insight we obtained concerns
tier structure. With twelve tiers, the current guide-
lines already contain a fairly elaborate tier structure,
yet we found that further distinctions between tiers
and/or annotation labels are desired for reasons of
clarity, exhaustiveness, and systematicity. More-
over, an extensive tier structure makes it easier for
researchers to focus on only specific NMMs. We
therefore propose the following principles for sys-
tematic expansion of the tier structure: (1) Every
tier should concern a UNIQUE BODY PART (e.g. head,
eyelids, nose, eyebrows); (2) Every tier should only
include labels for poses, or only for movements (e.qg.
the eyelid movement ‘blink’ should be annotated
on a different tier than the eyelid pose ‘closed’); (3)
Every tier should contain labels that are MUTUALLY
EXCLUSIVE (i.e., any two NMMs that can co-occur
should be annotated on separate tiers); (4) The set
of labels for pose tiers should be JOINTLY EXHAUS-
TIVE—i.e., each pose tier should have a set of labels
that cover the full range of possible poses for the
relevant body part (as discussed above, this does
not apply to movement tiers; (5) The set of labels
on a given tier should be sufficiently CONTRASTIVE.

Regarding criterion (5), some tiers in the current
guidelines include pairs of labels that describe the
same NMM but to different degrees of engagement
(e.g., 'squint-full’ and ‘squint-half’ on the ‘eye shape’
tier). Our analyses show that the inclusion of such
labels generally lead to poor inter-coder agreement.
We suggest to only include the label ‘squint’ in fu-
ture versions of the guidelines.

While it seems impossible to reliably annotate
the degree of engagement of non-manual features,
we do believe it is useful to obtain a measure of the
confidence level of the coders (previously explored,
for instance, for annotation of emotions in text by
Troiano et al. 2021). Coders may record, for every
annotation event, their level of confidence in the
label they applied, on a three-point scale from low
to high. Researchers then have the option to only
analyze a subset of the data with high confidence
scores, and to compare this analysis to one taking
the entire dataset into account. Moreover, confi-
dence ratings would be useful as training data for
machine learning in the future.

In such a system, including ‘neutral’ poses in
the repertoire of possible poses is important. Say
a study only wishes to include annotations with
high confidence ratings, but ‘neutral’ poses are not
labeled to begin with. Then for all events that are
not considered, it is unknown whether they are not
included because they received a low confidence
rating or because they involve a neutral state.

Besides a sub-tier for confidence ratings, another
sub-tier we propose to add is one on which anno-
tators can indicate when a particular non-manual
feature clearly does not have a communicative func-



tion, e.g. when a signer wrinkles their nose be-
cause it’s itching, or turns their head because of an
unexpected movement next to them. In such cases,
coders can make a note on this tier, allowing for
irrelevant events to be excluded from the analysis.

Furthermore, poses and especially movements
should be illustrated in the guidelines not just with
static video stills but also with video clips or GlFs.
As such, the next version of the guidelines should
be constructed in digital format such as in the form
of a website or a slide deck.

A final recommendation does not concern the
guidelines, but rather the data collection method. A
major challenge that arises when manually annotat-
ing video data is that it involves analyzing 2D data
that represents a 3D reality. Specifically, we found
that a single (near-)frontal camera view makes the
work for manual coders particularly challenging.
We therefore advise researchers collecting data to
always use multiple cameras, including a side-view
camera. In addition, 3D capturing techniques may
be considered as well (see Esselink et al., 2023).

5.2. Heady

On the head y tier (a pose tier) there were three
possible labels: ‘up’, ‘down’, and ‘neutral’.

Frame-Based Approach The confusion matrices
in Table 1 show that the coders generally agreed
on the ‘neutral’ label, but not on ‘down’ and ‘up’.

Event-Based Approach The event-based confu-
sion matrices in Table 2 show that the two coders
identified a similar number of events as ‘down’ or
‘up’ events. However, the agreement rates con-
cerning these events are extremely low. In total,
only 15% of the 68 events annotated on this tier
matched another event with the same label.

Error Analysis To better understand the low
agreement scores for this tier, we carried out an
error analysis of the mismatched events. We found
that 3/19 [3/23] unmatched events labeled as ‘down’
by C1 [C2] were unmatched due to the coders not
agreeing on onset and/or offset, resulting in insuf-
ficient overlap between the events to establish a
match. For 2/19 [4/23] events, C1 [C2] had labeled
(almost) the entire sentence as ‘down’, but C2 [C1]
labeled two short events as ‘down’, which were
preceded and followed by ‘neutral’ interludes. For
the remaining 14/19 [16/23] unmatched events, C1
[C2] had identified (usually quite short) parts of
the sentence as ‘down’ events, whereas C2 [C1]
labeled these segments as ‘neutral’.

For all unmatched ‘up’ events, one of the coders
labeled the relevant segment as ‘neutral’.
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Cohen’s Kappa On the frame-based approach,
the x scores are very low: 0.27 (‘down’), 0.27 (‘up’),
and 0.21 (‘neutral’). On the event-based approach,
they are even worse: -0.27 (‘down’) and 0.14 (‘up’).

Tier-specific Recommendations The results for
the head y tier show that the coders were hardly
consistent with each other in identifying ‘up’ and
‘down’ events. In most cases, the disagreements
were categorical, i.e., one coder identified an ‘up’
or ‘down’ event while the other coder labeled the
same segment as ‘neutral’.

Based on these results, we have three specific
recommendations for this tier. First, we expect that
use of a second camera offering a side view would
facilitate more accurate and consistent coding of
head position. Second, the annotation guidelines
need to be more explicit on how much the head
should diverge from a neutral position in order for it
to count as a head ‘up’ or ‘down’ event. And third,
the guidelines should specify a minimum duration
of ‘up’ and ‘down’ events, in particular so as to
distinguish ‘down’ events from head nods (see Sec-
tion 5.3 below). In future work, we aim to establish
concrete minimum duration values to be included
in the guidelines.

5.3. Head move

The head move tier is intended for annotating head
movements, and includes the labels ‘nod’ (sin-
gle nod), ‘nodding’ (multiple nods), ‘shake’ (single
shake), ‘shaking’ (multiple shakes), ‘sideways’ (sin-
gle sideways movement of the head), and ‘neutral’.

Frame-Based Approach For this tier, there is
generally not much confusion between the coders.
One might have expected low agreement on the
labels ‘nod’ vs ‘nodding’, and ‘shake’ vs ‘shaking’,
but Table 3 shows that this is not necessarily the
case. However, we can make some other interest-
ing observations pertaining to these labels.
Overall, C2 applied the various labels (other than
‘neutral’) to more frames than C1, who used ‘neutral’
more often. An especially interesting pattern can
be observed for the label ‘nod’: when C1 applied
this label, C2 agreed 52% of the time, labeling the
remaining frames as ‘nodding’ (23%) or ‘neutral’
(25%). When C2 used ‘nod’, C1 only agreed 26%
of the time. The remaining 74% of frames were
labeled overwhelmingly as ‘neutral’ (69%). Both
coders applied ‘nodding’ quite similarly, although
C2 again labeled more frames as such than C1.
For ‘shake’ and ‘shaking’, we see a large dispar-
ity in application for both coders. The label ‘shake’
is barely assigned to any frames, totalling only 87
frames for C1, and 57 frames for C2. In contrast,
the label ‘shaking’ is applied to a large number



Table 1: Confusion matrix for the head y tier showing the total number of frames (a) and the percentage-
wise confusion matrices from the perspective of C1 (b) and C2 (c)

(a) Total number of frames (b) CH (c) C2
C1/C2 down up neutral Total C1/C2 do up ne Total C1/C2 do up ne
down 597 24 1086 1707 do 35 1 64 100 do 45 6 17
up 6 102 165 273 up 2 37 61 100 up 0 26 3
neutral 720 273 4920 5913 ne 12 5 83 100 ne 55 68 80
Total 1323 399 6171 7893 Total 100 100 100

Table 2: Confusion matrix for the head y tier showing the total number of events (a) and the percentage-

wise confusion matrices from the perspective of C1 (b) and C2 (c)

(a) Total number of events (b) C1 (c) C2
C1/C2 down up unmatched Total C1/C2 do up un Total C1/C2 do wup un
down 7 0 19 26 do 27 0 73 100 do 23 0 76
up 0 3 6 9 up 0 33 67 100 wup 0 23 24
unmatched 23 10 0 33 un 70 30 0 100 wun 77 77 0
Total 30 13 25 68 Total 100 100 100

of frames, totalling 1704 frames for C1, and 1926
for C2. Again, we see a similar pattern as above,
where C2 assigned this label to more frames than
C1, who mostly labeled these remaining frames as
‘neutral’. However, in this case there is a higher
level of agreement: C2 agreed with the ‘shaking’ la-
bels applied by C1 99% of the time, and C1 agreed
with C2 88% of the time.

Finally, C2 applied the label ‘sideways’ to 144
frames, which were all labeled as ‘neutral’ by C1.
C1 never applied the label ‘sideways’.

Event-Based Approach The confusion matrices
in Table 4 for the event-based approach show
the same general patterns as the confusion ma-
trices of the frame-based approach in Table 3.
There is barely any confusion between the labels
‘nod’/‘nodding’ and no confusion between the labels
‘shake’/'shaking’. Looking closer at the data, we
see that the confusion between these labels for the
frame-based approach can be mostly attributed to
disagreement on the onsets and offsets of events.

The labels ‘nodding’, ‘shake’, and ‘shaking’ were
applied to a similar number of events by both
coders, with the total number of events assigned
one of these labels differing by only 1. This shows
that, as C2 generally applied these label to more
frames than C1, the annotation events by C2 were
likely longer in duration than those of C1. For the
label ‘nod’, we see a big disparity in the number of
annotation events: C1 labeled 15 events as such,
while C2 assigned this label to 26 events. The ma-
jority of these events were unmatched for both C1
and C2. The labels ‘shake’ and ‘sideways’ were
barely assigned to any events by the coders.
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Error Analysis A possible explanation for the
disparity between the frames and events labeled
as ‘nod’ by C2 and as ‘neutral’ by C1 is that C1
labeled these instances as ‘down’ (in the head y
tier) instead. We briefly examine this possibility
here; Table 5 shows the events of interest. In 19
cases, C2 labeled an event on the head move tier
as ‘nod’ while C1 labels it as ‘neutral’. We examine
labels given to corresponding events in the head y
tier. The rows display the labels given to these
events by C1; the columns display the labels given
to the matching event by C2.

In 9 cases, C1 labels a corresponding event on
the head y tier as ‘down’; of these 9 cases, C2
labels the corresponding event as ‘down’ twice, and
as ‘neutral’ 7 times. However, also in 9 cases, C1
labels a corresponding event on the head y tier
as ‘neutral’; of these, C2 labels the corresponding
event as ‘down’ 3 times, and as ‘neutral’ 6 times.
In one case, C1 labels the corresponding event as
‘up’, while C2 labels this event as ‘neutral’.

Therefore, we see that in about 50% of the cases
examined here, C1 labeled the events as ‘down’ on
the head y tier instead of ‘nod’ on the head move
tier. We cannot definitively conclude that in these
cases, C1 labeled events as ‘down’ in the head y
tier in lieu of labeling the corresponding events as
‘nod’ in the head move tier. However, this does
explain some of the discrepancy.

This leads us to another interesting observation.
C2 labeled 5 events as ‘nod’ in the head move
tier, as well as labeling a simultaneous event as
‘down’ in the head y tier. We find that for 4 of these
occurrences, the events on both tiers have roughly
the same onsets and offsets. A quick check of the
annotations provided by C1 reveals 4 ‘nod’ events



Table 3: Confusion matrix for the head move tier showing the total number of frames (a) and the percentage-
wise confusion matrices from the perspective of C1 (b) and C2 (c)

(a) Total number of frames

C1/C2 nod nodding shake shaking sideways neutral Total

nod 183 81 0 0 0 90 354

nodding 27 567 0 3 0 60 657

shake 0 0 51 21 0 15 87

shaking 6 0 0 1686 0 12 1704

sideways 0 0 0 0 0 0 0

neutral 489 240 6 216 144 3996 5091

Total 705 888 57 1926 144 4173 7893

(b) C1 (c) C2

C1/C2 nd ng se sg si ne Total Ci/C2 nd ng se sg si  ne
nd 52 23 0 0 O 25 100 nd 26 9 0 0 0 2
ng 4 86 0 0 O 9 100 ng 4 64 0 0 0 1
se 0 0 59 24 0 17 100 se 0 0 89 1 0 0
sg 0 0 0 99 0 1 100 sg 1 0 0 88 0 0
Si 0O 0 0O o0 o0 o 0 si 0 0 0 0 0 0
ne 10 5 0 4 3 78 100 ne 69 27 11 11 100 96

Total 100 100 100 100 100 100

Table 4: Confusion matrix for the head move tier showing the total number of events (a) and the percentage-
wise confusion matrices from the perspective of C1 (b) and C2 (c)

(a) Total number of events

C1/C2 nod nodding shake shaking sideways unmatched Total
nod 6 0 0 0 0 9 15
nodding 1 9 0 0 0 4 14
shake 0 0 3 0 0 1 4
shaking 0 0 0 19 0 3 22
sideways 0 0 0 0 0 0 0
unmatched 19 4 0 4 5 0 32
Total 26 13 3 23 5 17 87
(b) C1 (c) C2

C1/C2 nd ng se sg si un Total Ci/C2 nd ng se sg si un

nd 40 0 O O O 60 100 nd 23 0 0 0 0 &3
ng 7 64 0 0 0 29 100 ng 4 69 0 0 0 24
se 0 0 75 0 0 25 100 se 0 0 100 0 0 6
sg 0O 0O O 8 0 14 100 sg 0 0 0 83 0 18
si 0o 0 0 0 o0 oO 0 Si 0 0 0 0 0 0
un 60 12 0 12 16 0 100 un 73 31 0 17 100 0

Total 100 100 100 100 100 100

in the head move tier with simultaneous events in ~ the head move tier and ‘down’ on the head y tier,

the head y tier labeled as ‘down’ or ‘up’. However,  whereas the difference between these labels was

the onset and offset of events in these tiers do not  not always clear for C2.

match up, meaning that the head was angled as

either ‘down’ or ‘up’ for a longer period of time,

within which a ‘nod’ took place. We can conclude =~ Cohen’s Kappa For the frame-based approach,

that C1 did not confuse the meaning of ‘nod’ on  the «indices for ‘nodding’ (0.71), ‘shake’ (0.71), and
‘shaking’ (0.91) are reasonably high, as expected.
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C1/C2 down neutral up Total
down 2 7 0 9
neutral 3 6 0 9
up 0 1 0 1
Total 5 14 0 19

Table 5: Labels given to events in the head y tier,
occurring simultaneously with events in the head
move tier, which have been labeled as ‘neutral’ by
C1, and ‘nod’ by C2

The « index for ‘nod’ (0.30) is much lower, as there
was a lot of disagreement about this label between
the coders. The « index for sideways is 0.00, as
the coders never agreed on this label.

The « indices for labels in the event-based ap-
proach are generally lower than those of the frame-
based approach. However, the indices are still
relatively high for ‘nodding’ (0.61), ‘shake’ (0.85),
and ‘shaking’ (0.79). The index for ‘nod’ is lowered
to 0.09, while the index for ‘sideways’ remains 0.00.

Tier-specific Recommendations Firstly, we
note that all labels on the head move tier can be
categorized as (oscillating) movements, with the
exception of ‘sideways’, which is a pose. The latter
should therefore be moved to a separate pose tier.

Secondly, although head nods and headshakes
involve the same body part, are mutually exclusive,
and contrastive (see Section 5.1), we recommend
that head nods and headshakes are annotated on
separate tiers because they serve very different
functions in sign languages. This way, researchers
interested only in headshakes need not annotate
head nods and vice versa.

Finally, the annotation guidelines should include
clear descriptions of what constitutes a ‘nod’ (move-
ment) and a head ‘down’ (pose), with concrete tem-
poral indications for the required length of move-
ments vs. poses (in terms of time rather than
frames, as users may use different frame-rates).
The guidelines should warn that these features can
look similar, and show examples of the differences
between them.

6. Discussion of Evaluation Methods

Considering the assessment of inter-annotator
agreement for timed-event sequential data in gen-
eral, Bakeman et al. (2009, 146) advise the use of
both event-based and frame-based methods, as
“each provides somewhat different ... but valuable
information as to how observers are disagreeing,
and are thus useful in different ways as observers
strive to improve their agreement”. We will now
briefly discuss some concrete benefits of these
methods we identified for NMM data.
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An advantage of the event-based approach is
that it allows for an error analysis, as illustrated
in Section 5.2. This error analysis goes beyond
confusion matrices and « scores: each unmatched
event can be examined to determine the types of
errors that caused the mismatches. This informa-
tion helps determine which concrete changes to
the annotation guidelines would be most effective.

Turning to the frame-based approach, the main
purpose for our use-case is that—in combination
with the event-based approach—it provides an in-
dication of the nature of the disagreements be-
tween coders. In particular, if the frame-based
approach yields higher agreement scores than the
event-based approach, this suggests that the low
agreement scores on the event-based approach
are partly due to the following type of mismatches.
Say C1 coded an entire sentence as ‘down’ on
the head y tier, while C2 coded three separate
long segments within that sentence as ‘down’, in-
terspersed with two short ‘neutral’ segments. With
the event-based method, all events coded on this
tier would be regarded as unmatched. The frame-
based method, on the other hand, would only count
the disagreement of the ‘neutral’ segments; the rest
would count as agreement.

The combination of the two approaches thus
gives a more well-rounded overview of how the
coders disagree. The event-based approach
serves as a basis, supplemented by the frame-
based approach. However, we should note that
the frame-based approach, while in some cases
providing an indirect indication of how coders dis-
agreed, never provides a definitive insight into this
important question.

Therefore, we propose to develop, in future work,
an enriched version of the event-based method,
which automatically categorizes the error-types of
unmatched events (such as in the error analysis
in Section 5.2 for the head y tier). This method
would keep track of additional information such as
the duration of the events that the coders agreed
and disagreed on, and for each unmatched event,
what type of error caused the mismatch. With this
enriched event-based approach, the frame-based
approach would become superfluous for our use-
case, as the enriched event-based approach would
provide all the necessary information to further im-
prove the annotation procedure.

7. Conclusion

We evaluated guidelines for annotating NMMs by
examining a test dataset involving two coders. We
used a frame-based and an event-based approach
to calculate inter-annotator agreement. Based on
the results, we formulated concrete recommenda-
tions to further refine the annotation guidelines.
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Abstract
Based on real spontaneous productions by signers, AZVD is a graphical Sign Language representation system
designed to maximise its potential for adoption by the signing community. Additionally, it is kept entirely synthesisable
by construction, i.e. any AZVD content determines a signed output, which can be rendered through an avatar for
example. This paper reports on the implementation of a software prototype developed to support AZVD editing, and
the current extent of AZVD graphics integration. The point is to allow users to experience and discuss the AZVD
approach, and ultimately assess it as a standardised graphical form for Sign Language representation.

Keywords: Sign Language, graphical form, writing system, AZVD

1. Introduction X
@)Y

Languages that have a written form are often [1/C *JC M - ﬁ_t
equipped with software assisting in various types (a) (b)

of processing, the first of which being text editing.

In contrast, sign languages (SLs) have no written . X (2, ]
form. While video is often used as a default substi- g dro 50

tute, it cannot be considered equivalent: its storage

is heavy, and it is comparatively laborious to edit, (a) Stokoe’s notation (Stokoe et al., 1965)
index or query. Moreover, interpreting any of its (b) Sign Writing (Sutton, 2014)

contents is subject to real time, whereas reading  (c) HamNoSys (Prillwitz et al., 1989; Hanke, 2004)
allows to scan and capture multiple parts of the

input freely. It also prevents anonymity, whichisa  Figure 1: Examples of graphical systems designed
significant limitation when considering information ~ for sign languages
and opinion circulation on the internet for example.

First we show a few systems proposed and tech-
niques used by SL users to work around this prob- also take notes or prepare SL discourses by draw-
lem. Then we present the recent “AZee Verbalising ing diagrams that somehow capture their structure,
Diagram” (AZVD) approach to graphical SL repre- meaning or content in some more or less readable
sentation, designed to be synthesisable by signing ~ form (Athané, 2015). These diagrams exhibit var-
avatars and maximise adoptability by the users. We ~ ious arrangements of icons, text, drawings, lines
follow by describing a software editing prototype and arrows. An example of such “verbalising dia-

that we developed to test the system and ultimately ~ 9ram” (VD), from the corpus built by Filhol (2020a),
evaluate it. is given in fig. 2. It represents an LSF production

of 56 s, signed after the diagram was drawn, with
the following meaning:

2. Verbalising diagrams
Atoms are very small particles, composed

To work around or address the lack of adopted of a nucleus and electrons (elementary
SL writing system, some scripts were developed, negative electric charges). Atoms are
three of them shown in fig. 1. Some were created electrically neutral because their nucleus
for scripting purposes, for linguistic annotation or holds as many positive charges as elec-
computer synthesis. Some have claimed a writing trons do negative charges. Groups of
system status or potential. But none is adopted by atoms are called molecules. lons are
the wide communities of language users (Grushkin, atoms or molecules with electrons gained
2017; Kato, 2008). or lost from the action of neighbouring

And yet, there are clues that the need for some atoms. lons are therefore electrically
form of writing exists. Deaf people and translators charged.
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Figure 2: Example of verbalising diagram

VDs are spontaneous productions in the sense
that the contained graphics follow no predefined set
of rules. This usually makes parts of them readable
only by the original author. In other words VDs do
not strictly determine the signed form to produce
to read them out, so they cannot be viewed as
synthesisable input to, say, signing avatars. This is
in contrast with a shared property of standardised
writing systems, which we consider powerful as
content becomes exchangeable in an anonymous,
light-weight and editable fashion.

However, after collecting a corpus of VDs from
French Sign Language (LSF) users, regularities
have been reported both across diagrams and
across authors (Filhol, 2020a), to the point where
some VD layouts or icons with an identifiable mean-
ing have a systematic signed equivalent when read
out by their author. An example is given in fig. 3,
where the same ‘=" symbol is consistently used
between a left- and a right-hand side—say L and
R—to mean that R is a state or property of L. This
is almost systematically signed with L and R in
this order with a form of assertion. Another, more
trivial example is also visible in the same figure:
the *?’ symbols here consistently stand for the sign
commonly glossed “QUOI” (French for “what”).

The spontaneity of the VD representations and
the presence of regularities already in the produc-
tions led us to propose that a standardised graph-
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(a) Fidel Castro’s health = good (F. C. is well)
(b) lion = nice (the lion is nice)
(c) cancer = ‘?’ (what is cancer?)
(d) life = *?’ (what is life?)

Figure 3: VD exemplars using the “equal” sign (with
meaning in context)

ical script inspired by them could be experienced
as a more natural way of representing signed con-
tent, hence increase its adoptability (Filhol, 2020b).
Such a script would include the regular VD lay-
outs when observed, while completing the set for
language coverage in a way that it remains synthe-
sisable.

The recent AZVD proposition is a first attempt
at satisfying these two features. The next section
presents it in further depth.

3. AZVD

AZ\VD is a formal graphical system combining 2D
symbols, borrowing from the observed sponta-
neous ones like that in fig. 3. Similarly to the mathe-
matical script in which atomic tokens (e.g. numbers,
variable names) and operators (e.g. unary ‘!, bi-
nary ‘+’, ternary ‘Y’) recursively combine to grow
formulae of arbitrary size, AZVD allows to build
recursive diagrams to represent SL utterances of
arbitrary size. To make diagrams synthesisable, ev-
ery symbol or layout defined in the graphical system
is mapped to a signed output in a given language,
making use of the nested arguments as appropri-
ate. The specification of this output is done with
AZee expressions or templates.

AZee is a formal SL representation system used
for synthesis with avatars. It defines the notion of
production rule, i.e. a strong association between a
meaning and an articulated form in a SL. The set of
production rules for a language is called its produc-
tion set. AZee has already proven efficient in terms
of language coverage (Challant and Filhol, 2022)
and feasibility and quality of synthesis (Mcdonald
and Filhol, 2021) in LSF.

Some of the regular VD patterns directly corre-
spond to LSF production rules. For example the
semantic relationship between elements L and R
carried by the “equal sign” layout (fig. 3) is exactly
the meaning carried by AZee expression info-
about (topic=L, info=R). An AZVD map-



topic = info

(@)

WF:EJ elt
b)

(a) info-about (topic, info)
(b) instance-of (type, elt)

Figure 4: AZVD layouts with variable sections, and
their AZee expression mappings

context / process
() (o)

Figure 5: Two AZVD layout variants mapping to
in-context (context, process)

context

process

ping is therefore warranted between the layout in
fig. 4a, with variable parts L and R, and that AZee
expression with the same variable parts. Others
can involve more elaborate AZee constructions.

More layouts are then added for AZee coverage
when no sufficient spontaneous regularity was ob-
served in VD. This applies to the set of rules sup-
porting the basic sign vocabulary (every sign needs
an icon), but also the combining, structuring rules.
For example, no stable VD layout was established
for instance-of', so we created a layout for it,
shown in fig. 4b.

AZVD also allows to map a similar AZee output
from multiple graphical layouts, as was observed
in VDs. For example, straight separation bars cor-
responding to the meaning and form of AZee rule
in-context? are commonplace in VDs (one hor-
izontal instance is visible in fig. 2). They can be
oriented in different ways, hence the definition of
two variants of the same mapping (fig. 5).

Recursively then, any full AZVD combination de-
termines a single AZee expression output. And
since any AZee expression determines a single SL
production as a result, AZVD guarantees that ev-
ery diagram ultimately determines a single read-out,
making it synthesisable in a testable manner.

For example, fig. 6 shows the AZVD for the full
2B-JP entry of the 40 bréves corpus?® (Filhol and
Challant, 2022), whose signed production lasts
27 seconds and meaning is the following:

1Meaning of instance—of (type, elt): elt, under-
stood as an instance of type.

2Meaning of in-context (context, process):
event or state process, which happened in situation
context or after context has happened.

3Each of the 120 entries consists in a video LSF trans-
lation for a French news item, and the AZee expres-
sion that represents it. https://www.ortolang.fr/
market/corpora/40-breves
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Figure 6: Example of AZVD

The four French tourists who were kid-
napped 15 days in Yemen arrived on
Wednesday, shortly before 7:30am, at
Roissy airport, met by Minister of Foreign
Affairs Philippe Douste-Blazy.

The AZVD in the figure exactly maps to the refer-
ence AZee expression, which in turn evaluates to a
timeline specifying the necessary articulations for
an avatar to render the same utterance.

AZVD is therefore a graphical system that is both
synthesisable in principle and built with a method
intended to maximise its adoptability. Testing syn-
thesisability is verifying that an avatar animation
can be rendered automatically from the expres-
sions generated by composed graphical input, i.e.
essentially AZee synthesis. To test adoptability, we
ultimately need to place the system in the hands
of users and involve the community in an iterative
evaluation and improvement loop. To allow this
process, the first step was to develop a software
editor, able to assist in drawing AZVD in a controlled
manner.


https://www.ortolang.fr/market/corpora/40-breves
https://www.ortolang.fr/market/corpora/40-breves

Figure 7: Screenshot of the AZVD editor: icon and
layout menu on the left; main editor canvas in the
middle; generated AZee output on the right

4. A software editor for AZVD

To enable testing of the AZVD proposition, we de-
veloped a software editor supporting the creation
and manipulation of AZVD content. As we expect
it to evolve with the AZVD system itself, we made
the two following design choices:

+ develop the editor as a web application to avoid
requiring any installation or updating process
on the user end, and enable instant deploy-
ment across all users on server upgrades;

» keep AZVD-side specifications separate from
the server and load them dynamically on
browser page load, in order to allow as much
AZVD evolution as possible without changing
the core application code.

After an overview of the chosen user interface,
this section explains what the necessary AZVD
components are, and how they are specified sepa-
rately.

4.1. User interface

Inspired by the common WYSIWYG* interfaces to
similar graphical content creation tasks, such as
Qt Designer (windowed GUI design) or Dia (2D
diagram drawing), we opted for a window layout
with a central canvas to edit the AZVD content, and
elements available in a left-hand menu to popu-
late it with through drag-and-drop operations. We
also added a right-hand output panel to display the
generated AZee expressions, as we have stated
the goal and benefit that every diagram determines
one, and one only. This output synchronously re-
acts to every change on the canvas. A screenshot
of the interface is given in fig. 7.

The top-level unit of AZVD specification is the left-
hand menu object, which must contain information
on both what to draw when inserted on the canvas
and what AZee expression to generate as output.
This is close to what has been called an “AZVD

“what you see is what you get”
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Duplicate

Remove

Swap Arguments

Switch variant =

-

Figure 8: Switching from vertical to horizontal vari-
ant, specified in the same JSON spec file

mapping” up to here. The way to specify them for
the editor is described in the next section.

4.2. Menu entries

As introduced earlier, adding, removing or chang-
ing AZVD mappings should be possible outside
of the server implementation, whether to specify a
graphical layout, icon or AZee output. At the mo-
ment this is done by providing JSON specification
files, dynamically populating the menu on page
load according to the specified content.

Each JSON file lists at least a description of a
graphical layout (or fixed icon) and an AZee tem-
plate to output when used on the canvas. To relate
variants in the interface and pack them in a single
menu entry, we allowed several layouts to be spec-
ified together in the same spec file. For example,
both variants in fig. 5 can be specified together, in
this case both mapping to the same parameterised
AZee expression. This allows easy switching be-
tween variants of elements already on the canvas,
as illustrated in fig. 8.

This explains how menu entries are created. The
next two sections respectively deal with how to
specify graphical layouts and the corresponding
AZee output expressions.

4.3. Graphical layouts

In the general case, layouts are composed of one or
more elements, each of which can be fixed graphics
(e.g. anicon or line) or a variable part. Specification
of a graphical layout is a problem of alignment and
scaling of those contained elements. For example,
the layout of fig. 5a is a group of three elements
(two nested diagrams context and process, and a
horizontal bar between them), aligned vertically
through the centre, equally spaced, and the width
of the middle bar constrained to be a little longer
then the widest of the other two by a few points.

To do this, we first defined primitive element
types to include in a layout:

« scalable graphics, rendered as specified di-
rectly inline with standard SVG code;

 text, which is rendered as a label verbatim in



LT CcT RT

LB CB RB

Figure 9: Generic element hotspots, named af-
ter horizontal and vertical positions relative to
bounding box (L=left; T=top; C=centre; R=right;
B=bottom)

context
-/ barCT @ context.CB + 1
barwidth = - ———
max{contgxt.width, T process.CT @ bar.CB + |
process.width) + ... process

Figure 10: Specification of the layout in fig. 5a

the diagram, creating its own graphical bound-
ing box;

* drop zones, which stand for the named vari-
able parts of the layout, e.g. context and
process above, to be filled for a complete
diagram—they are rendered as plain grey
boxes when empty.

Secondly, we implemented a relative positioning
system based on generic hotspots assumed for
any layout element, shown in fig. 9. Each new ele-
ment in a layout is inserted by positioning one of its
hotspots relatively to another’s, with or without an
offset expressed in absolute terms or relatively to
other elements’ sizes. Scaling or resizing elements
is also possible, on either or both axes, proportion-
ally or separately, in absolute terms or relatively to
other elements’ sizes.

Fig. 10 collects all the specifications required
for the example layout of fig. 5a. It includes two
“CT under CB” positioning constraints, which stack
and centre the elements one under the previous,
and one width scaling constraint on the horizontal
bar, expressed as a function of the other elements’
widths. This way, the width of the bar will adjust
dynamically when the content of either drop zone
is modified.

4.4. AZee output

Every layout must specify the AZee expression it
maps to, so that the AZee output panel be immedi-
ately updated with the new content when the layout
is placed on the canvas. This can be a simple case
of a fixed expression from a fixed layout, or one
with variable parts like those in figures 4 and 5.
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If the layout contains variable parts supported
by drop zones, the output depends on their con-
tent, provided by further graphics filled in by the
user. The AZee output then depends on the expres-
sions that this content generates. In such case, the
output specification can refer to the AZee for the
nested content using a provided operator and the
names of the zones, just like figures 4 and 5 used
the same variable names as the labels in the corre-
sponding layouts. Empty drop zones (incomplete
diagrams) will generate a placeholder label to stand
for the missing content, and dropping any graphical
content in an empty drop zone will automatically
update the output by expanding the placeholder to
reflect the change.

5. Evaluation of current progress

The editor has reached a technically usable state,
and we are gradually providing AZVD mappings
for the AZee production set of LSF, as explained
in section 3, to populate the menu. Straight away
however, we note that graphical coverage of the
entire production set is an unreasonable target to
condition first tests on.

One reason is the size and open-endedness of
the sign vocabulary. Looking at the 40 bréves cor-
pus alone, which serves as the AZee reference for
LSF today (totals 1 hour of AZee-encoded LSF dis-
course), we find that out of the 858 distinct produc-
tion rules applied, 768 are defined with no manda-
tory arguments®. Besides, we believe that users
should be given priority to propose the icon graph-
ics, debate choices® and possibly feed back to one
another after some practice. Therefore, the effort
to create enough individual icons to cover any sig-
nificant portion of the vocabulary appears greater
than we can afford without a dedicated team. It
would also only serve as a kick-start proposition to
be entirely reviewed anyway. But to provide enough
vocabulary for the sake of demonstration, we de-
cided to choose 5 entries of the corpus of which
to cover the vocabulary entirely, namely 1A-OC,
1B-JP, 10-VF, 1R-JP and 2B-JP. This represents a
vocabulary set of 114 signs.

To insert signs—or indeed any signed piece of
discourse—uwith no graphical solution yet, we cre-
ated an alternative to AZVD mappings, namely

5This is to us the best characterisation of a
vocabulary—or lexical—unit in AZee: a signed produc-
tion that can be delivered without contextual input (a
“citation”, “canonical” form).

®For example, should it capture the meaning (promote
a logographic symbol) or the articulated form (compose
a phonographic encoding) of the represented sign? We
have already documented the fact that spontaneous pro-
ductions exhibit a logographic prevalence overall, but not
an exclusive one (Filhol, 2020b).



AZee boxes. An AZee box can be dropped on the
canvas instead of a regular graphical layout, and
filled with AZee code, which will directly serve as
its own mapped output. For a sign without an icon
defined, an AZee box can therefore be used, filled
with a simple named rule application, looking es-
sentially like a gloss until an icon is defined. An ex-
ample is visible at the bottom of fig. 6 (“: Philippe
Douste-Blazy”), which is a name-sign for a prior
member of the French government, for which we
thought creating an icon was unnecessary.

Vocabulary signs aside, we are left with the pro-
duction rules requiring at least an argument when
applied. In our 40 bréves count, that remainder
consists in 90 rules of the featured set:

+ 12 types of pointing gestures (e.g. using index
or hand sweep);

+ 20 rules representing objects referred to as
“classifiers” in the literature (e.g. prf-flat-
surface, prf-person-standing);

» 58 recursive rules of various arities (unary
rules like with-worry, binary ones like
info-about, etc.).

The 58 recursive rules are the most interesting to
cover as they are those building up the backbone
structure of the discourse expressions. They typi-
cally have higher frequencies, and constitute a set
that is much less open-ended than the sign vocab-
ulary, in other words less subject to subsequent
extensions. This is in a sense a more grammatical
set, and securing mappings for it is a lot more sta-
ble an achievement than covering any vocabulary
subset. Incidentally, and contrary to the lexical set
known to be more significantly different between
SLs, recent experiments seem to indicate that this
set may be mostly transparent across different SLs
(McDonald et al., 2024 (to be published). It is some-
thing of interest if we later want to consider AZVD
beyond its application to LSF.

We have covered all rules of that set with a work-
ing graphical layout and AZee mapping in the editor,
except:

* 5 rules related to classifier use and geomet-
ric placement in signing space (landmark-
in-place, place-object, mult—-around,
mult-in-a-row, deploy-shape);

* 4 rules supporting the logic for numbers above
20 (built with multipliers and sums) and dou-
bled letters in fingerspelling—although these
rules will not require graphics because num-
bers and words to fingerspell will appear spelt
out in diagrams without being broken down
(but an extension to the AZee output gener-
ation language from these text units will be
necessary).
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Figure 11:

index (target)

AZVD mapping for “pointage

- <o

“Mssp “Lssp “Rssp

Figure 12: Basic AZVD point layouts

Let us now consider the pointing rules. Their
signatures all resemble vocabulary signs, only they
usually require a target argument of type POINT,
and sometimes other geometric arguments, e.g.
for orientation in a plane. Accounting for such a
rule with AZVD is therefore comparable to finding
an icon for a dictionary sign, only a non-optional
variable part must be part of the layout. Fig. 11
shows the layout defined for pointage index,
by far the most frequent: 256 occurrences in the
corpus, over 4 times as many as the second-ranked,
and indeed the 6th most frequent rule all together.
Notice that it features a variable part, awaiting a
point expression.

To enable filling such point arguments, we de-
fined three more mappings, from the symbols
shown in fig. 12 to the most basic and frequent
point expressions in the corpus. These are “Mssp
(neutral, central point of the signing space at about
a forearm’s length of the signer’'s abdomen), and
~Lssp and “Rssp (points on either side of it, left
and right respectively).

The more complex geometric point constructions
or signing space references will require an AZee
box at this point of our progress, and providing it the
AZee code explicitly. The remaining 20 production
rules in the above count, related to classifiers, have
also not been accounted for yet. We come back to
those in the prospects below.

In summary, aside from complex number and
geometric constructions, we have reached most of
the grammatical production set for LSF already. For
instance, the 2B-JP entry of the 40 bréves corpus,
shown in fig. 6, is fully editable within the program.

Fig. 13 illustrates a few steps of an AZVD con-
struction, with the corresponding AZee output for
each, for an LSF production meaning “French per-
son returns from Portugal”, with Portugal located
on the right-hand side of the signing space first,
and the person returning to the left-hand side at he
end. A recorded video of the whole process is
available at https://zenodo.org/records/
10890951. Note how every drop, move or swap
action on the canvas updates the AZee output ac-
cordingly.


https://zenodo.org/records/10890951
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Figure 13: Progressive construction of an AZVD with the editor. NB in French: “lieu” = place, location;

“une personne” = a person; “retour” = return.

6. Conclusion and future work

After reviewing a spontaneous practice of drawings
to represent SL, we presented the AZVD system
aiming to propose a graphical system both synthe-
sisable and adoptable by SL users. We followed
by presenting a software editor developed to sup-
port creation and editing of diagrams in the AZVD
format.

The point of the editor in the long run is to allow
users to apprehend the AZVD approach, evaluate
its adoptability, and involve them in the system’s
evolution as much as they would like to. But mea-
suring adoptability with users through the editor can
only be conducted reliably if it is fit to support AZVD
manipulation transparently enough in the first place.
An incomplete or non-ergonomic, counter-intuitive
interface can indeed lead to rejection of AZVD as
a whole even if the cause is the editor alone.
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So to avoid this bias, we must separate the eval-
uation of the editor and that of AZVD as a scripting
system. We will do so by taking a first step testing
the application essentially as an AZee editor first.
That is, measure how AZee experts feel assisted in
the task of writing and reviewing AZee expressions.
Any piece of AZee not covered with AZVD graphics
can still be expressed in AZee code inside AZee
boxes, which AZee coders would have done any-
way without the editor. Reaching a positive eval-
uation on that aspect would constitute evidence
that the interface and features of the editor provide
enough comfort and assistance to allow users to
direct their judgement at the manipulated script, not
the manipulation tool.

Now even with a good editor, limitations to AZVD
remain which should also be addressed. The most
limiting factors are the missing layouts for the geo-
metric rules and constructions (involving classifiers)



and the sign vocabulary (lexical set). Each of these
two aspects represents a work prospect to increase
the scope of AZVD graphics.

Geometric/classifier constructions were post-
poned mostly because a parallel work to encode the
Mocap1 corpus (LIMSI, 2020) with AZee expres-
sions is in progress. This substantial work should
result in a more stable reference for AZee represen-
tation of those constructions, which was to us an
interesting contribution to wait for before defining
a graphical layer for them. However, it is already
clear that their infinite range in signed locations,
paths, dynamics and classifier options does not
come from an ever-growing set of ad hoc rules, but
from the generative power and combinatorics of a
limited set. We therefore believe tentative solutions
should be in reach, similar to those addressing the
grammatical set, only certainly requiring more lay-
outs for native geometric objects (points, vectors,
paths). This is to at least remove the constant need
for AZee boxes in the diagrams, and propose a first
graphical scheme to the discussion along with the
other grammatical rules.

In contrast though, as explained above, it is im-
possible to do the same with the open-ended set of
vocabulary signs. The prospect for us here, aside
from keeping the possibility of glossing (a strategy
well captured by AZee boxes already), is to allow to
fallback on custom graphical choices, and ideally
integrate a proposal and voting system, or existing
lexically-oriented phonographic systems such as
SignWriting or HamNoSys (fig. 1). Choices could
be up- or downvoted by the community, and we
would get to observe discrepancy or consensus
in propositions. How variable are the logographic
choices? How often do phonographic ones make
spontaneous use of the existing systems? Much
is yet to be learnt, on top of what VDs already ex-
hibit, about how SL users envision scripting their
language symbolically.

In the mean time, one already pictures the kind of
diagrams AZVD allows to build, and notices two ma-
jor differences with the prior systems. First, logogra-
phy is allowed and frequently used in the graphics.
We have already said that it played a major part
in spontaneous VDs, while being totally absent in
the other systems. Second, the diagrams exhibit
the meaningful links between their constituents, re-
flecting the underlying structure of the utterances.
This is very similar to the spontaneous VDs, which
rarely present entirely separate parts, and rather
keep them connected in a planar (2D) drawing. It
also greatly contrasts with the other systems, which
impose to follow the production sequence one lex-
ical unit after the other, without connecting them
in any meaningful way. If we trust the idea that
following spontaneous practice is likely to favour
adoptability, both of those properties are therefore
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welcome.

Finally, we would like to leverage the fact that
AZVD was designed not only to maximise adopt-
ability, but also to be synthesisable. Integrating
an avatar to the interface, for example under or
instead of the AZee output panel, to render the
AZVD canvas content would bridge over the full
pipeline from AZVD editing to dynamic display of
the scripted signed discourse. We are preparing for
this exciting prospect, which in our view will even
allow users with no knowledge of AZee to learn
AZVD directly.

This way we hope to put the system in the hands
of the Sign Language community with as few obsta-
cles as possible to appreciating the AZVD system.
More than evaluating a fixed state from a single field
test, we will hopefully engage users on a continu-
ous improvement process, and fuel the discussion
about graphical Sign Language writing, which is an
unresolved issue yet.
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Abstract
The theory of language structure informs us about what we should expect when we want to investigate a certain
construction. However, reality is often richer than what theories predict. In this study, we start from a theoretically
informed set of hypotheses about the structure of wh-questions in sign language, we test them using a sign language
corpus, a designed production experiment, and structured fieldwork in three sign languages, Swedish, Greek and
French Sign Languages. The results will inform us on what type of contribution each research method can provide to

reach accurate language descriptions.

Keywords: Sign Language Methodology, Content questions, Wh-sign

1. Introduction

The body of research on questions in sign language
has been conducted either using typological ques-
tionnaires (Zeshan, 2006), fieldwork elicitation (i.a.,
Cecchetto et al., 2009; Neidle et al., 2000; Petro-
nio and Lillo-Martin, 1997), or semi-formal exper-
iments using pre-set elicitation materials (Geraci
et al., 2015). To our knowledge, no corpus study
has ever been conducted yet on the structure of
content questions in sign language. In this work,
we will use constituent questions as a case study to
illustrate how a broad research question like the de-
scription of constituent questions in sign languages
can be addressed using different methodologies,
and the degree to which they yield comparable
results. The purpose of this methodological exer-
cise is not that of identifying the most appropriate
method to study sign language syntax, but rather, to
illustrate what a researcher can reasonably expect
to find using one of the three traditional resources
of language data, namely corpus, experiments, and
fieldwork, which are treated here as case studies.
In the remainder of the paper, we will present a brief
overview of the relevant components of sign lan-
guage content questions both from the perspective
of the empirical description of the grammars of sign
languages and from the perspective of the theoreti-
cal challenges that these constructions represent
for formal approaches to language (Section 2). The
methods for each case study are then described
in Section 3, while in Section 4 the results are pre-
sented. In Section 5, we will offer a comparative
discussion, while Section 6 concludes the paper.
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2. Content questions in SL

Question formation is one of the most investigated
topics in sign language syntax. This is due both
to empirical and theoretical reasons. The empiri-
cal reason is relatively easy to imagine and has to
do with the importance of describing main clause
types, hence question description is often next to
the description of declarative clauses, as opposed
for instance to imperatives and exclamatives, which
are much less investigated in sign language (Cec-
chetto, 2012). The theoretical reasons, however,
are much more intriguing because they reveal two
aspects that make sign languages different from
spoken languages: one concerns the use of non-
manual components as a distinctive marker for
questions; the other concerns the position of wh-
signs in content questions. The use of dedicated
non-manual components, in particular facial ex-
pressions, to distinguish declaratives from ques-
tions has been described for both polar (yes-no)
and content (wh-) questions. An example of non-
manuals used in polar question is illustrated by the
ltalian Sign Language (LIS) examples in (1) be-
low, where the declarative sentence and the polar
question share the same sequence of signs, and
are differentiated only by the non-manual compo-
nents (see also Conte et al., 2010). Specifically, the
head/torso is slightly forward and raised eyebrows
spread throughout the sentence.’

"For a comprehensive study on polar questions in a
sign language see Cafias (2021)
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(1) a. MUM MOVIES GO
‘Mum goes to the movies.’
y/n
b. MUM MOVIES GO
‘Will mum go to the movies?’

As for non-manuals in content questions, fur-
rowed eyebrows are very often described either
to co-occur with the wh-sign only, or to spread of
larger portions of the sentence. In American Sign
Language (ASL), for instance, the wh-non-manual
component spreads over the entire sentence if the
wh-sign remains in argument position, while it can
be limited to the wh-sign if it is found at the end
of the sentence, as shown in (2) from Neidle et al.
(2000).

wh

(2) a. WHO LOVE JOHN
‘Who loves John?’
wh
b. LOVE JOHN WHO

‘Who loves John?’

The contribution of non-manual markers in ques-
tions is often compared to that of prosody in spoken
language, because it can play a primary cue in sen-
tence type detection as that, for instance, of rising
intonation in languages like spoken ltalian. For inst-
nace, polar questions are not syntactically differenti-
ated from declaratives in spoken Italian (same word
order, no question particles, etc.). They are, how-
ever, prosodically different because declaratives
are typically associated with a falling intonation,
while polar questions are normally associated with
a rising intonation.

However, non-manuals have syntactic correlates
that do not find an immediate equivalent in spo-
ken languages. In fact, the distribution of inter-
rogative non-manuals in ASL is associated with
the c-command domain of the relevant projection
(Neidle et al., 2000, but see Sandler, 2010 for a
pure prosodic analysis), while it marks the syntactic
chain in LIS (Cecchetto et al., 2009). This is best
illustrated by the in situ content questions in (3). In
fact, wide spreading crucially includes the subject
(c-command domain) in ASL, while it is excluded
in LIS.

wh
TEACHER LIPREAD WHO

‘Who did the teacher lipread yesterday?’

(3) a.

wh
b. PAOLO BOOK WHICH STEAL

‘Which book did Paolo steal?’

The second theoretical aspect concerns the fact
that the privileged position for wh-signs in content
questions often corresponds to the end of the sen-
tence in several sign languages (Cecchetto, 2012).

Such clause final position, which is virtually unat-
tested in spoken languages, is at the core of a
debate in theoretical syntax since it seems in clear
contrast with some of the basic tenets of contem-
porary syntax.?

3. Methodology

We took the sections about constituent questions of
the SignGram blueprint as our starting point (Quer
et al., 2017). As of today, the SignGram blueprint
constitutes the most valuable resource for grammar-
ians who are willing to begin a descriptive analysis
of a sign language. Specifically, we focused on
the Syntax part, Chapter 1: Sentence type. Sec-
tion 2 of that chapter is devoted to interrogative
sentences and it includes instructions on what to
look for and provides references on how to elicit
content questions. At the lexical level, the main
topics to be covered are the identification of man-
ual wh-signs and non-manual markers distinguish-
ing content questions. At the sentential level, the
main topics concern the distribution of wh-signs in
the sentence, the scope of the non-manual mark-
ers, whether there are content questions without an
overt wh-sign, the description of wh-phrases with
a restriction (e.g., ‘which student’), and whether
it is possible to split the wh-sign from its restric-
tion, the presence of wh-doubling, and multiple
wh-questions.

We then looked into three sign languages, Greek
Sign Language (GSL), French Sign Language
(LSF), and Swedish Sign Language (STS), using
a semi-formal production experiment, direct elici-
tation, and corpus resources, respectively. Ideally,
these approaches replicate three real scenarios
that a researcher might easily face with. We make
them explicit here in the shape of case studies.

3.1. Case Study 1: (Semi-formal)
Production Experiment

A researcher decides to conduct a study on content
questions in GSL. The language does not have an
available corpus, and the department cannot hire
a language consultant for that specific language.
However, since the researcher is going to spend
a couple of weeks in Athens, they decided to use
their personal network of Greek Deaf friends, plus
a mild snowball recruitment (Mouw et al., 2014)
to conduct a semi-formal production experiment
with the same stimuli used in Geraci et al. (2010,

2See for instance the debate about the position of
wh-signs in ASL (Neidle et al., 2000; Petronio and Lillo-
Martin, 1997) and the alternative analysis based on LIS
data and tentatively extended to ASL (Cecchetto et al.,
2009), while for the universal principles constraining the
position of ex-situ wh-words see Kayne (1994).



2015), which have been reported to be a valuable
resource by the blueprint.

The stimuli consisted of two pairs of pictures de-
signed to mimic real-life situations like a car acci-
dent plus an insurance form (Fig. 1-2), and a do-
mestic accident plus a medical form (Fig. 3-4). The
task is assessed at pairs. One member of the pair
receives a scene-picture, the other the correspond-
ing form-picture. After they have looked at their
picture, participants are asked to interact. Specifi-
cally, the person with the form picture is asked to
fill in the form, playing either the role of a car in-
surance agent (Fig. 2), or the role of a doctor (Fig.
4). At the end of a trial, the participants change
pictures and switch roles. These pictures have
been designed specifically to elicit wh-questions
in a semi-spontaneous environment. The partici-
pants are instructed not to follow the scenes strictly,
but to take them as a hint to further elaborate the
exchange. The forms, on the other hand, provide a
memo for a wide variety of content questions (who,
what, when, how, why, at what time, etc.).

Thirteen Deaf GSL signers participated to the
study (7 pairs, one participant took part to two ses-
sion to match a spare signer). The total duration
of the recordings is of about 16 minutes. The dia-
logues are recorded with a phone camera and have
been annotated using ELAN following the same
template as in the corpus study (see below). The
annotation (still on-going) is conducted by one of
the author (Robert Gavrilescu), with the assistance
of a GSL signer®.

3.2. Case Study 2: Elicitation study

Within a funded project to study some psycholin-
guistic aspects of the syntax of LSF, a researcher
is asked to conduct a preliminary study on content
questions. The study is necessary to provide es-
sential information on how to properly construct the
experimental stimuli. The LSF researcher does not
have a large annotated corpus at their disposal, but
can count on one/two language consultants who
regularly collaborate with the linguistic group. They
then decide to study content questions in LSF us-
ing the playback method (Schlenker, 2014; Lettieri
et al., 2023). As illustrated in Lettieri et al. (2023),
the playback method consists of a sequence of at
least six steps:

(4) Definition of the paradigm to investigate

Recording the paradigm from one consultant
Playing-back the paradigm to the informant(s)
Recording acceptability and felicity judgments

Discuss possible issues

-~ ® Qo0 T

Repeat steps (4c-4e) at least once

SWe are grateful to Dimitris Papapetrou for his help
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Figure 1: Car accident: scene.
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Figure 2: Car accident: form.

For this particular study, the scope of the re-
search is given by the need of creating adequate
stimuli for a psycholinguistic work, while the defini-
tion of the paradigm was given by the SignGram
blueprint. The identification of wh-signs was done
via LSF dictionaries and sign repositories (e.g.,
Spreadthesign Hilzensauer and Krammer, 2015
and Le Dico Elix). To illustrate how a subject wh-
question paradigm was elicited, see the example
in (5). The recording of the paradigm items was
done by giving the language consultant a random
sequence of signs (5a) to order in a grammatical
sentence (5b) and then by substitution, asking to
replace a noun with a wh-sign (5c), and reordering
the signs in the sentence (5d-5e). Once one target
sentence was finally reached, minimal variants are
also recorded. Once the paradigm was obtained, in
subsequent sections (at least a week apart) felicity
and acceptability judgments were collected.

(5) a. MOTHER, MARKET, SUNDAY, VEG., BUY
Random sequence of signs
b. SUNDAY POSS MOTHER BUY VEG. MARKET
Baseline sentence
‘My mom bought vegetables at the market last Sunday.’
C. SUNDAY WHO BUY VEG. MARKET


https://www.spreadthesign.com/en.us/search/
https://dico.elix-lsf.fr/decouvrir-elix

Figure 3: Home accident: scene.

ACCADUTO

2 G P

LuoGo

OF)| @)

CURE

SVENIMENTI

DURATA

’QCI

MEDICINE

@lﬁlu]

Figure 4: Home accident: form.

Target: wh-sign in-situ (substitution)

d. WHO SUNDAY BUY VEG. MARKET
Target: wh-sign in initial position (reordering)

€. SUNDAY BUY VEGETABLES MARKET WHO
Target: wh-sign in final position (reordering)
‘Who bought vegetables at the market last Sunday?’

The data for this study were recorded during 13
sessions, while judgments were collected during 4
sessions. Data from other projects were also col-
lected within a session so that in a typical two-hour
session, an alternation between tasks (recording
and judgments) and projects (content questions,
subordination, phonemic inventory, etc.) was guar-
anteed. This procedure avoids heavy and boring
sessions on a single topic.
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3.3. Case Study 3: Corpus study

Stockholm University has a large STS corpus which
has been annotated since 2009 (or since 2003 if
the ECHO project is included). The first release
was in 2012, and a later release in 2021 contained
the gloss tier fully annotated (Mesch, 2023; Bérstell
et al., 2016). The corpus contains free conversa-
tions, presentations, and elicited narrative tasks
(e.g., the Frog Story), but nothing similar to the
task used in the Case Study 2. Since no system-
atic description of content questions is available for
the language, the researcher decides to look into
the corpus and see what type of information is avail-
able. The corpus contains 190,000 tokens, from 42
participants from three regions of the country; and
it has already been successfully used to study va-
lency (Borstell et al., 2019) and the syntax-prosody
interface (Puupponen et al., 2016).

The corpus search was done by looking both
at wh-signs in the gloss tier and wh-words in the
translation tier. A manual check was then used to
exclude sentences in which wh-phrases are used in
non-interrogative sentences (e.g., relative clauses).
Since no systematic description of wh-questions is
available for the language, new annotation tiers
specific to the project have been added: ques-
tion type, wh-position, position of nominal element
in restricted wh-phrases, distribution of the non-
manuals. These are indented to be used as poten-
tial dependent variables or categorical predictors
in quantitative analyses with the levels indicated in

(6):

(6) a. question type: direct, embedded, con-
structed action
b. wh-position: initial, finial, in-situ, dupli-
cated
c. Restricted wh-phrases: adjacent to the
wh-sign, split
d. distribution of non-manuals: Absent, 1

sign, 2 signs, 3 signs, more

The annotation (still ongoing) is conducted by
one of the authors (Johanna Mesch), who is also
part of the research group that is responsible for
the STS corpus at the University of Stockholm (see
figure 5).

4. Preliminary Results

As for the inventory of wh-signs, all three methods
of research have been able to spot a wide range wh-
signs, indicating that the three languages have ded-
icated wh-forms for specified syntactic and seman-
tic functions: wHo for animate/human individuals,
WHAT for inanimate individuals in argument position,
WHERE for locatives, etc. LSF combines specific



Figure 5: Corpus mining with coding schedule for
the STS Corpus.

wh-signs depending on the restriction e.g., PRES-
IDENT WHO (which president), BOOK WHAT (which
book), etc. STS uses the sign for wHO/wHICH in all
types of restricted wh-phrases (the equivalent of
English which), although there are cases in which
the sign for wHAT is also used (e.g., WHAT REASON)
No which-questions were found for GSL. One par-
ticular use of the sign for How was found in STS.
The sign is used to create a sort of tag question
eliciting an opinion from the addressee, as shown
by the example in (7).

(7) Signer A: STOP AGAIN YES OR HOW
‘Stop, (do a recording) again, right?’
Signer B: YEs

‘Yes.

No variation among wh-signs is documented for
LSF or STS, although it is known that there is a
variant for the sign for wHo that is used in some
regions of Sweden. Variation for the sign wHAT was
found in GSL, where a two-handed palm-up sign
(Fig. 6 right) or a two-handed 1-handshape form
can be used (Fig. 6 left). The latter form is used by
signers from the area of Athens.

Figure 6: wHAT in GSL. Standard variant (right) and
Athens variant (left).

Wh-questions without an overt wh-sign are doc-
umented in all three languages. Specifically, wh-
phrases like what time, how old, and how many are
often produced without a manual wh-sign (see Fig.
7, but are marked with the specific wh-non-manuals
(see below).
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Figure 7: How-MANY in STS. Only the sign MANY is
produced.

Moving on to the syntactic part, the preliminary
annotation of three videos of the production task
returned 23 content questions in GSL, while ap-
proximately 250 content questions were recorded
with the fieldwork method for LSF. The search for
wh-signs in STS returned 2051 hits. Since, the STS
corpus does not have an annotation tier for sen-
tence type (declarative, interrogative, imperative,
exclamative), a cross search to remove uses of wh-
signs in non-interrogatives could not be performed
at this stage. Nonetheless, a qualitative analyses
of the corpus data is possible.

Indirect questions have been obtained for all lan-
guages. An example from GSL is given in (8).

(8) ASK TIME ACCIDENT APPROX
‘I am asking at what time approximately the
accident happened.

Content questions within a constructed action
(role shift) are found in the STS corpus, while they
have not been found in the production task, and
were not elicited as part of the fieldwork activities.
Two examples from STS are given in (9).

(9) a. Boy SEARCH CALL VOICE
constructed action
WHERE FROG WHERE FROG
‘The boy searches and calls for the frog.’
constructed action
b. MAN DS:PICK-UP WHO POSS IX-ON-GLASS

‘When the window cleaner found the beer
glass, he wondered whose it was.’

Concerning the position of wh-signs in the sen-
tence, LSF allows wh-signs to remain in situ, to
be found in sentence final position (after a loca-
tive phrase) and in sentence initial position (before
a temporal adverb), as shown in (5) above. The
fieldwork study revealed that the most preferred op-
tions are the in situ position (5¢) and the sentence
final position (5d), with the sentence initial position
slightly marked.

For GSL, wh-signs are found in final position
(10a), initial position (10a), and duplicated in initial
and final position (10c).



(10) a. 1X2 COME HOW
‘How did you come (here)?’
b. How cITY sAY
‘How do you say it was a city?’
C. WHY COME WHY

‘Why did you come?’

For STS, wh-signs can appear sentence initially
(11a), finally (11b), repeated at both edges of the
clause (11c), and it can be omitted (11d).

(11)

a. [...] HOW WHAT DO IX2 TODAY

‘[...] And what are you doing today?’

FILM FESTIVAL THINK COMPARE OREBRO
STOCKHOLM TWO DIFFERENT WHAT
‘Although | mean what is the difference
between the film festivals in Orebro and
Stockholm, what is the difference?’

HOW TEACH LANGUAGE HOW
‘How does the teaching take place purely
linguistically?’

POSS2 FIRST WORK TO-BE SAAB IX2
MALMO X2
‘What was your first job? Was it at SAAB,
in Malmoé?’

Moving to restricted wh-questions, LSF allows
the restriction to be stranded (12a) or pied-piped
along with the wh-sign (12b). Interestingly, when
the restriction is stranded, the sentence becomes
ambiguous between a reading in which the wh-sign
is interpreted as restricted by the subject or the
object, as indicated in the possible translations for
(12b). Crucially, (12a) cannot be interpreted as a
stranded restricted wh-question on the object.

(12) a. WHO DOG SCRATCH CAT
‘Which dog scratched the cat?’
b. DOG SCRATCH CAT WHO

‘Which cat did the dog scratch?’
‘Which dog scratched the cat?’

Restricted wh-questions are rare in the produc-
tion task, so no conclusions can be drawn for GSL.

As for STS, the search returned 62 hits of re-
stricted wh-phrases with the order wh-sign + noun
(WHICH YEAR, WHICH CITY, ETC.), while only 7 hits of
sequences of noun + wh-sign, indicating a strong
preference for the order in which the wh-sign pre-
cedes its restriction. Interestingly, STS does not
seem to differentiate the wh-sign based on the ani-
macy of the restriction. In fact, the sign for wHo is
used across the board in restricted wh-questions.
Restricted wh-questions in STS illustrate another in-
teresting aspect of the syntax of content questions
in SL, namely the possibility of having partial copy
of the wh-phrase. The example in (13a) shows a
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case in which the wh-sign is repeated, while the
restriction is duplicated in (13b). Example (13c)
shows a case in which the restriction and the wh-
sign are repeated but the restriction is only partially
repeated with the alternating pronoun (i.e., only the
grammatical features of the restriction are repeated,
and not its encyclopedic content).

(13) a. WHICH BOOK WHICH
‘Which book?’
b. BRING BOOK WHICH NEW BOOK
‘Which new book did you bring?’
C. TERRACED HOUSE WHICH EASY CONTACT

NEIGHBOURS WHICH IX-alt
‘In which house was it easier to contact
neighbours?’

Finally, turning to the non-manual components.
These are present in all languages. As for GSL,
the proper distribution is yet to be determined, but
there seems to be a head leaning forward and a
slight eyebrow raising in correspondence of the
wh-signs, although this seems to be optional. As
for LSF, the non-manuals attested in the sample
are furrowed eyebrows and squinted eyes. They
often co-occur with manual wh-signs, but there
are tokens in which those non-manuals are absent.
When they occur, they may spread over portions
of the sentence larger than the wh-constituent, al-
though this is not the most common option. STS
non-manuals for wh-questions are similar to those
of LSF (see Fig. 7), but they appear to have a
larger spreading in the sense that the non-manuals
co-occur with several signs and are not restricted
to the wh-sign only.

5. Discussion

Although preliminary, the results reported in Section
4 reveal interesting aspects of each methodology.

The production task is particularly effective in elic-
iting short wh-questions, typical of the spontaneous
interaction, as already documented for LIS (Geraci
et al., 2015). Despite the small number of tokens,
it also shows a considerable amount of syntactic
variation illustrating that GSL allows wh-signs to
occur at either edge of a clause and even repeated
at both edges. Although the population sample
was not selected for this purpose, the method is
also robust enough to record some lexical variation
and elicit complex constructions like embedded wh-
questions. For different reasons, the particular task
does not seem to be adequate to study questions
inside constructed actions, or in situ wh-questions.
In fact, the participants’ roles in the task somehow
prevent constructed actions from occurring. As for
in situ wh-signs, considering the overall small num-
ber of signs per sentence, it is complicated to find



syntactic evidence of the correct position of the
wh-sign in the sentence.

The corpus study provided a considerable num-
ber of hits, although some of them may not be gen-
uine content questions. Since the corpus contains
data from a variety of tasks (narratives, presen-
tations, conversations), it is crucial to notice that
most of the hits come from the conversation task
(see figure 8). So, if one were to start a corpus
annotation for a study on content questions, the
advice is to start looking into conversation videos
before narratives or presentations. At the syntactic
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Figure 8: The distribution of wh-signs in the STS
Corpus.

level, we could not evaluate the quantitative distri-
bution of wh-signs because the annotation has not
yet been completed. However, from a qualitative
inspection, the data seem to be rich enough to de-
termine the amount of variation in the position of
wh-signs. The richness of the data will also allow
an understanding of the distribution of restricted
wh-questions. The corpus data also revealed the
presence of questions inside constructed actions
and tag constructions, which did not emerge from
the production experiment and can be very hard to
discover from fieldwork sessions.

Unfortunately, pure production data cannot pro-
vide negative evidence, this is true for both the ex-
perimental method and the corpus method. Specif-
ically, understanding the conditions in which tag
questions are acceptable might require the con-
struction of ad hoc paradigms that might be better
investigated using a different method.

As for fieldwork data, the identification of the tar-
get paradigms is much simpler to obtain than other
with other methods and the possibility of getting
negative evidence is something that is extremely
valuable to create grammatical theories. At the
level of grammatical description, fieldwork methods
provide quick access to basic facts, but they are
less suitable for capturing a wide range of varia-
tion. The method is ideal for a deep understanding
of complex grammatical constructions (especially
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with long sentences) but a bit less for pure explo-
ration (and accidental discoveries). For instance,
tag questions in STS would be very hard to discover
using the elicited method, unless the researcher
is already prompted about the existence of that
construction and of what type of lexical material is
needed.

Table 1 summarizes how the description of con-
tent questions can be accomplished using field-
work, corpus, and experimental resources.

Level Exper. Fieldwk. Corpus
Manual signs ok ok ok
Non-manuals * ok ok

Position
of wh-signs ? ok ok
Content Q with
no wh-sign ok ok ok
Restricted
wh-phrases NA ok ok

Table 1: Summary of the descriptive adequacy
of the three methods. ok = objective reached, *
= objective not reached, ? = objective partially
reached, NA = not assessable.

Although these are only preliminary, the picture
that emerges is that fieldwork and corpus methods
provide similar results, proving adequate tools for
linguistic description. On the other hand, the exper-
imental task does not allow for a satisfactory analy-
sis of the non-manuals and restricted wh-phrases,
while the distribution of wh-signs in the sentence is
only partially accomplished. We believe that this is
due to the fact that the experimental task elicited
very short questions. Short sentences are not ideal
to analyze the spreading of non-manuals or the syn-
tactic distribution of wh-signs because sentences
with few signs do not allow to conclusively under-
stand the underlying structure of the construction.
Furthermore, the specific task was not designed
to elicit restricted wh-questions. So, it is not a sur-
prise that with the small sample we considered
here none was actually produced. One final note
on this methodology. Experimental studies are an
excellent tool for hypothesis testing but are rarely
used for descriptive purposes. However, if one
were aiming to obtain a satisfactory description of
the content question, more than one experiment is
likely needed.

6. Conclusions

In this work, we addressed the methodological
question of what types of information can be ob-
tained when different methodologies are used to
accomplish a similar task. We used three different
case studies to explore how experimental, field-



work and corpus methods gather linguistic data to
describe content questions in sign language. Over-
all, the results of the first case study, experiment
data, offer a pilot of what can be further and more
extensively explored with more controlled settings
and more participants. Still, if this method is to
be pursued, it should be paired with a compre-
hension study, although admittedly the analysis
of complex constructions might reveal difficult us-
ing this method. The results of the second case
study, elicited data, is a deep description of some
aspects of the syntax of content questions in LSF
with little exploration of variation and of the effects
that variation may have on the constructions. In this
respect, an experimental or a corpus study, if the re-
source is available, would be an ideal complement.
The results of the third case study, corpus data,
is a rich set of wh-constructions, which has only
been qualitatively investigated, but that provided
an interesting glance at the amount of variation in
the language. The downside of this method, as
already observed, is the lack of negative evidence,
and the difficulty of probing the deep properties of
the constructions. Hence, if a researcher starts
with a corpus study, after a qualitative and quantita-
tive analysis of the data, complementary fieldwork
data are ideal.
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Abstract
In this paper we present Matignon-LSF, the first dataset of interpreted French Sign Language (LSF) and one of the
largest LSF dataset available for research to date. This is a dataset of live interpreted LSF during public speeches
by the French government. The dataset comprises 39 hours of LSF videos with French language audio and
corresponding subtitles. In addition to this data, we offer pre-computed video features (I3D). We provide a detailed
analysis of the proposed dataset as well as some experimental results to demonstrate the interest of this novel dataset.

Keywords: French Sign Language, LSF, dataset, interpretation, alignment
1. Introduction = Dwiie o

Automatic processing of sign languages (SL) is
an expanding field, but unfortunately the vast ma-
jority of these languages are still poorly endowed
in terms of corpora available for research. This
is particularly the case for French Sign Language
(LSF). One potential source of SL data is television
(Koller et al., 2015; Albanie et al., 2021), where
the number of interpreted programs has increased
in recent years. However, the access to this data
is genera”y not easy for research purposes, due Compte rendu du Conseil des ministres du 5 janvier 2022.

to rights or technical problems. In France, weekly o B G B pown rw
Council of Ministers debriefings yield open-access

videos which are Systematica”y interpreted in LSF. Figure 1: Screenshot from a video in the Matignon_
We have taken advantage of this opportunity to | SF dataset, showing debriefings from the French
Compile a new dataset called Matignon—LSF1 (flg government’s Council of Ministers.
1), which is presented in this paper.
The primary language modality of the TV pro-

grams is speech. Speech may be subtitled, some-  (Stone and Russell, 2011). Furthermore, due to
times in real time, either automatically with all the  strong time constraints, SL during real-time inter-
potential errors that this entails, orin a live subtitling  pretation tends to closely follow the grammatical
studio with time and format constraints. Speech structure of the spoken language, with evidences
may also be interpreted in SL, sometimes in post-  that differences in forms of language are reduced
production, which enables the SL version to be pre-  in interpreted content (Dayter, 2019). The inter-
pared and corrected, or sometimes in real time. In  preters may choose not to convey information from
this last scenario, several phenomena occur. Usual  the audio stream that they consider to be redun-
practice in interpreting is for the professional to in-  dant to the visual stream of the footage. Fluent
terpret into their native language. The situationis  signers can generally tell the difference between in-
different in the case of SL interpreting because itis  terpreted and non-interpreted SL, as well as signing
necessary for the interpreter to hear speech. There- by native deaf signers and non-native or non-deaf
fore, unless the interpreter is a CODA (child of deaf  signers.
adult), he/she interprets into a second language. It is worth emphasizing that, due to the interpre-
In addition, there is some evidence of differences  tation process, the source language can interfere
between the output of hearing and deaf interpreters iy the signing. Thus interpreted SL can be different
: from original SL (i.e. directly produced by sign-

These authors contributed equally to this work and ers). However, there is little work on describing or
none of the authors are Deaf quantifying these differences.

" Matignon refers to the official residence of the French . . s
Prime Minister, and in extends to the french government. Having said that, this kind of dataset may be very

p
Nous devons nous y préparer,
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useful in automatic processing because it provides
more SL data, even if it is task specific. In our case,
it also has the advantage of being open-data.

In this paper, after a brief overview of the corpora
currently available (section 2), particularly in LSF,
section 3 presents the Matignon-LSF dataset, the
collection and processing of the data, and section
5 discusses the perspectives opened by this new
dataset.

2. Related Work

As part of the recent Easier European project, an
overview of existing datasets for the European SLs
was drawn up (Kopf et al., 2023). These datasets
were divided in two categories: linguistic corpora
and broadcast data. The former offer high-quality
data with rich transcriptions and annotations, while
the latter are available in large quantities. Since
the publication of this report, other datasets have
been released, such as BSL-1K (Albanie et al.,
2020) and more recently BOBSL in British Sign
Language (BSL) (Albanie et al., 2021), which rep-
resents a change of scale in terms of dataset, pro-
viding researchers with over 1,200 hours of sign
language interpreted from BBC broadcasts. In a
similar vein, the American Sign Language YouTube-
ASL dataset (Uthus et al., 2024) totals almost 1,000
hours of videos from the web. Also in ASL, the
How2Sign corpus, published in 2023, is of particu-
lar interest, as it is the largest laboratory corpus of
original (non interpreted or translated) SL. This has
already been the subject of several works (Duarte
et al.,, 2021).

LSF has been the subject of several corpora col-
lections over the last 10 years (Braffort, 2022). Most
of these LSF corpora have been compiled in labora-
tories mainly for linguistic research works, and have
two main shortcomings: fully annotated datasets
like Rosetta and 40 bréves are very small, contain-
ing less than 4 hours of data and larger datasets,
such as Creagest (Balvet et al., 2010), are only par-
tially annotated. The DictaSign dataset, consisting
of 8-hour dialogues (Belissen et al., 2020), is cur-
rently partially annotated. Nevertheless, it remains
valuable for recognizing signs in context, includ-
ing lexical (Ouakrim et al., 2023) and non-lexical
instances (Belissen et al., 2020).

Recently, two LSF datasets have been made
available to overcome these problems: Mediapi-
Skel (Bull et al., 2019) and Mediapi-RGB (Ouakrim
et al., 2024). The last one comprises 86 hours of
videos in LSF produced by deaf reporters or presen-
ters from the bilingual online medium Média’Pi! with
French subtitles produced by deaf translators. The
subtitles are well-aligned with LSF videos, and the
dataset has been prepared for processing (Ouakrim
et al., 2024). These two corpora are in a LSF-to-
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Figure 2: 20 most frequent nouns in the subtitles
of Matignon-LSF.

French modality because subtitles were produced
accordingly to the signing (and not the other way
around) and are perfectly aligned. These two cor-
pora are much larger than the previous ones in LSF,
except for the non completely annotated Creagest
corpus.

Due to the economic model of this medium,
videos are unavailable for Mediapi-Skel and only
partially available for Mediapi-RGB, which may be
a limitation for researchers wishing to use features
other than those pre-extracted by the authors (body
pose, 13D, etc.).

Thus, our aim is to collect a new LSF dataset that
is both large and open. We are therefore interested
in interpretation data from French broadcast and
created the Matignon-LSF dataset detailed in the
following sections.

3. Dataset overview

French government’s Council of Ministers debrief-
ings take place once a week at 'Elysée. They are
filmed, subtitled and, since July 2020, interpreted
in LSF. The Matignon-LSF dataset is based on the
LSF interpretations and subtitles of theses debrief-
ings. We do not have further information yet regard-
ing the work process of the interpreters, but they
probably don’t have much material to prepare their
interpretation. To date, it includes 67 debriefing
videos. Figure 2 shows the 20 most frequent nouns
of the dataset, demonstrating that the content of
the speech is strongly related to French politics (top
five words: minister, question, measure, french and
president).

59 videos consist of the government spokesper-
son’s speech (which varies from 4 minutes to 20
minutes, with an average of about 12 minutes),
followed by a question-and-answer session with
journalists. This part can vary depending on the
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Figure 3: Video’s duration distribution.

topics and the number of journalists in the press
room (from 8 minutes to almost an hour, with an
average of 23 minutes). In five other videos, min-
isters are invited to present their points after the
spokesperson’s speech, and they are asked ques-
tions in addition to the spokesperson. In the three
remaining videos, the press conference is held
without a spokesperson, and the ministers deliver
their speeches directly, with a shorter question-and-
answer session. The 67 delivered videos have a
total duration of 39 hours, with an average duration
of 36 minutes. The distribution of video duration is
shown in Figure 3.

The subtitles (written French) in the dataset is
composed of a total of 447k tokens for a total vo-
cabulary size of 10k?. From the subtitles, we ex-
tracted 18k sentences, as described in section 4.3.
Matignon-LSF features 15 signers.

The characteristics of the dataset are summa-
rized in the table 1.

Total duration (h) 39
#videos 67
#subtitles 51131
#sentences 18000
#french words vocab. | 10000
#signers 15
#speakers 3*

Video resolution (px) | 494 x 494
Frame rate (fps) 30

Table 1: Dataset overview. *journalists and minis-
ters not included.

To date, corpus Matignon-LSF lies between
Mediapi-Skel and Mediapi-RGB in terms of size

(fig. 4).

2we used SpaCy tokenizer https://spacy.io/
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Figure 4: Duration of translated LSF Corpora.
Matignon-LSF is the second largest translated LSF
Corpora after Mediapi-RGB and the largest inter-
preted LSF corpora.

4. Data collection and processing

This section details the construction of the
Matignon-LSF dataset. We present the raw data
and the processing carried out to provide the
dataset. The diverse processes are documented
in a GitHub repository, organized as a toolbox to
enable reproduction and expansion of the corpus,
as new press release takes place once a week.

4.1. Collecting the SL videos and

subtitles

Each week, the debriefing is filmed and uploaded
on Youtube and/or Dailymotion and comes with
a corresponding set of written French subtitles
aligned with the audio. Original videos have a res-
olution of 1080 px and a frame rate of 30 fps.
Using the PyTube Python library, we downloaded
all videos issued between December 2020 and
December 2023 along with their associated audio
track. We then used the YouTube Transcript Python
Api to download the subtitles, and keep only manu-
ally written subtitles, setting aside videos that only
have generated subtitles. Obtained JSON files are
then converted to the VTT subtitle format. Next,
using OpenCV, we crop the videos so as to retain
only the square containing the LSF interpreter.
After the above steps, we obtain 494 x494 px LSF
videos with associated French audio and subititles.

4.2. Processing the videos

Skeleton keypoints, such as those provided by
OpenPose (Cao et al., 2018) and Mediapipe Holis-
tic (Lugaresi et al., 2019), are essential inputs for
various automated sign language processing tasks.
These tasks include cropping of hands or faces
(Huang et al., 1994), generating sign language
(Ventura et al., 2020), and improving recognition
methods (Belissen et al., 2020).
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Figure 5: Distribution of subtitle duration before
sentences extraction.

Other automatic sign language processing meth-
ods (Tarrés et al., 2023; Renz et al., 2021) rely on
features extracted from sign language videos by
the I3D model (Carreira and Zisserman, 2017). We
used this architecture to extract features from our
videos. Specifically, we have used the fine-tuned
model provided by Varol et al. (2021).

4.3. Processing the subtitles

As subtitles are constrained by length for display
reason, they do not necessarily form sentences.
However, the translation tasks often operate at the
sentence level.

To address this, we generate a sentence-level
segmentation from the subtitles. We adopt the
same approach as Albanie et al. (2021) to build our
sentence-segmented subtitle files. We split subti-
tles on sentence boundary punctuation. When a
sentence spans multiple subtitles, it is easy to ex-
tract the sentence by concatenation. It is more com-
plicated when multiple sentences fall in one subtitle.
As the method used by Albanie et al. (2021), to
preserve the alignment, we calculate the duration
of a character (based on the subtitle’s characters
length). We can use this information to associate a
duration to each sentence within the subtitle. Then,
we can calculate the new subtitle’s timestamps on
this basis. The disparity of the subtitle’s duration
between the original subtitles and the sentence-
segmented subtitles is illustrated in Figures 5 and
6. The average time thus increases from 2.56 to
7.33 seconds.

The corpus will be soon deposited on the Or-
tolang platform and will be regularly updated over
time. We estimate that it should be able to increase
by around 13h per year.
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sentences extraction.

5. Perspectives

The Matignon-LSF corpus has a number of ad-
vantages that can be exploited to address various
computer vision and natural language processing
tasks.

Alignment. Atthis stage, the French subtitles and
LSF of Matignon-LSF are not yet aligned as can be
seen in Fig 7. This example shows two consecu-
tive sentences. “Un cap pour contrdler I'épidémie.
Un cap pour relancer notre pays.” (A direction to
control the epidemic. A direction to relaunch our
country.). We observed that the length of the two
signed sentences (4.64 seconds) is longer than that
of the two spoken sentences (3.9 seconds). There-
fore, a manual shift of the speech subtitles is not
enough to fit the data: the GT and Sub alignments
would start at the same time, but end differently.

Whatever the type of language (spoken, written
or signed), machine translation methods require
prior alignment between the source and the tar-
get languages. In order to use this dataset for
translation tasks, it is necessary to be able to as-
sociate an extract of LSF with its corresponding
French subtitles. The Matignon-LSF dataset con-
tains a complete translation for each of the 67
videos. However, providing 35-minute video se-
quences (52,500 frames) and their associated
translations to a translation model would be very
costly. It would therefore be necessary to divide
these videos into sub-extracts.

State-of-the-art methods mostly rely on sentence
segmentation. Hence, videos and text are split into
sentence-like units, with an association between
text and SL: for each SL sentence, the text corre-
sponding to the translation is given. However, pro-
ducing such an SL sentence/text alignment from
an interpreted SL dataset is a real challenge: the
text is aligned with the audio, whereas SL inter-
pretation is performed with a latency that varies



"Un cap pour contréler I'épidémie. Un cap pour relancer notre pays."
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Figure 7: Demonstrating the alignment challenge in Matignon-LSF. The GT line corresponds to a manual
alignment (or Ground Truth) annotated for this specific figure while the Sub line corresponds to the subtitles
as provided with Matignon-LSF. Blue block corresponds to one sentence while green block corresponds

to another sentence.

in time and from one interpreter to another. Thus
the very first task to be carried out on this dataset
should be to align the subtitles with the LSF con-
tent. Manual alignment requires a considerable
time commitment as explained in (Bull et al., 2020):
It takes an expert fluent in sign language approx-
imately 10-15 hours to synchronize subtitles with
one hour of continuous sign language video. Au-
tomatic alignment methods as the one used for
the BOBSL dataset (Bull et al., 2021) could be a
solution but might need some fine-tuning for LSF.

Sign Language modeling. The Matignon-LSF
dataset can be used as it is, with no need for prior
alignment, for sign language modeling and can be
used to train unsupervised language models on
LSF such as SignBERT (Hu et al., 2021).

Sign Recognition. With the help of a method like
Lascar et al. (2024)’s automatic annotation process
currently under development, we could perform au-
tomatic sign recognition and classification. This
would provide information on the number of lexical
signs in our dataset. Sign classification is also a
step towards aligning our dataset between SL and
the subtitles. However, one should note that the
sign interpreters produce an interpretation of the
speech that appears in the subtitles, as opposed to
a transcription. This means that words in the subti-
tles may not correspond directly to individual signs
produced by the interpreters, and vice versa. There
may also be discrepancies between the audio and
the subtitle text.

Sign Language Translation. Once aligned, the
Matignon-LSF dataset could be used to train ma-
chine translation models for a wide variety of modal-
ities: LSF to French text, LSF to Speech, and vice-
versa (Ventura et al., 2020; Muller et al., 2023;
Ouakrim et al., 2024).
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Studying interpreted LSF As the first interpreted
LSF dataset of this scale, Matignon-LSF can be
used to study the specificity of interpreted LSF in
comparison with the original LSF that can be ob-
served in other corpora. For example, the work of
(Belissen et al., 2020) could be used to quantify the
distribution of sign types in this dataset.

6. Conclusion

In this paper, we presented Matignon-LSF, a new
dataset completely open to both research and pri-
vate use. We gave an overview of the dataset and
then presented the processing steps we applied for
the collection and preparation.

The scripts we developed are publicly available
so that they may be used to extend the dataset
as new videos are produced and published every
week. We also aim at adding other videos such as
President or Prime Minister solo intervention. The
corpus itself will be soon made available on the
Ortolang platform.

This dataset is the first dataset of interpreted LSF,
also usable outside public research. Future work
should focus on aligning this dataset, in particular
to facilitate the suggested perspectives.

Acknowledgements

This work has been partially funded by the
Bpifrance investment “Structuring Projects for Com-
petitiveness” (PSPC), as part of the Serveur
Gestuel project.

Authors details

None of the authors are deaf. A deaf colleague,
specialist in motion capture and virtual signer ani-
mation, belongs to our team but didn’t participate
to this project. Moreover, we often collaborate with
the Deaf community.


https://www.ortolang.fr

Bibliographical References

S. Albanie, G. Varol, L. Momeni, T. Afouras, Joon S.
Chung, N. Fox, and A. Zisserman. 2020. Bsl-1k:
Scaling up co-articulated sign language recogni-
tion using mouthing cues. In Computer Vision—
ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23-28, 2020, Proceedings, Part
X! 16, pages 35-53. Springer.

S. Albanie, G. Varol, L. Momeni, H. Bull, T. Afouras,
H. Chowdhury, N. Fox, B. Woll, R. Cooper, A. Mc-
Parland, et al. 2021. BOBSL: BBC-Oxford British
Sign Language Dataset. In ArXiv preprint.

A. Balvet, C. Courtin, D. Boutet, C. Cuxac,
. Fusellier-Souza, B. Garcia, M.-T. L'Huillier, and
M. A. Sallandre. 2010. The creagest project: a
digitized and annotated corpus for french sign
language (Isf) and natural gestural languages. In
Proceedings of the Seventh International Con-
ference on Language Resources and Evaluation
(LREC’10), pages 469-475.

V. Belissen, A. Braffort, and M. Gouiffes. 2020. Ex-
perimenting the automatic recognition of non-
conventionalized units in sign language. Algo-
rithms, 13(12):310-336.

A. Braffort. 2022. Langue des signes francaise:
Etat des lieux des ressources linguistiques et des
traitements automatiques. In Journées Jointes
des Groupements de Recherche Linguistique In-
formatique, Formelle et de Terrain (LIFT) et Traite-
ment Automatique des Langues (TAL), pages
131-138. CNRS.

H. Bull, T. Afouras, G. Varol, S. Albanie, L. Mo-
meni, and A. Zisserman. 2021. Aligning subti-
tles in sign language videos. In Proceedings of
the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 11552—-11561.

H. Bull, A. Braffort, and M. Gouiffés. 2020.
MEDIAPI-SKEL -A 2D-Skeleton Video Database
of French Sign Language With Aligned French
Subtitles. In 12th Conference on Language Re-
sources and Evaluation (LREC 2020), pages
6063—-6068, Marseille, France.

Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and
Y. Sheikh. 2018. OpenPose: realtime multi-
person 2D pose estimation using Part Affinity
Fields. In arXiv preprint arXiv:1812.08008.

J. Carreira and A. Zisserman. 2017. Quo vadis,
action recognition? a new model and the kinet-
ics dataset. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recogni-
tion (CVPR), pages 6299-6308.

D. Dayter. 2019. Collocations in non-interpreted
and simultaneously interpreted English: a corpus
study. Routledge.

A. Duarte, S. Palaskar, L. Ventura, D. Ghadiyaram,
K. DeHaan, F. Metze, J. Torres, and X. Giro-i
Nieto. 2021. How2Sign: A Large-scale Multi-
modal Dataset for Continuous American Sign
Language. In Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2735—
2744,

H. Hu, W. Zhao, W. Zhou, and H. Li. 2021. Sign-
bert+: Hand-model-aware self-supervised pre-
training for sign language understanding. In Pro-
ceedings of the IEEE/CVF international confer-
ence on computer vision, pages 11087-11096.

C. Huang, Joseph L. Mundy, and Charles A. Roth-
well. 1994. Model supported exploitation: Quick
look, detection and counting, and change detec-
tion. In IEEE/CVF Winter Conference on Ap-
plications of Computer Vision (WACV), pages
144—-151.

O. Koller, J. Forster, and H. Ney. 2015. Continuous
sign language recognition: Towards large vo-
cabulary statistical recognition systems handling
multiple signers. Computer Vision and Image
Understanding, 141:108—125.

M. Kopf, M. Schulder, and T. Hanke. 2023. The
sign language dataset compendium.

J. Lascar, M. Gouiffes, A. Braffort, and C. Danet.
2024. Annotation of Isf subtitled videos without a
pre-existing dictionary. In Workshop on the Rep-
resentation and Processing of Sign Languages
at the International Conference on Language Re-
sources and Evaluation (sign-lang@LREC).

C. Lugaresi, J. Tang, H. Nash, C. McClanahan,
E. Uboweja, M. Hays, F. Zhang, C.-L. Chang,
M. G. Yong, J. Lee, W.-T. Chang, W. Hua,
M. Georg, and M. Grundmann. 2019. Mediapipe:
A framework for building perception pipelines.
CoRR, abs/1906.08172.

M. Mdaller, M. Alikhani, E. Avramidis, R. Bow-
den, A. Braffort, N. Cihan Camgéz, S. Ebling,
C. Espana-Bonet, A. Gohring, R. Grundkiewicz,
M. Inan, Z. Jiang, O. Koller, A. Moryossef,
A. Rios, D. Shterionov, S. Sidler-Miserez, K. Tissi,
and D. Van Landuyt. 2023. Findings of the sec-
ond WMT shared task on sign language transla-
tion (WMT-SLT23). In Proceedings of the Eighth
Conference on Machine Translation, pages 68—
94, Singapore. Association for Computational
Linguistics.

Y. Ouakrim, D. Beautemps, M. Gouiffés, T. Hue-
ber, F. Berthommier, and A. Braffort. 2023. A

100


https://arxiv.org/pdf/2007.12131.pdf
https://arxiv.org/pdf/2007.12131.pdf
https://arxiv.org/pdf/2007.12131.pdf
https://arxiv.org/pdf/2111.03635.pdf
https://arxiv.org/pdf/2111.03635.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/356_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/356_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/356_Paper.pdf
https://hal.science/hal-03060271v1/document
https://hal.science/hal-03060271v1/document
https://hal.science/hal-03060271v1/document
https://hal.science/hal-03846845v1/document
https://hal.science/hal-03846845v1/document
https://hal.science/hal-03846845v1/document
https://openaccess.thecvf.com/content/ICCV2021/papers/Bull_Aligning_Subtitles_in_Sign_Language_Videos_ICCV_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Bull_Aligning_Subtitles_in_Sign_Language_Videos_ICCV_2021_paper.pdf
https://hal.archives-ouvertes.fr/hal-02952340
https://hal.archives-ouvertes.fr/hal-02952340
https://hal.archives-ouvertes.fr/hal-02952340
https://arxiv.org/pdf/1812.08008.pdf
https://arxiv.org/pdf/1812.08008.pdf
https://arxiv.org/pdf/1812.08008.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Carreira_Quo_Vadis_Action_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Carreira_Quo_Vadis_Action_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Carreira_Quo_Vadis_Action_CVPR_2017_paper.pdf
https://www.taylorfrancis.com/chapters/edit/10.4324/9780429030376-4/collocations-non-interpreted-simultaneously-interpreted-english-daria-dayter
https://www.taylorfrancis.com/chapters/edit/10.4324/9780429030376-4/collocations-non-interpreted-simultaneously-interpreted-english-daria-dayter
https://www.taylorfrancis.com/chapters/edit/10.4324/9780429030376-4/collocations-non-interpreted-simultaneously-interpreted-english-daria-dayter
https://openaccess.thecvf.com/content/CVPR2021/papers/Duarte_How2Sign_A_Large-Scale_Multimodal_Dataset_for_Continuous_American_Sign_Language_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Duarte_How2Sign_A_Large-Scale_Multimodal_Dataset_for_Continuous_American_Sign_Language_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Duarte_How2Sign_A_Large-Scale_Multimodal_Dataset_for_Continuous_American_Sign_Language_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Hu_SignBERT_Pre-Training_of_Hand-Model-Aware_Representation_for_Sign_Language_Recognition_ICCV_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Hu_SignBERT_Pre-Training_of_Hand-Model-Aware_Representation_for_Sign_Language_Recognition_ICCV_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Hu_SignBERT_Pre-Training_of_Hand-Model-Aware_Representation_for_Sign_Language_Recognition_ICCV_2021_paper.pdf
https://www.robots.ox.ac.uk/~vgg/publications/1994/Huang94/huang94.pdf
https://www.robots.ox.ac.uk/~vgg/publications/1994/Huang94/huang94.pdf
https://www.robots.ox.ac.uk/~vgg/publications/1994/Huang94/huang94.pdf
https://www-i6.informatik.rwth-aachen.de/publications/downloader.php?id=996&row=pdf
https://www-i6.informatik.rwth-aachen.de/publications/downloader.php?id=996&row=pdf
https://www-i6.informatik.rwth-aachen.de/publications/downloader.php?id=996&row=pdf
https://www-i6.informatik.rwth-aachen.de/publications/downloader.php?id=996&row=pdf
https://doi.org/10.25592/uhhfdm.12017
https://doi.org/10.25592/uhhfdm.12017
https://arxiv.org/pdf/1906.08172.pdf
https://arxiv.org/pdf/1906.08172.pdf
https://doi.org/10.18653/v1/2023.wmt-1.4
https://doi.org/10.18653/v1/2023.wmt-1.4
https://doi.org/10.18653/v1/2023.wmt-1.4
https://gretsi.fr/data/colloque/pdf/2023_ouakrim1182.pdf

multistream model for continuous recognition of
lexical unit in french sign language. In 29° Col-
loque sur le traitement du signal et des images”,
2023-1182, pages 461-464. GRETSI - Groupe
de Recherche en Traitement du Signal et des
Images.

Y. Ouakrim, H. Bull, M. Gouiffés, D. Beautemps,
T. Hueber, and A. Braffort. 2024. Mediapi-RGB:
Enabling technological breakthroughs in french
sign language (LSF) research through an exten-
sive Video-Text corpus. Proceedings of the 19th
International Joint Conference on Computer Vi-
sion, Imaging and Computer Graphics Theory
and Applications, 2:139-148.

K. Renz, N. C. Stache, S. Albanie, and G. Varol.
2021. Sign language segmentation with tem-
poral convolutional networks. In ICASSP 2021-
2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP),
pages 2135-2139. IEEE.

C. Stone and D. Russell. 2011. Interpreting in in-
ternational sign: decisions of deaf and non-deaf
interpreters. In Proceedings of World Association
of Sign Language Interpreters Conference.

L. Tarrés, G. I. Gallego, A. Duarte, J. Torres, and
X. Giré-i Nieto. 2023. Sign language translation
from instructional videos. In Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5624-5634.

D. Uthus, G. Tanzer, and M. Georg. 2024. Youtube-
asl: A large-scale, open-domain american sign
language-english parallel corpus. Advances in
Neural Information Processing Systems, 36.

G. Varol, L. Momeni, S. Albanie, T. Afouras, and
A. Zisserman. 2021. Read and attend: Temporal
localisation in sign language videos. In Proceed-
ings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16857—
16866.

L. Ventura, A. Duarte, and X. Gird-i Nieto. 2020.
Can everybody sign now? exploring sign lan-
guage video generation from 2d poses. arXiv
preprint arXiv:2012.10941.

Language Resource References

Belissen, V. and Braffort, A. and Gouiffés, M. 2020.
Dicta-Sign-LSF-v2 corpus. ISLRN 442-418-132-
318-7.

101

Bull, H. and Braffort, A. and Gouiffés, M. 2019.
Medliapi-Skel corpus. ISLRN 184-726-682-550-
4.

Bull, H. and Ouakrim, Y and Lascar, J. and Braffort,
A. and Gouiffes, M. 2024. Mediapi-RGB corpus.
ISLRN 421-833-561-507-6.


https://gretsi.fr/data/colloque/pdf/2023_ouakrim1182.pdf
https://gretsi.fr/data/colloque/pdf/2023_ouakrim1182.pdf
https://hal.science/LISN/hal-04494094v1
https://hal.science/LISN/hal-04494094v1
https://hal.science/LISN/hal-04494094v1
https://hal.science/LISN/hal-04494094v1
https://arxiv.org/pdf/2011.12986.pdf
https://arxiv.org/pdf/2011.12986.pdf
http://hdl.handle.net/2436/624146
http://hdl.handle.net/2436/624146
http://hdl.handle.net/2436/624146
https://arxiv.org/pdf/2304.06371.pdf
https://arxiv.org/pdf/2304.06371.pdf
https://arxiv.org/pdf/2306.15162.pdf
https://arxiv.org/pdf/2306.15162.pdf
https://arxiv.org/pdf/2306.15162.pdf
https://arxiv.org/pdf/2103.16481.pdf
https://arxiv.org/pdf/2103.16481.pdf
https://arxiv.org/pdf/2012.10941.pdf
https://arxiv.org/pdf/2012.10941.pdf
https://www.ortolang.fr/market/corpora/dicta-sign-lsf-v2
https://www.islrn.org/resources/442-418-132-318-7
https://www.islrn.org/resources/442-418-132-318-7
https://www.ortolang.fr/market/corpora/mediapi-skel
https://www.islrn.org/resources/184-726-682-550-4
https://www.islrn.org/resources/184-726-682-550-4
https://www.ortolang.fr/market/corpora/mediapi-rgb
https://www.islrn.org/resources/421-833-561-507-6

Phonological Transcription of the Canadian Dictionary of ASL as a
Language Resource

Kathleen Currie Hall, Anushka Asthana, Maggie Reid,
Yiran Gao, Grace Hobby, Oksana Tkachman, Kaili Vesik
University of British Columbia
2613 West Mall, Vancouver, BC V6T 1Z4 Canada
kathleen.hall@ubc.ca

Abstract
This paper introduces the ongoing project of digitizing and phonologically transcribing the The Canadian Dictionary
of ASL (Bailey and Dolby, 2002) to be used as a language resource. We describe the contents of the dictionary
and the procedure used for creating the transcribed version, using the Sign Language Phonetic Annotator-Analyzer
software (Hall et al., 2022). We also outline the benefits of creating a resource with such a detailed representation

of the formational structure of signs.

Keywords: dictionary, phonological transcription, American Sign Language, Canada

1. Introduction

In this paper, we introduce an ongoing project to
digitize and phonologically transcribe The Cana-
dian Dictionary of ASL' (Bailey and Dolby 2002;
henceforth CD-ASL), currently available in print
only, as a language resource for phonological anal-
ysis. As Morgan (2022) says, “a digitized record
of the formational content of signs that is easy
to query on demand” is necessary for doing fine-
grained, careful phonological analysis of sign lan-
guages (p. 99). Such arecord facilitates, for exam-
ple, the finding of minimal pairs, the understand-
ing of the lexical frequency of different phonologi-
cal parameters, the ability to analyse phonotactic
restrictions, and more generally, the synthesis of
phonetic and phonological information in a practi-
cal way. Digital records of the form of signs are
also helpful for non-researchers, e.g., teachers or
learners of a sign language who want to be able to
look up a sign based on its formational character-
istics rather than its gloss into a relevant spoken
language. It is in this context that we have under-
taken a detailed transcription of the CD-ASL.

1.1. Motivations

The widespread availability of digital tools allows
for the creation of sign-language resources on a
scale and with functionality that was impossible
in previous years. However, much research ef-
fort has been invested in creating analog sign-
language resources such as the dictionary we are
using, and one of our aims is to help preserve

TASL here is American Sign Language, the name
of the sign language used in most parts of English-
speaking Canada; see §2.

the valuable information in such documents for fu-
ture use. Future use, however, requires that re-
sources be readily available and easy to interact
with. The CD-ASL is similar to most paper-based
sign-language dictionaries in that it is organized
by its English glosses rather than by any sign-
language-specific feature such as phonological pa-
rameters. Thus, the user interested in signs that
share a specific phonological trait (e.g., a specific
handshape) is faced with a daunting task of man-
ually sifting through the entire dictionary in search
of such signs. Part of our motivation, then, is to
create a freely available digital resource that will
allow for phonologically based searching.

Most lexical databases of a sign language do
provide some phonological information. As tech-
nology and research have progressed, however,
more and more such information can be added,
and we also see ourselves as contributing to the
next stage of this endeavour. For example, the
ASL-LEX database (Sehyr et al. 2021, Casselli
et al. 2021), while extraordinarily useful in the
breadth of information it covers, collapses certain
phonological categories in ways that make answer-
ing some basic questions difficult. For instance,
there is no way to easily search for a sign based
on the number of syllables it contains. While signs
are coded for repetition, which may be repetition of
either a major or a minor movement in a sign, only
the former would be thought to license multiple syl-
lables. As another example, ‘contact’ in ASL-LEX
is given only binary status, with no ability to search
for what elements are in contact, when the contact
happens, or what type of contact it is (e.g. continu-
ous or holding, cf. Friedman 1976). ISL-LEX (Mor-
gan et al., 2022b), on the other hand, which was
built after the initial version of ASL-LEX, does in-
clude explicit information about syllables and con-
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tact types. However, it still combines other cate-
gories, such as having a generic ‘combination’ cat-
egory for orientation movement types instead of
a compositional option to search by different spe-
cific combinations. We applaud all of these efforts
to document phonological information and aim to
build on the knowledge and experience of these
projects, adding more detail as it becomes clear
which information would be useful. The more lan-
guages that have documentation of phonological
structure, the better our descriptions and theories
of sign language phonology can be.

To these ends, we describe our ongoing project
to provide a detailed phonological transcription of
the signs from the CD-ASL, using software de-
signed to facilitate such transcription of any sign
language, Sign Language Phonetic Annotator-
Analyzer software (Hall et al., 2022). The follow-
ing sections describe the general contents of the
dictionary (§2), the software and transcription pro-
cedures (§3), and the current state of the project
and our initial examples of uses for the end product
(§4). Before we do that, however, we believe it is
important to be explicit about our own positionality
with respect to this project.

1.2. Positionality

First, it isimportant to be transparent about the fact
that all of the co-authors on this paper are hearing,
and none of us is a fluent ASL signer. Most of us
have taken a number of ASL courses, all of which
have been taught by Deaf signers who also empha-
size awareness of Deaf culture and communities.

We recognize that the lack of Deaf signers as
primary researchers on the project is a significant
shortcoming for both practical and social reasons.
At the same time, we think that it is important for re-
searchers at spoken-language-biased institutions,
such as the University of British Columbia, where
we are based, not to ignore sign languages sim-
ply because our systems are not yet designed to
fully support d/Deaf students and colleagues (and
we are independently involved in trying to change
that). We have made efforts to collaborate at ev-
ery stage of this project with Deaf signers to ensure
that the project is one that is generally supported
by the Deaf community and that we are transcrib-
ing signs accurately.

This overall situation is indeed one of the rea-
sons we chose to transcribe the CD-ASL as a re-
source: it is seen as a valuable tool for Canadian
signers, and much of the work that needs to be
done to make it phonologically searchable is the
‘grunt work’ of simply taking the pre-existing tex-
tual descriptions and translating them into phono-
logical transcriptions, a task that can be done by
anyone who is trained, and for which we do not

have to overly burden community members with
laborious tasks.

At the same time, there are many cases in which
the dictionary text is underspecified and/or mis-
matches the image provided (e.g. as in Figure 1
for ADDRESS, discussed in §2). In these cases,
we consult with a Deaf signer to clarify the correct
baseline transcription to be used.

Here, we would like to directly acknowledge in
the text of this paper the contributions of Deaf
scholars and community members who have been
directly consulted on this project, listed here in al-
phabetical order: Vincent Chauvet, Joanne Cripps,
Leanne Gallant, Julie Hochgesang, Nigel Howard,
Jonathan MacDonald, Gary Malkowski, and Erin
Wilkinson. We owe them a debt of gratitude for
helping us in our endeavours. Having said this, we
also take full responsibility for any errors in our rep-
resentations.

2. The Canadian Dictionary of ASL

The CD-ASL (Bailey and Dolby, 2002) was pub-
lished in 2002 by the Canadian Cultural Society of
the Deaf and University of Alberta Press to docu-
ment the signs of American Sign Language (ASL)
as they are used in Canada. Work started on the
dictionary in 1982, and the form of signs in the
dictionary therefore reflects ASL as it would have
been most commonly used in the last two decades
of the 20th century. As explained in the preface,
“the Dictionary pays special attention to subjects
of particular interest to Deaf Canadians—bilingual
and bicultural education, residential schools, ice
hockey and other winter sports, parliamentary gov-
ernment, weather and geographic features, his-
torical events and geographic place names” (p.
Xl). The CD-ASL also has a special focus on
the regional variation of signs across Canada,
with variants from the Pacific (British Columbia),
Prairie (Alberta, Saskatchewan, and Manitoba),
Central (Ontario and Québec), and Atlantic (New
Brunswick, Nova Scotia, Prince Edward Island,
and Newfoundland and Labrador) regions each be-
ing tagged in individual regional-specific entries.?
Hence, this dictionary is unique in its documenta-
tion of Canadian ASL and allows research to be
done looking at lexical form variation (cf. Stamp
et al. 2014; Bayley et al. 2015; Palfreyman 2015;
and Siu 2016, among others, for studies on varia-
tion in sign languages).

The CD-ASL contains over 8700 entries (see
e.g., Figures 1 and 3), each typically given a defi-
nition in English, an English sample sentence, an
English prose explanation of the formational struc-
ture of the sign, and a line drawing depicting the

2The three northern territories of Canada are notice-
ably absent from this tagging.
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ASL sign. Some of these entries, however, are
homophones rather than unique forms (e.g. AC-
CESS and ADMISSION are separate entries in the
dictionary, but each is accompanied with the same
description and image). Additionally, some of the
entries are represented simply as fingerspelled
words with no separate ASL form (e.g. AGENDA).

Within the description of the form, each hand-
shape is given an absolute categorical label,
aligned with the set of 114 handshapes identified
by the editors of the dictionary as occurring in
Canadian ASL. All other phonological information
is described in prose and varies in terms of the con-
sistency of information given with respect to palm
orientation, location, movement, and non-manual
characteristics. Occasionally, there is a mismatch
between the prose description and the line draw-
ing provided. An example entry with such a mis-
match is shown in Figure 1, for the sign ADDRESS.
Note that the text suggests a repeated straight up-
ward movement, while the arrows in the image sug-
gest that the movement is instead a circular action.
While our internal convention is to prioritize the text
over the image in such cases with our initial coding,
we are also subsequently checking all such cases
with a Deaf signer to resolve the conflict.

The 840-page CD-ASL is currently pub-
lished only in a hardcover format (https:
//ualbertapress.ca/9780888643001/
the-canadian-dictionary-of-asl/). As
with all such paper-based resources, then, search-
ing is difficult and entirely dependent on the
organization of the written text. In this case, the
entries are organized alphabetically by English
gloss, such that searching by any phonological
parameter (handshape, location, etc.) is entirely
impossible. One of our goals in this work was
to create a digitally accessible, phonologically
organized resource that can be searched in this
way. Details of our procedure for creating this
resource are described in the next section.

address: n. postal designation or place of
residence. She put her new address on the
envelope.

SIGN #1: Horizontal ‘EXTENDED A’ hands,
palms toward the body, are simultaneously
brushed upward twice against the chest.

Figure 1: An example of an entry in the CD-ASL,
for the sign ADDRESS.

3. Transcription Procedure

To create the digital version of the form-based
entries, we are using the Sign Language Pho-

netic Annotator/Analyzer
Hall et al. 2022). This software is a free and
open-source  tool (https://github.com/
PhonologicalCorpusTools/SLPAA/) de-
signed to facilitate detailed form-based transcrip-
tion of signs. Transcriptions are done through
menus of pre-defined options. Approaching tran-
scription this way has several advantages. First,
text-based descriptions are more human-readable
than many notation systems (see discussion in
Hochgesang 2014), allowing transcribers to be
trained more quickly and allowing non-trained
users of the resource to more readily understand
the transcriptions. Second, providing the options
as pre-existing menu items preserves the utility
of standardization of transcription and ease of
computer-based searches for particular charac-
teristics. An example of some of the options for
coding path movements in SLP-AA is shown in
Figure 2. Note that there are still places for users
to enter their own text if needed—for example, if
the shape of the movement is something other
than one of the pre-specified ones. Currently,
the software only presents these menu choices
in English; this is a potential drawback for more
widespread usage.

software (SLP-AA;

Movement type
Perceptual shape

Shape
Straight
Arc
Circle
Zigzag
Loop (travelling circles)
Other  (specify: )

Axis direction
H1 and H2 move toward each other
H1 and H2 move away from each other
Absolute

Horizontal

Ipsilateral

Contralateral
Vertical
Sagittal

Figure 2: A screenshot of part of the movement
selection options in the SLP-AA software.

This software is still under simultaneous devel-
opment with the transcription of the CD-ASL, by
an overlapping but not identical set of researchers,
and the two endeavours are mutually beneficial.
Using the software to transcribe actual forms al-
lows us to improve the coverage and user interface
of the software, and the existence of the software
allows us to create standardized, searchable tran-
scriptions of the entries in the CD-ASL.
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3.1.

Due to the simultaneous development of the SLP-
AA software, we are approaching the transcrip-
tion of the CD-ASL in stages. As a first pass,
we are coding a representative sample of signs
from the dictionary rather than immediately work-
ing on coding all of the entries. To provide us a
concrete guideline for selection, we chose to se-
lect all entries from the CD-ASL that share a gloss
with the entries in the ASL-LEX database (Casselli
et al., 2021). This also allows for direct compar-
isons both between the actual signs (e.g., Amer-
ican vs. Canadian dialect differences) and be-
tween the phonological transcriptions of signs that
happen to have similar forms. Note that we just
use the glosses in ASL-LEX to select glosses from
the CD-ASL; we do not filter signs by whether the
actual forms are similar across the two sources.
For example, if there are two separate entries in
the CD-ASL for related but not-identical concepts
(e.g., ADULT vs. ADULTS), we select for inclu-
sion only the one for which there is an exact gloss
match in ASL-LEX (in this case, ADULT). This is de-
spite the fact that the form for ADULT in ASL-LEX
happens to be more similar to the form for ADULTS
in the CD-ASL.

Once a gloss has been selected, all of the var-
ious entries for that gloss from the CD-ASL are
transcribed, such that in many cases, a single
gloss from ASL-LEX results in multiple entries in
our resource (e.g., PASS has five unique forms
in the CD-ASL, representing six different semantic
senses of the English word ‘pass’). At the same
time, not every gloss that occurs in ASL-LEX oc-
curs in the CD-ASL; such glosses are skipped
(e.g., ACCENT occurs in ASL-LEX but there is no
entry with this gloss in the CD-ASL). Occasion-
ally, a gloss from ASL-LEX occurs under a differ-
ent gloss in the CD-ASL, and such entries are also
transcribed (e.g., the ASL-LEX gloss ACCOUN-
TANT is listed as the ‘same sign’ under the CD-
ASL entry ACCOUNTING, and so ACCOUNTANT
is included in our transcriptions).

Selection of Entries

3.2. Parameters and Other Phonological
Content

When we began transcribing entries from the CD-
ASL in January of 2023, the SLP-AA software
supported coding the sign type of signs along
with handshape, movement, and location specifi-
cations. All of our signs are coded for these param-
eters. In the fall of 2023, with developments in the
SLP-AA software, we were able to start adding in
what we refer to as relation elements, such as con-
tact specifications and relative orientation; about
half of our signs currently are coded for relation.
Absolute orientation and non-manual parameters

are still being implemented in the software and
have not been coded for any signs. Further ex-
planation of how these parameters are coded fol-
lows immediately below; more complete descrip-
tions are provided in Hall et al. (2022), and full doc-
umentation of the software and its choices for tran-
scription is also under development.

3.2.1. Sign Type

The sign type choices in SLP-AA roughly follow
those laid out by Battison (1978). Rather than as-
signing explicit numbers to each type, however,
the elements that determine a sign’s type are
coded separately, again to allow for easier search-
ing of specific characteristics. For example, the
options in the sign type module allow a user to
specify that a sign is one- or two-handed, and if
it is two-handed, whether both hands move or only
one, and if both hands move, whether they move
similarly, etc. Transcribers base their selections
on the text of the dictionary entry.

3.2.2. Timing

One of the ways in which the SLP-AA transcrip-
tions are more detailed than most other such no-
tations is that they support full detail for indicating
the relative timing of each parameter, even in a
static resource such as a dictionary (as compared
to a real-time resource like a corpus). For exam-
ple, as mentioned above, ASL-LEX codes whether
or not there is contact in a sign, but does not indi-
cate when such a contact occurs during the sign
or which elements make contact. In ISL-LEX (Mor-
gan et al. 2022a, Morgan et al. 2022b), signs are
explicitly allowed to have two path movements or
two locations, each individually specified. To make
timing even more flexible, in SLP-AA, each sign is
assigned an abstract ‘x-slot’ structure, such that
specific elements like contact, location, or move-
ment, can be associated with points or intervals at
any relevant time during the sign. For the CD-ASL
coding, we define x-slots essentially as syllables,
with each iteration of the largest movement within
a sign defining a syllable and hence an x-slot (see
e.g. Stack 1988; Wilbur 2011). A simple mono-
syllabic sign, then, will have a handshape and lo-
cation defined at the beginning of an x-slot, then
have a movement that lasts the entire x-slot, and a
new handshape and/or location defined at the end
of the x-slot, depending on what has changed. If
the movement changes only the handshape, the
location is assigned to have the same duration as
the whole x-slot, and vice versa. For example, Fig-
ure 3 shows the dictionary entry for the monosyl-
labic sign RED, and Figure 4 shows the resulting
summary of the transcription in SLP-AA. The sign
type is shown across the top, spanning one x-slot,
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and modules for movement, location, relation, and
hand configuration are assigned to their relative
timing. In this case, the movement and location
each last for the entire x-slot duration, the hand
configuration is different at the beginning and end,
and a relation module is used only at the begin-
ning.

red: adj. the colour of blood. He wore a red
shirt and white shorts for Canada Day.

SIGN: Vertical right ‘ONE” hand is held with
palm facing the body and tip of forefinger
touching the lower lip. As the hand is then
drawn very firmly forward at a downward
angle, the forefinger crooks to form an ‘X’
shape.

Figure 3: An example of an entry in the CD-ASL,
for the sign RED.

3.2.3. Handshape

As mentioned in §2, the CD-ASL provides a cate-
gorical label for each handshape used in the dictio-
nary, along with images of each canonical version
of the handshape and descriptions of their con-
ventionalized labels such as ‘clawed’ or ‘spread.’
Each of the handshapes that is included in the CD-
ASL has been pre-transcribed as a ‘pre-defined’
handshape within the SLP-AA software, using the
Johnson and Liddell (2011a,b, 2012) transcription
system, modified as described in Tkachman et al.
(2016). Thus, for each sign being transcribed, the
transcriber only has to select the relevant hand-
shape name and associate it to the appropriate
timepoints in the sign. For example, for the sign
RED, shown in Figure 3, the transcriber would se-
lect “ONE” and associate this with the beginning
of the x-slot. This associates both the phonologi-
cal handshape label and the detailed phonetic tran-
scription of this hand configuration with this sign;
both are shown in the tooltip obtained by hover-
ing over the first hand configuration element, as
shown in Figure 4. A similar process is used to
transcribe the “X” handshape at the end of the
sign.

3.2.4. Movement

Movements in the text of the CD-ASL are de-
scribed in prose. While there are some terms that
are used repeatedly (such as “move alternately,”
or “brought together,” or “circle”), there is much
variability in the specific wording. One of the ad-
vantages of using the SLP-AA software to tran-
scribe the dictionary is to standardize these de-
scriptions, such that users can easily search for

or calculate the frequency of particular types of
movement. Transcribers ‘translate’ the prose de-
scriptions into the pre-set parameter values within
the software. These parameter values are largely
derived from classic phonological descriptions of
movement, focusing on shapes / path movements,
joint-specific internal movements, and what is of-
ten referred to as ‘manner’ of movement, e.g. di-
rectionality, repetition, and other specific charac-
teristics like increased force or speed (e.g. dis-
cussion in Brentari 1998; van der Kooij 2002; San-
dler and Lillo-Martin 2006; Sandler 2011; Morgan
2022).

For example, in RED, there are two simultane-
ous movements, one that would typically be de-
scribed as a ‘path’ movement, where the hand
moves “very firmly” in a straight line forward and
away from the signer, and one that involves the
index finger “crook™ing (called ‘hooking’ in SLP-
AA). Each of these movements is fully transcribed
with a separate instance of a movement module
in SLP-AA, and associated with the entire x-slot
(these are shown as H1.Mov1 and H1.Mov2 in Fig-
ure 4). One convention we use here is that if the
text entry does not specify whether the movement
is a path movement or a joint-specific / local move-
ment, we default to the path interpretation, and this
is another type of information that we consult with
a Deaf signer about.

Sometimes, instead of using explanatory notes,
the dictionary provides a special symbol to mark
a key aspect of a sign’s production. One exam-
ple is directional verbs, i.e., verbs that may move
in different positions in signing space, depending
on where the positions of people in the commu-
nicative context are. Such signs are marked with
a special symbol that indicates their nature as di-
rectional. Our internal convention is that our basic
transcription follows the baseline information in the
text about the direction of the sign’s movement, but
we also mark such signs as directional verbs in the
coding, such that they could all be found in a sub-
sequent search if desired.

3.2.5. Location

As with movements, locations are described in
prose in the dictionary and are translated into stan-
dardized SLP-AA terminology. In the software,
there are two basic choices for location types: sign-
ing space locations, designated by locations on the
horizontal, vertical, and sagittal axes, and body lo-
cations. The choices for body locations are es-
sentially a super-set of the locations in Brentari
(1998); Hanke (2004); Johnson and Liddell (2021)
and Morgan (2022).

In RED (Figure 3), for example, “the lower lip”
is translated into the SLP-AA specification of be-
ing a body location of the ‘lower lip,” which is hi-
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| Sign Type: 1h (moves)

x1

Hand 1

H1.Mov1

H1.Mov2

H1.Loc1

l‘w‘ [O=ii] [frd@/bm-2--] [1EEE] [<2FFF] [=3FFF] [=4FFF]

|
|
|
|
|

Figure 4: The SLP-AA summary window for the sign RED. Each element in the summary can be clicked
to show the complete coding; hovering over an element gives a preview. Here, the first hand configuration
(for the “ONE” handshape) is selected, and a preview of the full phonetic transcription is shown.

erarchically nested under ‘Head / Face / Mouth /
Lips.” A user could use any of these higher-level
categories instead; to code the CD-ASL, we use
the categories that most closely align to the text
description. The details of contact are specified
as part of the relation module, as described in the
next section.

As with other parameters, we have certain con-
ventions that allow us to code otherwise under-
specified signs. For example, most one-handed
signs, especially those in neutral space, are not ac-
tively specified in the text as occurring on one side
of the body or the other. We default to assuming
that one-handed signs are on the ipsilateral side
of the body, but if there is any reason to suspect
that a particular sign is not so located (e.g., the ac-
companying image shows the hand in a different
location), we would ask a Deaf signer consultant
about the typical production.

3.2.6. Relation

The final type of information currently being in-
cluded in the transcribed CD-ASL is what we call
‘relation’ information.® This includes all types of
relations between two elements, such as the rela-
tion between the two hands or between one or both
hands and a particular location or movement. This
can be used to code spatial relations (e.g., Hand
1 is above and in front of Hand 2), presence or ab-
sence of contact (e.g., Hand 1 contacts Hand 2),
type of contact (e.g., the contact between Hand 1
and Hand 2 is ‘holding’ or ‘continuous, cf. Fried-
man 1976), distance (e.g., the hands are close to
or far from a location), and the hand part that is

3Absolute orientation, which we take to be all state-
ments of “palm facing” directions in the dictionary, e.g.
“palm facing the body” in the entry for RED in Figure 3,
can also be coded with SLP-AA, but we have not yet
invested resources into doing this coding, instead priori-
tizing relative orientation.

relevant to a movement or location (e.g., the ulnar
side of Hand 1 leads a movement or makes con-
tact with a location; cf. relative orientation as dis-
cussed in Crasborn and van der Kooij 1997).

In RED (Figure 3), the fact that it is the “tip of the
forefinger” that touches the lower lip at the begin-
ning of the sign is coded as a relation module that
is specifically linked to the location module. This
relation module marks that Hand 1—and specifi-
cally, the tip of the index finger—has contact with
this lower lip location at the beginning of the x-slot.
As with other parameters, any ambiguities or un-
derspecifications are checked with a Deaf signer.

3.3. Updating Dictionary Entries

As noted above, we are in the process of verify-
ing underspecified and conflicting entries with a
Deaf signer to make sure our entries are as accu-
rate as possible. Our consultant points out multi-
ple kinds of issues with the current dictionary en-
tries, including both entirely out-of-use signs and
individual elements of the production of signs that
do not match current usage. We are currently only
modifying the CD-ASL entries where they were un-
derspecified or self-conflicting, rather than actively
changing entries to be more modern. Digitizing
older sign language dictionaries at the level of pho-
netic and phonological detail like ours enables re-
searchers to ask meaningful questions about lan-
guage change and language evolution, e.g., how
more gestural elements of sign-language commu-
nication become grammaticalized, reduced, etc.
(cf. Shaffer and Janzen 2000; Janzen and Shaf-
fer 2002). At the same time, we are keeping track
of all such additional information provided by our
consultant, so that we can cross-check with other
Deaf signers and potentially provide modern equiv-
alents to dictionary entries in the future.
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4. Findings and Future Studies

As of the time of submission, approximately 2000
signs from the CD-ASL have been transcribed,
with transcribers currently working on the letters P
and R. These are all unique forms; signs that have
separate entries but are repeated forms from ear-
lier entries have not yet been included, as these
will eventually be single entries tagged with mul-
tiple glosses. However, the ~2000 signs do in-
clude multiple different forms for the same gloss
(e.g., including both the generic and the Atlantic
Canadian forms of the sign ADDRESS ‘postal des-
ignation’ as well as the different ASL forms used
for ADDRESS ‘postal designation’ vs. ADDRESS
‘lecture’). Transcribed signs also exclude labelled
compound signs (e.g., ABNORMAL, described as
“ASL concept NOT - NORMAL’) but include finger-
spelled signs (approx. 300 signs).

When complete, the transcribed version of the
dictionary will be made publicly available as a bi-
nary .slpaa file, which is the specific file type that
can be read and interpreted by the SLP-AA soft-
ware. We are also actively developing the “Analy-
sis” component of the software to allow for ease of
searching and comparison of signs. We are hop-
ing to also distribute a less software-dependent
version of the transcribed signs, e.g. as a .csv, a
Jjson, or a .sql file, depending on the complexity of
the data structures involved.

This work in progress has allowed us to have
useful insights into phonological description and
structure, even before we have a fully complete
dictionary resource. For example, we have been
forced to confront the difficulty of handling circu-
lar direction terms in a way that is consistent and
searchable. The CD-ASL assumes aright-handed
signer, but we would like our resource to be us-
able by and relatable to all signers, regardless
of hand dominance. Furthermore, the dictionary
is inconsistent in how it describes circular direc-
tions even for a right-handed signer, sometimes
adopting the perspective of the signer and some-
times the addressee, and sometimes not speci-
fying the perspective. To create a consistent, in-
clusive, and searchable record of these signs, we
have adapted the coding conventions away from
terms like “clockwise” and “counter-clockwise” and
instead use terms like “ipsilateral from the top of
the circle” (where the “top” is conventionally de-
fined to be the highest point for circles on the ver-
tical and sagittal planes and the most distal point
for circles on the horizontal plane). We hope that
an update like this might be extended to other de-
scriptive projects to facilitate cross-resource com-
parison as well.

Another future direction that this project has al-
ready suggested is the investigation of the fore-

arm in lexical specification. There have been a
number of signs in the CD-ASL whose descrip-
tions make it clear that the position of the fore-
arm was deemed important to the writers of the
dictionary. The potential relevance of the forearm
has been noted since at least Stokoe et al. (1965),
where certain signs were said to involve a “promi-
nent” use of the forearm of the dominant hand,
e.g. inthe sign DAY (https://www.handspeak.
com/word/537/; Lapiak 1995). Stokoe’s nota-
tion convention was to include a checkmark for
such signs, and Johnson and Liddell (2012) adopt
the same convention in their phonetic notation sys-
tem. However, there are a wide variety of actual
cases in which forearms may be relevant. Com-
pare, for example, DAY to the sign for CASTLE
as described in the dictionary, which is similar to
the version marked ‘regional variation’ at https:
//www.handspeak.com/word/1723/ (Lapiak,
1995). This sign involves both forearms resting
horizontally one on top of the other at the begin-
ning of the sign and each being raised vertically
at the end of the sign. Another potential use for
the forearm is as in BARK (as in ‘tree bark’) and
BRIDGE, where the forearm of the non-dominant
hand is used as an iconic location for the domi-
nant hand to act upon. Only by having a detailed
phonological transcription of signs in a language—
specifically, detailed enough to include information
about forearm position and movement—can we
hope to catalogue, classify, and eventually fully un-
derstand the phonological role of the forearm as an
articulator in sign languages.

There are many such specific examples that
arise as we code, even when we limit ourselves
to the glosses that also occur in ASL-LEX. While
we recognize that many early efforts to create
databases for sign languages have focused for
good reason on the most canonical types of signs,
we think that the field is in a position to dive more
deeply into these less prototypical types of signs
and include them in our phonological research.

5. Conclusion

We see digitizing older sign-language resources
such as the CD-ASL as a way to acknowledge
past signers and past research, and as a means
of beginning to address more detailed and specific
questions of diachronic change and synchronic
phonological structure. We believe that transcrib-
ing signs on a more detailed level than has pre-
viously been possible will provide us with much
greater insight into the phonological systems in
sign languages. Having a digitized and freely avail-
able resource of this nature should also be help-
ful to Canadian ASL users who are trying to in-
teract directly with the formational structure of the
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language and not through its English translations.
We hope that our experience with digitizing the CD-
ASL will also inspire other researchers to digitize
dictionaries of other sign languages, regardless of
their publication date, and to create both lexical
and corpus resources that include a fine-grained
level of phonological detail.
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Abstract
Sign language (SL) is a mode of communication that, in most cases, relies on visual perception exclusively and
uses the visual-gestural modality. The advent of machine learning techniques has expanded the range of potential
applications, not only in industry but also in addressing societal needs. Previous research has already demonstrated
encouraging outcomes in developing sign language recognition systems that are both quite accurate and resilient.
Nevertheless, the effectiveness and use of algorithms are impacted not only by their accessibility but also, at times to
a greater extent, by the presence of substantial quantities of pertinent data. At the start of the local sign language
corpus collection in 2015, there was a notable deficit of local Kazakh-Russian Sign Language data available for
computer vision and machine-learning tasks. There were already corpora of another lexically close language,
Russian Sign Language, but they were aimed at and tailored for lingustic research. We initiated the procedure by
collecting data appropriate for machine-learning purposes. The subsets have been incorporated into the principal
corpus and will be subject to future enhancements and refinements. This paper provides an overview of the collected

components of the Kazakh-Russian Sign Language Corpus and the resulting outcomes derived from them.

Keywords: sign language, dataset collection, overview
1. Introduction

The emergence of machine learning approaches
and techniques has broadened the scope of pos-
sible applications, not just in business or industry
but also in meeting social demands. Previous re-
search undertaken before 2015 has already shown
promising results in the development of sign lan-
guage recognition systems that are both highly ac-
curate and durable. However, the efficiency and
use of algorithms are influenced not only by their
availability but also, often to a greater extent, by the
existence of significant amounts of relevant data.

The government of Kazakhstan offers each deaf
individual 60 hours per year of free sign language
interpreting service support. These hours can be
spent on medical, legal, or other communication re-
quirements. The scarcity of interpreters per capita
and the lack of remunerated interpreting services
raise the necessity of supplementary alternative in-
struments for sign language recognition, translation
and generation, which require datasets to train on.
Regrettably, in 2015 there was not any dataset on lo-
cal Kazakh-Russian Sign Language (K-RSL); there
were corpora of similar Russian Sign Language
(RSL) from Novosibirsk and Saint-Petersburg, but
they were focused on linguistic research.

Thus, we decided to start collecting relevant data
of local K-RSL suitable for machine learning appli-
cations. The sign language used by the deaf sign-
ers’ community in Kazakhstan is not indigenous
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and is closely related to RSL as well as other sign
language within the CIS. All of these sign languages
have their roots in the Soviet Union’s centralized
language policy, which established the signing sys-
tem. While no formal study comparing K-RSL with
RSL was conducted, the expertise of interpreters,
and our observations indicate a significant similarity
in vocabulary and frequent mutual intelligibility.

Nevertheless, the deaf community in Kazakhstan
has already assimilated distinctive and unique
themes into the local sign language, such as native
musical instruments, regional delicacies, famous
sites, significant figures, traditional beliefs, and
more. Note that although RSL and K-RSL share
many lexical similarities, it is uncertain if this ex-
tends to other linguistic aspects of both languages.

This paper provides a concise overview of the
collected components of the Kazakh-Russian Sign
Language Corpus aiming at applying machine
learning approaches, and the resulting outcomes
derived from them within the last decade.

The following section provides brief overview on
related datasets existed in 2015. Section 3 offers a
summary of subsets present in the current corpus,
focused on several linguistic properties often seen
in most sign languages, such as phonological mini-
mum pairings, sign variability, and sign polysemy.
Section 4 explores potential alternative methods for
acquiring new types of sign language datasets.
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Table 1: Hand Image Datasets (VS: Vocabulary Size, NP: Number of Participants)

Dataset Volume VS NP Resolution

NUS-I (Kumar et al., 2010) 480 10 24 160x120

NUS-II (Pisharady et al., 2013) 2000+750 10 40 160x120, 320x240
Polish Sign Language - | (Kawulok et al., 2013) 899 25 12 174x131 to 640x480
Polish Sign Language - II 85 13 3 4672x3104

Polish Sign Language - llI 574 32 18 3264x4928

ASL Finger Spelling Dataset (Pugeault and Bowden, 2011) 48,000 24 5+4 128x128

J. Triesch | (Triesch and Von Der Malsburg, 1996) 720 10 24 128x128 (gray, 8 bit)
J. Triesch Il (Triesch and Von Der Malsburg, 2001) 1000 12 19 128x128 (color)

MU ASL dataset (Barczak et al., 2011) 2524 36 5 high-res

Table 2: Video Datasets (VS: Vocabulary Size, NP: Number of Participants)

Dataset Volume VS NP  Resolution
ASLLVD (Neidle et al., 2012) 9,800 tokens 3,300 1-6  640x480, 60fps
1600x1200, 30fps
BosphorusSign22k (Ozdemir et al., 2020) 22,542 (19h) 744 6 1920x1080, 30fps
CSL-1 (Huang et al., 2018) 25,000 (100h) 178 50 1920x1080, 25 fps
RWTH-PHOENIX-Weather (Forster et al., 2012) 21,822 (1,980 sent.) 911 7 210x260, 25 fps
Purdue RVL-SLLL (Martinez et al., 2002) 2,576 39 14 640x480
DEVISIGN (Chai et al., 2014) 24,000(21.87h) 2000 30 640x480
SIGNUM (Von Agris et al., 2008) 33,210 (55.3h) 450,780 25 776x578, 30 fps
RWTH-BOSTON (Athitsos et al., 2008) 843 406 5 324x242, 30 fps
DGS - KORPUS (Nishio et al., 2010) 50h (public) 530 330 640x360, 50 fps

2. Related Work

The task of finding a database that is optimal for
machine learning and creating a model is specific
and individual, for each particular task posed by
the researcher. At the beginning of the study, we
encountered several dataset containing images of
the hands. We mostly did not take into account
datasets designed for Kinect or Key-glove like de-
vices, as they do not fulfill the necessary criteria
of our goal, which is the ability of the system to
operate with K-RSL without the need for any ex-
tra costly technological equipment. After reviewing
which ML algorithms to test, we decided to revise
the following image (see Table 1) and video (see
Table 2) datasets available to figure out the best
practices of dataset collection taking place at that
moment (before 2015 and in 2020).

3. Collected Datasets

This section provides a brief account of the progres-
sive growth of the K-RSL corpus, encompassing all
datasets gathered for it from 2015 until the present
day.

At the outset of our research, none of the sign
language datasets mentioned in the literature fol-
lowed any strict established requirements for rec-
ognizing continuous sign language that is not de-
pendent on a signer. In contrast to voice recog-
nition, there was no pre-existing standard, base-
line, or reference point. Therefore, we have tried
to collect a dataset that is anticipated to assist re-

search efforts for scholars who exhibit interest in
the sign language recognition area. We believe
that this dataset has the potential to become a
benchmark for researchers who are studying ad-
vanced sign language recognition algorithms. It
is signer-independent and suitable for continuous
recognition. Furthermore, it includes cases of sign
variability, polysemy (where the meaning of a sign
is determined by mouthings), and phonological min-
imal pairs, which are very similar in performance.
These factors make the task of automatic recogni-
tion more challenging and increase the complexity
of the problem.

It is noteworthy that the deaf and hard-of-hearing
community in Kazakhstan exhibits a high degree
of insularity. Regrettably, according to Kazakhstan
Deaf Society authorities and interpreters’ experi-
ence, these issues arose due to instances of fraud-
ulent activities perpetrated against individuals, in-
cluding internet fraud, property crimes, violations
of contracts, and lower wages, along with several
instances of being involved in sects. All these neg-
ative experiences were deposited in memory and
deeply ingrained in the local deaf culture, as was
evident in how they viewed all outsiders. This led
to the situation where interpreters and the state or
non-profit deaf organizations became the primary
conduits for establishing first communications and
collaborations.

At the moment when our research began, there
was a dominance of descriptors and feature extrac-
tion approaches in computer vision, and therefore,
we also relied on the well-known ones and could
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cooperate with four sign language interpreters only
for our first attempt.

One major limitation of the sign language recog-
nition field, when we started our research, was that
all trustworthy and reputable video data sources
consisted of video data, which was entirely created
in a controlled “laboratory” setting. In such settings,
the camera remains stationary, the background is
uniform and consistent, and the lighting conditions
are usually predetermined and unchanging. This
was the reason why we decided to collect 1/3 of
our first dataset outside the lab (Figure 2).

Based on previous linguistic and applied re-
search, as well as the increasing availability of tech-
nologies that can extract coordinates of the human
body and facial features, such as MediaPipe' (see
Figure 1) and OpenPose?, we have identified sev-
eral data types to collect for our dataset. These
technologies, developed between 2017 and 2019,
provide the opportunity to analyze and validate the
unique characteristics of sign communication in dif-
ferent emotional states, as well as for questions
or statements. It inspired us to specifically collect
sentences with grammatical sentence type mark-
ing and marking of emotions to study the role of
non-manual in recognition, collecting minimal pairs
of signs as potentially challenging for recognition
tasks. In the end, we collected quite a wide variety
of data types, which are discussed in detail below.

{ A E

Figure 1: Face landmarks with MediaPipe.

3.1. Healthcare videos (2015-2017)

A survey conducted among representatives of the
deaf community in Astana and practicing inter-
preters indicated that deaf signers primarily re-
quire accurate interpretations verified by experts for
healthcare-related circumstances. Consequently,
the initial demand from the community was to estab-
lish a comprehensive database for machine learn-
ing dedicated to the healthcare domain. All of this
involved the development, formation, and collec-
tion of a sign language database that encompasses
sentences comprising frequently employed medical
phrases and terminology.

'https://developers.google.com/mediapipe
2https://github.com/CMU-Perceptual-Computing-
Lab/openpose

Figure 2: Frames of healthcare dataset.

Interpreters who have accompanied deaf individ-
uals in medical settings have collaborated to create
a list of essential vocabulary terms. The reference
interpreter and researchers then constructed sen-
tences to ensure a balanced inclusion of signs in the
dataset. Subsequently, we recorded the reference
interpreter’'s performance of these sign sequences,
ensuring that the hands, head, and face remained
inside the camera’s field of view and were well-lit.
Afterward, we informed the other interpreters that
we needed them to replicate his sign sequences
since the output videos were for machine-learning
algorithms. They agreed to reproduce the sign
sequences in full, following the example of the ref-
erence interpreter. All 8846 videos were recorded
using the website’s tool,which stored them directly
on the server. Once the entire dataset had been
collected, interpreters were given the task of as-
sessing each other and providing annotations for
their colleagues (see Figure 3).

5] -0 J creram Jomoe | Gcrenoeanve

Figure 3: Annotation tool.

We ended up with approximately 148 unique sen-
tences, choosing the top 5 repetitions based on
performance quality. Unfortunately, basic CNNs
and the Weka tool (Thornton et al., 2013) exhibited
a relatively low recognition rate of approximately
53%. The involvement of only four interpreters,
three recording modes, and storing videos on the
website’s server at 320x240 resolution undoubtedly
impacted the output.
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3.2. Healthcare images (2015-2017)

Revising outputs and drawbacks - we decided to
extract images of the most frequent hand configu-
rations to obtain a hand image dataset for training
purposes. The idea was to extract cropped images
of handshapes (as shown in Figure 4), which will
be used for training purposes later.

Figure 4: The frame, the ROI, and the element of
the dataset.

At first, we decided to try it on a well-known
dataset. We downloaded the NCSLGR hand-
shapes videos dataset®. We took each 5th frame
from videos, which let us obtain hand configurations
of various angles. Using a simple hand detector,
we extracted configurations by saving ROls as im-
ages - we obtained the set of hand images. Then
made the same for our videos.

Next, wusing HOG (Dalal and Triggs,
2005)+KMeans (MacQueen et al., 1967) clustering,
we distributed the same configurations from
different subsets to the separate folders for further

training (see Figure 5).

1jpg 2.jpg 3irg 4jpg

A @ 5 H

8jpg 9.jpg 32jpg 33jpg

4o

167.jpg 168.pg 169.jpg 214jpg

215jpg 216,jpg 261jpg 265,jpg

268,jpg 301jpg 309,jpg 316jpg

K80

Figure 5: Obtained hand configuration images
dataset.

With this technique, we obtained 27 configura-
tions (folders) of the highest inclusion numbers.
We implemented a similar HOG+KMeans approach
later in Mukushev et al. (2020a) too.

During that period, approaches associated with
the generation of supplementary artificial data for
training purposes seemed unrealistic. So we made

Shttps://www.bu.edu/aslIrp/csigr/pages/ncsigr-
handshapes.html

Figure 6: The HOG descriptor performance.

research and tests on various detectors and de-
scriptors available at those time, such as local in-
variant descriptors: SIFT (Lowe, 1999), SURF (Bay
et al., 2006), RootSIFT (Arandjelovi¢ and Zisser-
man, 2012); Binary descriptors: ORB (Rublee et al.,
2011), BRISK (Leutenegger et al., 2011), and HOG
descriptor. Considering all the advantages and dis-
advantages of the aforementioned descriptors, we
have chosen to utilize the HOG descriptor (see
Figure 6) in conjunction with the classification al-
gorithm SVM (Boser et al., 1992) since SVM is
reported to exhibit higher performance in cases
where there is a lack of data.

Figure 7: Hand configurations from Polish, Ameri-
can and local SL dataset (merged dataset).

We also added images of the same configura-
tions from the Polish SL dataset and got the merged
dataset (see Figure 7). After that, we selected 10
configurations with 100 samples and implemented
HOG+SVM, results and rates described in Imashev
(2017).

3.3. Six emotions

The origins of theories regarding fundamental emo-
tions can be traced back to ancient Greece and
China as stated by Russell (2003). The funda-
mental idea of emotions has exerted significant
influence for over fifty years. According to the cur-
rent basic emotion theory, humans have a finite
set of emotions that are considered biologically
and psychologically “basic” (Wilson-Mendenhall
et al., 2013). These emotions exhibit regular recur-
rence of consistent patterns (Russell, 2006). Re-
searchers in Ekman et al. (2013) revealed evidence
of prevalence for six specific emotions: anger, fear,
sadness, happiness, surprise, and disgust com-
bined with contempt.

We adhered to the conventional roster of six emo-
tions, except one: five emotions (anger, fear, sad-
ness, happiness, surprise) and “sorry”.

114



We compiled a list of sentences that are seman-
tically compatible with each of the emotions, in
collaboration with K-RSL interpreters. During the
recording, the sentences were represented as se-
quences of glosses via a separate monitor in front
of them. Each interpreter performed sentences in
different order depending on the emotion. The list
of sentences is in Appendix A.

Figure 8: The six emotions in our dataset.

3.4. Phonological minimal pairs

Analogous to the existence of phonological mini-
mal pairs in spoken languages, a comparable phe-
nomenon is observed in sign languages (Sandler,
2012; Thompson et al., 2013). In sign language, a
minimal pair is a pair of signs with distinct mean-
ings that are distinguished by only one of the major
parameters, such as hand configuration, orienta-
tion, movement, or non-manual features. Minimal
pairs can pose potential problems for recognition
tasks, as they are formally similar but semantically
different.

There are precedents in the literature for building
datasets that specifically target minimal pairs for
recognition purposes. As an example, the LIBRAS-
UFOP (Cerna et al., 2021). This dataset contains
56 classes of minimal pairs of Brazilian Sign Lan-
guage. The data was collected using a Microsoft
Kinect V1 sensor, which provided comprehensive
skeleton data. The dataset was evaluated for recog-
nition using Convolutional Neural Networks (CNN)
and long short-term memory (LSTM). The highest
accuracy achieved was 74.25%.

The initial reference to phonological minimum
pairs in Kazakh-Russian Sign Language was doc-
umented in Imasheyv et al. (2020).

Here are sentences and visual representations
for phonological pairs such as RIGHT - MAY (see
Table ?? and Figure 9 upper row), and BLUE -
WEDNESDAY(v1) (see Table ?? and Figure 9 lower
row). Figure 9 also shows two variants for the con-
cept of WEDNESDAY. Note that WEDNESDAY (v1)
and WEDNESDAY(v2) are examples of lexical vari-

ability, but only one of them forms a minimal pair
with the sign BLUE. This serves as an illustrative
example of a case where one sign can be part of a
phonological minimal pair and a case of variability
simultaneously.

Figure 9: RIGHT(legal) - MAY (upper row), BLUE -
WEDNESDAY(v1) - WEDNESDAY (v2) (lower row).

Overall, we collected sentences and videos of 8
pairs and 3 triplets.

3.5. Question vs. Statement

Question signs in K-RSL, like question words in spo-
ken/written Kazakh and Russian languages, can be
employed not only in interrogative sentences, but
also in declarative sentences: “The place where
sun never sets” and “Where are you going?”. Thus,
any question sign can occur either with non-manual
question marking (eyebrow rise, sideward or back-
ward head tilt) or without it. Furthermore, question
marks are accompanied by the mouthing articula-
tion of the related word (see Figure 10).

Question signs are distinguished based on
manual aspects, but additional information is ob-
tained through mouthing, which aids recognition.
Hence, the two categories of non-manual indica-
tors, namely eyebrow and head position versus
mouthing, have distinct functions in recognition.
The former aids in distinguishing between state-
ments and questions, while the latter assists in
distinguishing between different question signs. To
test and confirm, we selected ten question words
and constructed twenty phrases: 10 questions and
10 sentences for each word for this dataset (see
sentences for WHO in Table ??).

Five interpreters were given them in written form
on a screen in front of them one by one to perform
(Imashev et al., 2020), the outputs of sign language
recognition implementation with this dataset are
described in Mukushev et al. (2020b).

115



Figure 10: A - WHEN, B - WHEN in question;
C - HOWMUCH, D - HOWMUCH in question; E
- WHERE(location), F - WHERE((location) in ques-
tion; G - HOW, H - HOW in question; | - WHICH, J
- WHICH in question; K - WHATFOR (reason), L -
WHATFOR (reason) in question; M - WHICHONE ,
N - WHICHONE in question, O - WHERE(direction);
P - WHERE(direction) in question; Q - WHO, R -
WHO in question; S - WHAT/THAT, T - WHAT/THAT
in question.

3.6. Statements, polar and content
questions

For this task, we composed 10 sequences as state-
ments, polar, and wh- questions (see Table ??).
We requested interpreters to perform all of them
with emotions (in a neutral, surprised, and angry
manner) to figure out how emotions and grammat-
ical marking interact in the non-manual features.
As mentioned before, deaf communities are quite
gated, and this was the first contact and involve-
ment of local native deaf signers in research: sev-
eral of them (half of the individuals who appeared in
this dataset) performed these sentences. Several
other deaf signers requested to evaluate and try
to recognize emotions (see Figure 11), the results
described by Kimmelman et al. (2020). Besides,
Kimmelman et al. (2020) is specifically about study-
ing how eyebrow position is affected by sentence
type marking and emotions.

3.7. K-RSL-173 (Nov. 2019-2020)

After completing a collection of several narrow-
purposed subsets, we returned to the idea of col-
lecting a dataset that contains a wide range of con-
cepts used in everyday life. Taking into account
the shortcomings of such datasets as PHOENIX
(only 9 signers, and a narrow vocabulary about
weather and regions of Germany) and DEVISIGN
(the participants’ performance looked a little un-
naturally slow, and the gaze often looked like the

Figure 11: A statement, polar and wh- questions
performed in three mood states.

performer did not know the meaning of the signs
performed) provide us hints on how to collect our
linguistically rich dataset with general, everyday
life sentences performed mainly by native signers,
fluent signers of different ages, and also filmed in
different conditions. By gradually disseminating in-
formation about our research, working closely with
interpreters for several years, and thereby increas-
ing the level of trust in us from the deaf community,
we were able to gather a sufficient number of deaf
signers who agreed to participate in data collection
and understand the importance for the community.

Initially, we composed 246 sentences, which
were revised and narrowed down to 173 sentences
with feedback from the reference interpreter, Khas-
san Israilov. For example, a sentence like ‘A doctor
told me I needed to remain in bed’ (DOCTOR TOLD
ME | NEED REMAIN BED REST REGIME), deaf
signers will probably perform in a simplified man-
ner as DOCTOR TOLD BED. We recorded these
sentences produced by 50 signers (32 deaf, 6 hard
of hearing, also 9 hearing CODA, and 3 hearing
SODA, including 7 of them are also interpreters).

For sentence translation, we recorded transla-
tions of the most proficient (recognized by inter-
preters and the community) reference interpreter,
who made his translations from written sentences,
which were composed of spoken language in the
manner closest to glosses to avoid any miscommu-
nication. Initially, participants were asked to repeat
sign after sign after him from videos. The first few
people repeated this but said that they wanted to
perform it differently. The next few people were
given complete freedom; as a result, the transla-
tions of one sentence were completely different
from each other (for example: MAY YOU PLEASE
SAY TIME vs. just performing sign TIME with ques-
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tion face). This led to the fact that we could not
collect the required number of sign inclusions for
these participants. Therefore, we decided to allow
the participants partial freedom with the opportunity
to add any clarifications that they consider neces-
sary or change the order of signs.

We detected sign variability at the start of the data
collection process mode when participants had par-
tial freedom. After reviewing videos from several
initial participants, it was evident that there would
be more variability occurrences in the dataset. It
presented the opportunity to find specific examples
of sign variability in the less explored K-RSL.

It also provided the basis for identifying the vari-
ability of signs — one of the reasons for dissatisfac-
tion and arguments like “I do not want to perform
signs the same”; there were also formulations like
“l used to perform this sign differently”. It helped us
identify a certain number of cases of sign variability.
See also Kimmelman et al. (2022) for a study on
the lexical variability of isolated signs in RSL con-
ducted in partnership with the Garage Museum of
Contemporary Art.

Regarding sign variability, consider one of the
concepts with several options that was detected
in the current dataset. Three configurations used
for LEISURE are in Figure 12 also may differ in
motions (see Figure 13).

Figure 12: Three variants of LEISURE detected in
the Dataset.

Figure 13: Different motions used for LEISURE.

It is noteworthy that all professional interpreters
and several native deaf signers performed sign
LEISURE in the same manner: the hands inter-
sected in the wrist region. The dorsal sides of the
clenched fists are in opposition to each other. This
configuration rotates in a circular motion in front of
the chest (see Figure 14). This observation may
indicate the establishment of standardization, at
least in the context of interpreting. Alternatively, it

could reveal that these participants share a com-
mon geographical or educational background that
sets them apart from other signers.

Figure 14: All interpreters performed in the same
manner.

Another interesting phenomenon we have ob-
served in the dataset is the presence of poly-
semic signs, more specifically, those that are distin-
guished by mouthing. Figure 15 displays different
lexical variants of the sign SPOUSE, organized in
columns and combined with the mouthing for WIFE
or HUSBAND, arranged in rows.

2 &

Figure 15: SPOUSE variants in handshapes and
performance.

An example of a similar phenomenon case is
described in Antonakos et al. (2015), German Sign
Language Corpus The SIGNUM contains videos
for concepts BRUDER and SCHWESTER which
utilize the same sign but differ in mouthing (see
Figure 16).

Figure 16: ‘die Geschwister’ sign used for both
meanings ‘Bruder’ (brother) and ‘Schwester’ (sister)
(Von Agris et al., 2008; Konrad et al., 2020).

We also discovered two neologisms in the
dataset one resulting from the combination of two
signs (see Figure 17 a) and the other arising from
the combination of two concepts (see Figure 17 b).

In the end, we detected 43 cases of variability
(2-6 variants each) and 2 cases of polysemy ap-
pearing in the dataset, all of the aforementioned
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Figure 17: a) Instagram, b) Facebook.

nuances make it closer to natural sign language
performance and more challenging for recognition
tasks (Mukushev et al., 2022b).

4. Unpublished Datasets and Future
Work

Since deaf individuals often communicate in public
settings, the actions of others or external circum-
stances can disturb the background view. Algo-
rithms that exhibit high accuracy rates under con-
trolled laboratory conditions may perform worse
when confronted with unpredictable real-world con-
ditions. Given the difficulty of collecting a dataset
in natural environments like parks or public places
such as shopping malls, researchers should con-
sider utilizing pre-existing video datasets with uni-
form backgrounds for keying purposes (see Figure
18). By training algorithms to achieve higher recog-
nition rates in scenarios resembling crowded loca-
tions, this approach has the potential to improve
sign recognition rates in real-world conditions.

Figure 18: Possible dataset keying.

Priorly acquired datasets can also be utilized
as the foundation for generating datasets of 3D
signing motion models. For instance, reusing our
datasets to get 3D motion files from videos could
be expanded to initiate a 3D Signing Dataset (see
Figure 19).

Incidentally, amidst the circumstances posed by
COVID-19 restrictions, A. Kydyrbekova diligently
collected online school lessons aired on National
TV, which broadcasted with sign language support

Figure 19: Data-driven signing agent (avatar).

(Mukushev et al., 2022a). Besides, a vocabulary
dataset has been collected with 4 interpreters. This
dataset contains topics like groceries, household
items, also local notions and concepts such as mu-
sical instruments, dishes, etc. These two datasets
will be available and provided at a later time.
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7. Appendix A. Sentences composed for six emotions dataset

Table 3: Sentences on 6 selected emotions

Anger Sadness
People’s anger My memories of the past are sad
There is no need to rush - you will become angry Sad face
Patience, you do not need to be angry Sad eyes

Anger - is a strong feeling

Anger prevents thinking rationally
Strong anger

Anger helps to win

When he is angry, everyone is scared
Old people are angry

They are angry for no reason

They are sad

| hear his voice is sad

There is no need to be sad
Sadness ends soon

Happy and sad

Looked away with a sad look
Why are you sad

Fear

Surprised

Fear of the dark

People struggle with their fears
Fear is hard to hide

We are afraid of many things
There is no need to be scared
Fear has big eyes

Fear helps the enemy

Very scary movie
Grandmother fears the future
She was afraid of heights

Childhood is when everything is surprising
Their knowledge is surprising

Are you surprised?

Kazakhstan’s nature is surprisingly beautiful
The boy looked surprised

Fairytales are surprising

The athletes’ records are surprising
Surprised faces

These discoveries are surprising for us
They looked into the distance in surprise

Sorry

Happy

I’'m sorry, and I'm suffering

You are always feel sorry

Being able to be sorry is important for the future
| feel sorry for him; that’'s why crying

Grandma always feels sorry for everyone
People must be kind and be able to feel sorry for each other-
otherwise, the world has no future

I'm sorry for the thrown-away books

I'm really sorry

| feel sorry for the animals

I'm sorry - | left
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Well-being is the source of happiness
Serene happiness

True happiness

I'm happy

This is the reason for happiness
Happy face

A happy man

| found a job - I'm happy

They are happy that they came
We are happy that we left
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Abstract

In sign languages, syllables are composed of syllabic components consisting of locations, movements, and
handshapes; however, the rules of combinations of these syllabic components are still unclear. Decomposing existing
syllables into syllabic components is necessary to clarify the rules. This study aims to construct an automatic syllabic
component classification system for Japanese Sign Language (JSL) using deep learning. We propose a pre-training
method using non-Japanese Sign Language data to achieve high performance in classifying syllabic components in
a situation where the number of training JSL videos is limited. We also investigate multitask learning for syllabic
component classification to share the information among the syllabic components. Experiments on the syllabic
component classification for the dominant hand show that 1) pre-training with the American Sign Language (ASL)
dataset improved classification performance for the movement and handshape components and 2) multitask learning
did not contribute to the performance improvement of syllabic component classification. We also investigated the
influence of pre-training on syllabic component classification by visualizing critical elements in videos to predict the
components.

Keywords: Japanese Sign Language, Syllabic components, Pre-training, Multitask learning

1. Introduction mance for JSL by using the shared features, such
an approach has yet to be investigated.
Locations, movements, and handshapes are the This study aims to construct an automatic syllabic

syllabic components in sign languages. Syllables  component classification system from JSL videos.
of sign language are combinations of the syllabic  Ag the first step toward this goal, this study focuses
components, and the composition rules for the  on the |ocation, movements, and handshape of the
syllables are still unclear (Hara, 2016). To ana-  gominant hand. To address the problem of limited
lyze the rules of syllable composition in Japanese  gata in JSL, we propose pre-training using non-JSL
Sign Language (JSL), Hara (2019) proposed a syl-  gatasets. We conduct training on JSL video data to
lable database with videos of syllables and their  ¢jassify syllabic components after initializing the pa-
components that are decomposed by hand. How-  yameters with those trained on a non-JSL dataset.
ever, manually decomposing a number of syllables e also introduce multitask learning in classifying
that have not yet been registered in the database  |gcation, movement, and handshape components

needed to construct a system that can automatically  components.

recognize syllabic components from JSL videos.

The syllabic component recognizer could be used The contributions of this study are summarized

not only to supplement the database but also to as follows:

further analyze JSL using the system’s prediction

results. * We constructed a system that automatically
Recently, deep learning approaches to sign lan- recognizes syllabic components of the domi-

guage processing have been shown to be effec- nant hand from JSL videos.

tive (Jiang et al., 2021; Chen et al., 2022; Zuo
et al., 2023). Deep learning methods require a
large amount of labeled training data to achieve
high performance, but unfortunately, the number
of JSL videos with labeled syllabic components is
limited. On the other hand, there is a large amount
of data of a non-Japanese Sign Language, such

+ We showed the effectiveness of using models
pre-trained on a non-JSL dataset for the move-
ment and handshape classification from JSL
with limited data.

as American Sign Language (ASL), and the two » We found that information sharing between
sign languages share features in expressing signs tasks does not necessarily improve classifica-
with manual and non-manual signals. Although we tion performance through multitask learning of
can expect the improvement of classification perfor- syllabic components in JSL.
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2. Related Work

2.1.

Nagashima et al. (2018) constructed a versatile
JSL database that can be used in the fields of lin-
guistics and engineering. The database includes
high-resolution video data capturing the actions of
two native signers with a high-resolution camera
from the front and diagonally forward from the left
and right. Additionally, it incorporates 3D motion
data obtained through optical motion capture and
depth data from distance sensors. The dataset
provides data on 4,873 glosses and ten dialogues.

Hara (2019) defined a JSL coding manual and
created a syllable database in which the syllables
were broken down into location, movement, and
handshape components. The database contains
video clips representing the JSL syllables, recorded
with a single signer. 1,086 syllable videos were
included, each consisting of approximately 300
frames. The location components are classified
into 22 categories to indicate the hand locations in
space or on the body. The handshape components
are divided into 69 categories. The location and
handshape components are assigned to a single
category label in the video. The location compo-
nent signifies the starting position of the sign, and
the handshape component indicates the shape of
the hand. We should note that this database manu-
ally defines base handshapes so that each syllable
can be represented by a single base handshape.
We use this base handshape as the handshape
component, and the changes in the handshape are
represented by the movement component.

The movement components are distinguished
into 55 ways of moving a hand, such as rightward
movement and finger joint opening, with one to
three categories assigned to each video. In addition
to the components for dominant and non-dominant
hands, more detailed decompositions of each syl-
labic component are attached, such as “contact,”
“hand orientation,” and “metacarpal orientation.”

Japanese Sign Language Dataset

2.2. Sign language processing using
machine learning and deep learning

Sign language processing using machine learning
and deep learning, such as Sign Language Recog-
nition (SLR) for predicting gloss (Jiang et al., 2021;
Zuo et al., 2023) and sign language translation for
translating signs into spoken language (Chen et al.,
2022), has been actively conducted. Skeleton
Aware Multi-modal SLR (SAM-SLR) (Jiang et al.,
2021) is a framework that integrates body, mo-
tion, and depth information in addition to video
and keypoint information. Video-Keypoint Network
(VKNet) (Zuo et al., 2023) extracts features from 64
and 32 video frames and keypoints to account for

different temporal information. VKNet consists of
two sub-networks, VKNet-64 and VKNet-32. Each
sub-network also contains video and keypoint en-
coders, and there are bidirectional lateral connec-
tions (Duan et al., 2022) to exchange information
between each encoder. S3D (Xie et al., 2018),
a 3D Convolutional Neural Network that can con-
sider spatio-temporal information, is used as the
encoder. After keypoints are estimated from the
video using a learned pose estimation model, HR-
Net (Sun et al., 2019), 64 and 32 video frames and
keypoints are input to VKNet-64 and VKNet-32, re-
spectively. The combined representation vectors
from each network are used to predict the gloss.
VKNet performed well on several datasets for SLR.

Studies on sign languages considering syllabic
components have also been conducted (Zhang
and Duh, 2023; Tavella et al., 2022; Kezar et al.,
2023; Hatano et al., 2016). To clarify the impor-
tance of the handshape component in SLR, Zhang
and Duh (2023) constructed a dataset labeled with
handshapes on an existing SLR dataset and pro-
posed a model that predicts both glosses and hand-
shapes simultaneously by extending the existing
SLR model. The proposed model performs better
than those that only use videos as input without
considering handshapes. Tavella et al. (2022) and
Kezar et al. (2023) have constructed datasets la-
beling multiple syllabic components in addition to
gloss in sign language videos. Furthermore, Kezar
et al. (2023) classified 16 different phonological
features, which are close to fine-grained syllabic
components, and demonstrated that learning the
features through classification contributes to im-
proving the performance of SLR. In JSL, Hatano
et al. (2016) employed machine learning methods
to recognize the location, movement, and hand-
shape components and construct a SLR system
based on the weighted sum of classification scores
for each component. This method requires extract-
ing the video’s features, such as coordinates, ve-
locity, and acceleration.

3. Methods

This study proposes a method for classifying syl-
labic components in JSL videos using pre-training
on a non-JSL dataset. This study focuses on the
location, movement, and handshape components
of the dominant hand, which are defined in the sylla-
ble database created by Hara (2019) and employs
VKNet (Zuo et al., 2023) as the base deep learning
model. We initialized the parameters of VKNet with
those pre-trained on a non-JSL dataset to leverage
information from non-JSL. The overall architecture
of the proposed model is illustrated in Figure 1.
As explained in §2.1, there are 22, 55, and 69
categories for location, movement, and handshape
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Figure 1: The overview of syllabic component classification through pre-training using non-JSL dataset

components, respectively. We added three fully
connected (FC) layers corresponding to individual
components to the VKNet pre-trained on the non-
JSL to classify each syllabic component.

A softmax function is applied to the output vector
of the FC layers for the location and handshape
components, where a single label is assigned from
multiple categories. This function enables multi-
class classification, where the class with the highest
predicted probability is considered the prediction.
By contrast, a sigmoid function is applied to the
output vector of the FC layers for the movement
component, which involves multiple labeled move-
ments. This function allows for binary classification
for each movement type; movements with predicted
probabilities higher than a threshold are considered
the prediction in the multi-label classification.

The loss function includes cross-entropy and
asymmetric losses (Ridnik et al., 2021). The cross-
entropy loss is used for location and handshape
classification, while the Asymmetric Loss (AsLoss)
is applied to the movement classification. Since
there are only up to three movements for each syl-
lable in the database, the classification problem
is highly imbalanced, with few positive and many
negative examples. The AslLoss addresses this
imbalance by calculating a weighted sum in which
the weight of the loss in positive examples is larger
than that in negative examples. It is defined as:

—(1—-p) log(p) if y=1

Asloss = - .
—p}, log(l — py) otherwise

where p,, is defined in Equation (2) to ignore nega-
tive examples that can be classified easily.

Pm = max(p —m, O) (2)

Note that p is the network’s output probability and
hyperparameters v~ and y* are sets such that
~~ >~ to emphasize the contribution of positive
examples. m represents the threshold value.

During training, multitask learning is performed to
share the information among syllabic components.
Specifically, VKNet is shared, and the loss function
is the sum of classification losses for each syllabic
component.

4. Experimental settings

We evaluated the proposed method using the sylla-
ble database created by Hara (2019). We randomly
split the 1,072 instances annotated with the loca-
tion, movement, and handshape components into
750, 161, and 161 instances for training, develop-
ment, and testing, respectively. The statistics for
the top-10 instances of each component are pre-
sented in Table 1. The table shows that syllable
instances are highly imbalanced among the cate-
gories. To avoid highly challenging classification
problems, we excluded instances with the cate-
gories with fewer than five instances in the training
data, treating them as false-negative predictions.
We adopted the micro F-score as the evaluation
metric.

As the pre-training parameters, we utilized the
pre-trained VKNet parameters,’ which was trained
on the 14,289 training instances with 2,000 glosses
of Word-Level American Sign Language (WLASL)
dataset for SLR in ASL (Li et al., 2020).

We conducted two comparisons in the experi-
ments. The first comparison is to investigate the ef-

"https://github.com/Fangyuniiei/SLRT/
tree/main/NLA-SLR
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Movement # | Handshape # | Location #
)
Rightward movement of a hand 142 & 138 ‘1’ * 835
Forward movement of a hand 135 o % 125 | Temples 40
MO
Wrist rotation: outward rotation of a wrist with the little finger as the axis 120 "f’ g 57 | Mouth 32
Downward movement of a hand 117 é\\ 55 | Chest 23
-~
Flexion of finger joints with handshape changes 80 | VL 53 | Brow 22
. ) - A (‘.f,{x//"
Extension of finger joints with handshape changes 77 | U1 ( 48 | Eyes 17
&~
Circular or semicircular movement on a horizontal plane 69 . 42 | Face 16
)
Upward movement of a hand 64 4 40 | Elbow 13
\
Leftward movement of a hand 61 &N 40 A * 13
v\ ()
Non-linear movement (trajectory) of a hand 51 %{J\ 34 | Abdomen 12

Table 1: Numbers (#) of top-10 instances for the location, movement, handshape components, icons from
McKee et al. (2011). * and ** in the location component represent the neutral space in which the sign is

made in front of the body or face, respectively.

Method

Syllabic component

Location

Movement Handshape

VKNet
+ Pre-training

80.75 (+ 1.02)
81.16 (£ 2.05)
+ Multitask learning  81.99 (+ 0.00)

38.29 (& 2.54)
52.41* (+ 0.86)
45.76* (+ 0.82)

39.54 ( 1.05)
44.72* (+ 3.55)
42.231 (+ 1.34)

Table 2: Results of syllabic component classification. The means of three runs are shown as the final
micro F-scores (%). The numbers in parentheses are standard deviations. * and  denote significance
levels of 0.05 and 0.1 compared with the results directly above.

fectiveness of pre-training using the ASL dataset in
syllabic component classification for JSL; we com-
pared the classification performance of VKNet with
parameters initialized from the pre-trained model
and VKNet with randomly initialized parameters.
The second comparison is to evaluate multitask
learning. We compared the classification perfor-
mance when simultaneously or independently ad-
dressing each task to understand the impact of
information sharing between tasks. We used the
Adam optimization method (Kingma and Ba, 2015),
setting the learning rate to 5x 10> and applied co-
sine annealing as a scheduler to change the learn-
ing rate per epoch. We set the hyperparameters
~~,~T, and m of the AsLoss to 4, 1, and 0.05, re-
spectively. To suppress overfitting, we employed
dropout (Srivastava et al., 2014) and regularization,
setting their values to 0.2 and 103, respectively.

5. Results

The results of syllabic component classification
from JSL videos in test data are shown in Table 2.
The results of syllabic component classification

using VKNet with parameters pre-trained on the
WLASL dataset as initial values showed that the
micro F-scores for the location, movement, and
handshape components were improved compared
to those using VKNet with random parameters as
initial values. The results evaluated on the develop-
ment and test data are summarized in appendix B.
We conducted a significance difference test with
the bootstrap method to verify the improvement in
classification performance of the pre-trained VKNet.
As a result, we confirm that the pre-training method
effectively improved the classification of the move-
ment and handshape components of JSL.

Multitask learning improved the micro F-score of
the location component but decreased those of the
movement and handshape components. The sig-
nificance test showed a significant decrease in the
classification of the movement component, while
there was no significant difference for the location
and handshape components. This result indicates
that multitask learning is ineffective or harmful in
classifying syllabic components of JSL.
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(a) Visualization result of VKNet’s pre-
diction basis

(b) Visualization result of pre-trained
VKNet'’s prediction basis

Figure 2: Visualization results (classification of the
movement component)

6. Discussion

To verify the influence of pre-training on the syllabic
components of VKNet, we visualized the parts of
the video VKNet focused on while predicting syl-
labic components using Adaptive Occlusion Sen-
sitivity Analysis (AOSA) (Uchiyama et al., 2023),
one of the methods of explainable Al techniques.
The AOSA results were visualized with colors from
red to blue to indicate their importance; the areas
with high importance are shown in red. The exam-
ple of the movement component that could not be
classified by VKNet but could be classified by the
pre-trained VKNet is visualized in Figure 2. From
these results, we can see that the right hand, which
is the dominant hand, is more focused after pre-
training. This change in the focus suggests that the
pre-trained VKNet can make more accurate predic-
tions than the VKNet by focusing on the dominant
hand and classifying syllabic components.

7. Conclusions

This study proposed the classification of the syllabic
component for the dominant hand using parame-
ters of a model pre-trained on a non-JSL dataset as
a first step to construct a method for syllabic com-
ponent classification based on JSL videos. We
also introduced multitask learning for sharing in-
formation among syllabic component classification.
We evaluated the proposed method based on the
VKNet model using the JSL database in the experi-
ments. Experimental results show that pre-training
with the ASL dataset significantly improves the clas-
sification performance of the movement and hand-
shape components from a limited humber of the
JSL videos. On the other hand, the classification
performance with multitask learning did not improve
the performance of syllabic component classifica-
tion in JSL. We also investigated the effect of pre-
training on syllabic component prediction by visu-
alizing the predictive basis of VKNet using AOSA.
The visualization results suggest that the proposed
pre-training enabled the focus on the target hand.
Future work includes investigating the models and
training methods to improve the classification and
classification performance of syllabic components
for both the dominant and non-dominant hands.
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A. Impact of data imbalance on
location component classification

For the location component classification, neutral
space instances, the first row in Table 1, cover
most of the dataset. To examine its impact on
the classification results, we used a pre-trained
VKNet and evaluated it by excluding the instances.
The evaluation results on the development data are
shown in Table 3. When excluding neutral space
instances from the dataset, the performance sig-
nificantly dropped. This result suggests that the
model was affected by the bias in the dataset and
fitted to the neutral space class. This performance
degradation indicates that, to improve the general-
ity of the model, the bias in the dataset needs to be
addressed by sampling data or changing the loss
function.

B. Overall result

In this study, we set four learning conditions to com-
pare the effects of pertaining VKNet and multitask
learning: (1) no pertaining VKNet, no multitask
learning, (2) pertaining VKNet, no multitask learn-
ing, (3) no pertaining VKNet, multitask learning, (4)
pertaining VKNet and multitask learning. We per-
formed syllabic component classification for each
condition using the development and test data. The
results are shown in Table Table 4

C. Hyperparameter tuning in
multitask learning

we conducted additional experiments to optimize
the coefficients of the loss functions for each task
in multitask learning. Previously, we summed the
losses for each syllabic component. Still, this time,
we introduced weighting coefficients for the loss
of each syllabic component and attempted to op-
timize these coefficient values using a Bayesian
optimization. Specifically, the value of each coeffi-
cient was constrained to be between 0 and 1, and
the sum of all coefficients was always setto 1. We
performed 70 iterations of Bayesian optimization
and searched for the combination of coefficients
that maximized the micro F-score for syllabic com-
ponent classification on the development data. It
is shown in Table 5, where the optimal coefficient
values obtained by Bayesian optimization and the
corresponding micro F-scores are shown in con-
trast to the micro F-scores obtained by simply sum-
ming the losses. After three evaluations, the micro
F-score for the handshape component showed a
slight improvement, although the micro F-scores for
the location and movement components showed
a slight decrease. However, these score changes

Location
pre-trained VKNet w/ neutral space  80.75 (+ 1.02)
pre-trained VKNet w/o neutral space 41.67 (+ 4.54)

Table 3: Results of location component classifi-
cation with and without neutral space instances.
Neutral space instances constitute a large portion
of the dataset. The performance is measured us-
ing the micro F-score (%), with the reported values
showing the average and standard deviation over
three evaluation runs.

were within the margin of error, indicating no sig-
nificant difference resulted from simply summing
the losses for each syllabic component. Therefore,
we evaluated the test data using a simple sum of
losses with equal weights.
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Dev Test
Method Location Movement Handshape \ Location Movement Handshape
Multitask VKNet 82.40 (£ 1.27) 34.06 (£ 0.52) 39.75(+ 1.83) | 80.33 (+ 1.06) 38.55 (+ 1.25) 35.20 (+ 2.55)
+ Pre-training | 82.20 (+1.17) 39.94 (+2.85) 47.41 (+2.29) | 81.99 (+ 0.00) 45.76 (+ 0.82) 42.23 (+ 1.34)
Singletask VKNet 83.85 (+ 1.01) 34.57 (£ 0.39) 43.89 (+0.29) | 80.75 (+ 1.02) 38.29 (+ 2.54) 39.54 (+ 1.05)
+ Pre-training | 83.44 (+ 0.77) 44.98 (+ 1.06) 47.82 (+ 1.02) | 81.16 (£ 2.05) 52.41 (+ 0.86) 44.72 (+ 3.55)

Table 4: Results of syllabic component classification with and without pertaining and with and without
multitask learning. The evaluation metric is the micro F-score (%). The mean and standard deviation of
the three evaluations are shown.

Dev
hyperparameter Location Movement Handshape
alpha = 0.095704
beta = 0.597839 78.46 (£ 1.17) 38.70 (+1.86) 48.24 (+ 1.63)
gamma = 0.306457

alpha = beta = gamma \ 82.20 (+1.17) 39.94 (+ 2.85) 47.41 (£ 2.29)

Table 5: Micro F-score (%) of syllabic component classification using the optimized hyperparameters
obtained from Bayesian optimization and an equal weight baseline. Coefficients for location, movement,
and handshape are denoted as alpha, beta, and gamma, respectively.
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A Query Wizard for the MY DGS — ANNIS Portal of the DGS Corpus
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Abstract
MY DGS — ANNIS makes the Public DGS Corpus available through the corpus query and visualization tool ANNIS.
Due to the complex nature of the corpus, composing queries for advanced research questions can quickly become
increasingly complicated. We present a Query Wizard which assists users in building valid queries for MY DGS —
ANNIS. Complex queries are built up from smaller blocks, which can be linked to each other through context-sensitive
connections. Blocks provide options specific to a given annotation tier and dynamically lead users through their
construction while preventing the creation of invalid queries. Once completed, queries can be opened directly in MY

DGS — ANNIS.

Keywords: German Sign Language (DGS), corpus query tool, ANNIS, query wizard

1. Introduction

In 2022 the DGS-Korpus project introduced MY
DGS — ANNIS (Isard and Konrad, 2022), a third
portal to provide access to release 3 of the Public
DGS Corpus (Hanke et al., 2020). ANNIS (Krause
and Zeldes, 2016) is a corpus query and visual-
ization tool which allows corpus queries written in
the ANNIS Query Language AQL' to be performed
over multiple annotation tiers and corpus metadata.
Our interface allows researchers to search either
the German or the English version of the Public
DGS Corpus.

MY DGS — ANNIS has enabled sign language
researchers to make complicated queries over the
Public DGS Corpus, but the combination of mul-
tiple annotation and metadata tiers with complex
glossing conventions on the one hand, and AQL
syntax on the other, means that novice users have
not always found it easy to create valid queries
which exactly match what they were searching for.
The ANNIS interface contains a general-purpose
Query Builder tool, but the dyadic and sign-based
nature of our data (see Section 2.1) necessitates a
more customised approach.

Several corpus projects which make their data
available through ANNIS have provided “sim-
ple search” interfaces for their ANNIS instances
(Dipper, 2015), including the Reference Corpus
Middle Low German/Low Rhenish (1200-1650)?
and the Reference Corpus of Middle High Ger-

"mttp://korpling.github.io/ANNIS/4.11/
user—guide/agl/index.html

thtps://www.slm.uni—hamburg.de/en/
ren/korpus/datenzugang/einfache—-suche.
html
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man (1050-1350)3. Inspired by these we decided
to create a “simple search” interface for the Public
DGS Corpus: the MY DGS — ANNIS Query Wizard.

Our Query Wizard allows users to create complex
queries out of smaller building blocks by creating
connections between them, and uses visual ele-
ments to make the connections between the blocks
and the resulting AQL query easier to understand.
We hope that this will help users to learn about
the structure of AQL queries, so that if their needs
surpass the scope of the Query Wizard, they will
be ready to manually refine queries in MY DGS —
ANNIS.

The Query Wizard ensures that only valid queries
are generated and makes query building easier in
a number of ways:

» Users select annotation and metadata tiers
from a comprehensive list, ensuring only valid
tiers are involved and avoiding issues like
spelling errors.

+ Instead of writing complex regular expressions
to refine search to only certain tokens, users
can compose these expressions using context-
sensitive check boxes.

+ Connections within tiers can be added without
knowledge of the exact syntax necessary.

This article introduces the Query Wizard and ex-
plains how it integrates with MY DGS — ANNIS. In
Section 2 we describe the Public DGS Corpus data
available through MY DGS — ANNIS, with the an-
notations and metadata in Section 2.1, the ANNIS
Query Language (AQL) in Section 2.2 and the MY

Shttps://www.linguistics.rub.de/rem/
access/simplesearch.en.html
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DGS — ANNIS interface in Section 2.3. In Section 3
we describe the interface and usage of the Query
Wizard, and in Section 4 we show how some ex-
ample queries can be built up. Section 5 contains
conclusions and describes further features which
we intend to add to the Query Wizard in future.

2. MY DGS - ANNIS

2.1. Annotations and Metadata

MY DGS — ANNIS provides datasets representing
both release 3 and release 4 of the Public DGS
Corpus, with two versions of each dataset, one
each for the English and German versions of its
annotations®.

Table 1 lists the main annotation tiers with a brief
description of their content. Each element in a
tier contains text which can be searched; in the
case of translations and mouthings the text is fairly
simple, and the HamNoSys tier can be searched
by inputting HamNoSys characters directly, which
can be done using the HamNoSys editor.’

For Gloss and GlossType tiers a special syntax is
used which makes search more complex. In these
tiers, each token is represented by a type gloss.
Each type gloss contains a gloss word, one or two
digits which denote different lexical variants, and
an optional letter denoting phonological variants.
Types that denote form without specifying meaning
(i.e. they are supertypes rather than subtypes) are
indicated by the caret character (*). In the Gloss
tier, an asterisk (*) indicates that a token gloss di-
verges in some way from the citation form of the
type®. We provide one gloss tier for each partici-
pant to enable collocation searches within a tier (for
an example see Section 4.3). Signs in DGS may
be one- or two-handed, and it is possible for each
hand to articulate a different sign, so when these
complex signs occur, we combine the two glosses
into a single token, separated by “||”. For example,
the token $INDEX1* || caT1B* indicates that the par-
ticipant simultaneously signed $INDEX1* with their
right hand and cat1B™ with their left hand.

Table 2 shows the eight types of metadata in-
cluded in MY DGS — ANNIS, six of which are avail-
able for each transcript, and three for each individ-
ual participant.

“Mouthings are provided in German for both versions,
as they relate directly to articulation of German words
and are therefore not suited for translation.

Shttps://www.sign-lang.uni-hamburg.de/
hamnosys/input/

SFurther details of the Public DGS Corpus annotation
conventions can be found in Konrad et al. (2022).

2.2. Annis Query Language (AQL)

Using AQL it is possible to query just one anno-
tation tier or to make arbitrarily complex queries
which refer to multiple annotation and metadata
tiers. MY DGS — ANNIS provides a number of sim-
ple examples which users can use as a basis for
creating their own queries. However, these cannot
cover all possible combinations, and users have
not always found it easy to work from these exam-
ples to create the queries which they need for their
research. The main query types used in MY DGS
— ANNIS are:

* regular expression search of the text associ-
ated with an element

+ links between items in different tiers

» collocation distances between items in the
same tier

* metadata

Each item in an AQL query must be linked to at
least one other item. To facilitate this, each query
item is automatically assigned a sequential number
which can be used to refer to it later in the query.
For example in Query 1, Gloss and English are con-
nected using identifiers automatically assigned to
them: #1 refers to the Gloss item and #2 to English.
The identifiers can also be explicitly assigned, and
we describe this process in section Section 4.1.

(1) Gloss=/CAT.*/ & English=/.* [Cc]at .*/
& #1 ->ident #2

Collocation distances are expressed using the
dot (.) or caret (") operators, followed by the tier
name, then optionally by two numbers which spec-
ify the minimum and maximum distances. An ex-
ample can be seen in Query 8.

Some examples of AQL searches in MY DGS —
ANNIS can be found in Isard and Konrad (2022),
and the full AQL manual is available online’. In
Section 4 we show how the Query Wizard allows
users to build up complex queries from smaller
building blocks without the need to know the details
of AQL syntax.

2.3. ANNIS Interface

Queries created in the Query Wizard can be
opened directly in MY DGS — ANNIS (see Sec-
tion 3). Figure 1 shows the MY DGS — ANNIS
interface with the AQL query input window on the
top left and the query results on the right for Gloss
tokens with the gloss name cAT (see Section 4 for
a discussion of this query). Each result contains

"https://korpling.github.io/ANNIS/4.
11/user—guide/aql
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Annotation | Description
Gloss subtypes or types used to lemmatize tokens
GlossType | parent types
HamNoSys | HamNoSys notations of type citation forms
Mouth mouthings or mouth gestures
Translation | for each utterance
Table 1: Annotation tiers in MY DGS — ANNIS
Metadata Description Refers to
Transcriptld | the unique identifier for the transcript
Region where the transcript was recorded
RegionCode | a shorter code for the region Whole
Date date of the recording Transcript
Theme the task given to the participants for this transcript
Keywords a list of the topics discussed in this transcript
Name the unique (anonymous) identifier for each participant
AgeGroup one of a set of four age categories Participant
Gender the gender declared by each participant at the time of recording

Table 2: Metadata included in MY DGS — ANNIS

three tabs which can be independently opened or
closed; the first shows the five visible annotation
tiers, with query results highlighted in red, the sec-
ond the video for the transcript which can be played
by clicking on any token or on the play button, and
the third shows clickable links to another corpus
portal, MY DGS — annotated (Konrad et al., 2024).

Figure 2 shows a view where we have zoomed
in on the query result window, showing one match
for the gloss caT1A*, highlighted in red. GlossType
and HamNoSys are also highlighted as they are di-
rectly linked to Gloss as alternative representations
of the same gloss, while Mouth and English are
independent tiers whose tokens can have different
durations from the Gloss tokens. Unlike in Figure 1,
the links tab has been opened in addition to the
annotation and video tabs, providing links to the
MY DGS - annotated Viewer and list of sign types.

3. The Query Wizard

The Query Wizard interface is a web application
developed by us and written in JavaScript, that al-
lows users to create a query by creating and linking
smaller building blocks. It is available in English for
creating queries for the English version of MY DGS
— ANNIS and in German for the German version of
the corpus. All examples in this article are shown
for the English interface and corpus.

A user can create a block for any of the annota-

tion tiers, and the search can then be refined by the
addition of search text. The options available for
the text search depend on the tier selected, with the
Gloss and GlossType tiers having the most addi-
tional options due to their more complex syntax as
described in Section 2.1. Once a query has been
generated, the user can click a button to open the
query directly in MY DGS — ANNIS.

Figure 3 shows the initial state of the Query Wiz-
ard interface. The options available are to add a
new block for an annotation tier or for a chosen
metadata type. At this point, there is nothing dis-
played in the AQL query box at the top, and the
button for opening the query in MY DGS — ANNIS
is therefore greyed out. There is a button to cre-
ate connections between elements and a display
for the list of connections between annotation ele-
ments, but both are empty, as no elements have
yet been created.

When the user has selected a tier and clicked
the add button, a new block appears, where they
can refine the search as shown in Figure 4. This
can be done by adding text in the search box, and
if desired, constraining the search with further op-
tions. If they want to find glosses with a particular
gloss name, they can enter free text in the search
box, and constrain whether the gloss name should
exactly match the text entered, start with the text,
or contain the text.

Each annotation or metadata block can be tem-
porarily excluded from the query by unchecking the
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Figure 1: MY DGS — ANNIS showing the query results for tokens with gloss name cat and the metadata
“Theme”.
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Figure 2: Zoomed-in view of Figure 1 showing one specific result with all tabs expanded.
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Q\QL query: )

Annotations Metadata

TierLevel

Create Connection

CConnections between annotation elements)

Figure 3: The start interface for the Query Wizard

Q\QL query: G1#Gloss=/(.* )*CAT.*D

open query in ANNIS

Annotations Metadata

[—select-  v|| add

Tier/Level [Gloss

o]

Create Connection

(Connections between annotation elements)

Annotation G1 ~ Gloss=/(.* )*CAT.*/ use in query

CAT (Juse advanced options

Gloss name O is exactly
O contains

@ starts with

Figure 4: Interface with a Gloss block where the
gloss name starts with the string cat

“use in query” checkbox; if the box is later checked
again, all search parameters previously entered
are still active. As edits are carried out in a block,
the AQL query display at the top of the interface
changes accordingly.

We mentioned in Section 2.2 that each itemin an
AQL query is automatically assigned a sequential
number which can be used to refer to it later in
the query. It is also possible to explicitly assign an
identifier to each item in a query, and the Query
Wizard does this, giving each item a code which
starts with a letter representing the annotation tier
(G for Gloss, GT for GlossType and so on) and a
number which is incremented every time an item
from the same tier is created. In Figure 4 there is
a single Gloss item so it receives the identifier G1.
This is used to refer to it in the AQL query, but also
every time the item is referenced elsewhere in the
interface.

Figure 5 shows the search block from Figure 4
with the “use advanced options” checkbox selected.
When this checkbox is first selected, the check-
boxes for “all lexical variants” and “all phonological
variants” are selected, and the “allow supertypes”
and “allow modified” checkboxes are set to “all”. To
avoid the creation of invalid searches, the lexical
variants box only becomes active when the user

<AQL query: Gl#Gloss=/(* J*CAT[A J*1AV( A*)*$D

open query in ANNIS

Annotations Metadata

Tier/Level | Gloss V|| add

Create Connection

“add]

@onnections between annotation elementa

e . .
Annotation G1 ~ Gloss=/(.* )*CAT[A *1AV¥( .*)*$/ use in query

Gloss name O s exactly use advanced options
O contains
@ starts with

(Jall lexical variants (J all phonological variants

@ enter lexical variant @ enter phonological variant

allow supertypes allow modified

O only supertypes (%) @® only modified (*)
O only subtypes O only unmodified
@all Oall

Figure 5: Interface with a Gloss block where the
gloss name starts with the string cat, with advanced
options selected

.

has entered some text into the search box, and
the phonological variants box only becomes active
when a lexical variant has been entered. In Figure 5
the search is restricted to lexical variant 1, phono-
logical variant A and only tokens which diverge from
the citation form.

When a second annotation block is created, it
is assigned a different colour in order to help the
user to identify which part of the AQL query comes
from which block. The main AQL query display
temporarily becomes blank, because all annotation
items in a valid AQL query must be linked to one
another in some way. If there are annotation items
which are not yet connected, a dropdown list of
the items becomes available, using the identifiers
which have been assigned by the Query Wizard.
There are two kinds of connections: links between
tokens which occur at the same time on different
tiers, and collocation distances between tokens on
the same tier. Collocation searches can find tokens
before or after a token on the same tier, or permit
both directions with the option near. In addition,
it is possible to constrain the collocation distance
with minimum and maximum values.

Figure 6 shows how the creation of a Gloss block
and an English block has made available a drop-
down menu to connect the two. Once a connection
has been configured, it can be added and then ap-
pears in the list of connections and is integrated into
the main AQL query, as can be seen in Figure 7.
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Figure 6: Interface for connecting two blocks.
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open query in ANNIS
Annotations Metadata
Tier/Level —select- || add add
Create Connection
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O starts with

Annotation E1  English use in query
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O starts with

Figure 7: Interface with a Gloss G1, English G2
and a same time connection between them.

4. Examples

4.1. AQL Regular Expressions and Gloss
Syntax

A simple query might be, for example, to search the
corpus for all translations which contain the word
“cat”, which can be expressed in AQL as shown in
Query 2 and for which we find 194 matches.

(2) English=/.* [Cc]at .*/

In this case, the user needs basic knowledge of
the Public DGS Corpus annotations, plus simple
AQL and regular expression syntax:

» English translations are in a tier named “En-

glish”

» AQL regular expression search is denoted by
a query between two forward slashes (/)

* In aregular expression, “.*” matches 0 or more
characters of any kind

« In a regular expression, [Cc] matches either
“C” or “c”

Now, if we want to instead search for tokens
with the gloss word caT, we could try the query
in Query 3. As before, this requires some knowl-
edge of the DGS Corpus annotations, AQL, and
regular expression syntax.

(3) Gloss=/CAT.*/

Query 3 gives us 119 matches, which seems
plausible given the 194 matches for Query 2, but
if we examine them, we discover that only 75 are
actually matches for varieties of cat, while 25 are
varieties of cATHoLIC, 13 CATHEDRAL, 4 CATASTRO-
PHE and 2 CATTLE.

As described in Section 2.1, lexical variants of a
sign are indicated with different digits after the gloss
word. A next attempt would therefore be Query 4,
which does indeed give 75 results — success!

(4) Gloss=/CAT[0-9].*/

However, we then remember that signs per-
formed with the left hand are prefixed with “|| ” (as
explained in 2.1), and with Query 5 we indeed dis-
cover 4 instances of cat1A* performed with the left
hand, and one of cat1B8* performed with the left
hand co-articulated with $iINDEX1* performed with
the right hand.

(5) Gloss=/(.* )*CAT[0-9][0-9]?[A-Z]*.*/

By this point, the regular expression has already
become fairly complicated, and if we wanted to
further restrict this query to only supertypes or sub-
types, or to only modified or unmodified glosses
(see Section 2.1 for explanations), it would become
significantly more so.

In the Query Wizard we only need to write the
gloss name cAT, and select the button “is exactly”,
and the regular expression is created automatically,
as shown in Figures 6 and 7.

4.2. Corpus Metadata

After finding all the tokens with gloss name carT, a
user may be curious in which corpus themes and
in which transcripts these tokens most frequently
occurred. In order to find this out, they need to
add two metadata items to the query. To build this
query manually, the user would have to know not
only the type structures described above, but also
the exact names of the two metadata types and the
syntax for linking them. Each metadata item must
be linked from an annotation item using the string
“@*”, as shown in Query 6.
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Figure 8: Interface with a Gloss block with gloss
name cAT plus metadata Theme and Transcriptld

(6) G1#Gloss=/(.* )*"CAT[0-9][0-9]?[A-Z]*.”/ &
#G1 @* Theme & #G1 @* Transcriptld

In Query Wizard this query can be created simply
by creating the annotation block for the Gloss cAT
as shown before, and two metadata blocks, one for
Theme and one for Transcriptld, as in Figure 8. The
results of opening this query in MY DGS — ANNIS
are shown in Figures 1 and 2. The frequency anal-
ysis tab of MY DGS — ANNIS, shown in Figure 9,
can then be used to discover that the caT glosses
occur most frequently in the “Sylvester and Tweety”
task, where participants are asked to retell the pop-
ular cartoon story, but also often in discussions on
specific “Subject Areas” and occasionally in 5 other
themes, including “Experience of Deaf Indivuals”.

Alternatively, a user might want to search only
for results from participants from the age group
“18-30". This is more complicated because of the
way that the metadata is stored internally in the
ANNIS database. In order to search metadata spe-
cific to one participant it is necessary to create a
query which explicitly links each person’s tokens
to their metadata, as shown in Query 7. Again this
query can be simply created in the Query Wizard
by creating a gloss block for caT and a metadata
block for age group, as shown in Figure 10.

(7)  (G1#PersonA:Gloss=/(.* )*CAT[0-9][0-9]?[A-Z]*."/

@* PersonA:AgeGroup="18-30") |

(G1#PersonB:Gloss=/(.* )*CAT[0-9][0-9] ?[A-Z]*.*/
@* PersonB:AgeGroup="18-30")

4.3. Collocation Distances

In the final example, shown in Figure 11, the
user has created two Gloss blocks. The first, G1,
searches as before for all tokens with gloss name
cAT. The second, G2, does not specify any search
text, and has a collocation distance from G1 of 1 to

© Help/Examples =~ Q Query Result X Ll Frequency Analysis %

New Analysis

e linear scale
logg scale

& Download as CSV

7 items with a total sum of 80 (query on DGS-Corpus-r3-en)

rank #2|Theme count
1 Sylvester and Tweety 46

2 Subject Areas 22

3 Experience of Deaf Individuals 5

4 Free Conversation 3

5 Experience Report 2

6 Regional Specialities 1

7 Discussion 1

Figure 9: MY DGS — ANNIS frequency analysis
showing in which themes the tokens with gloss
name cAT appear most frequently

[AQL query: ( Gl#PersonA:Gloss=/(.* )*CAT.*/ @* PersonA:AgeGroup="18-30" ) j

( Gl#PersonB:Gloss=/(.* )*CAT.*/ @* PersonB:AgeGroup="18-30" )

open query in ANNIS

Metadata

AgeGroup V|| add

Annotations

Tier/Level add

Create Connection

CConneclions between annotation elementg

o —
Annotation G1  Gloss=/(.* )*CAT.*/ G use in query

Gloss name O s exactly ([Juse advanced options

O contains
@ starts with

metadata 1 AgeGroup use in query
AgeGroup O any

@®18-30

03145

O 46-60

O61+

Figure 10: Interface with a Gloss block with gloss
name cAT plus metadata AgeGroup=18-30
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Figure 11: Interface with two Gloss blocks with a
collocation distance of 1 to 2.

2 in either direction, and the AQL query is shown
in Query 8.

(8) G1#Gloss=/(.* )*CAT[0-9][0-9]?[A-Z]*.*/
& G2#Gloss & #G1 "Gloss,1,2 #G2

When this query is opened in the frequency anal-
ysis tab of ANNIS (see Figure 12), we can see that
the most frequent collocations are special signs,
including productive signs and pointing gestures.
The most frequent lexical sign is coop1, which
leads us to a tentative and humorous conclusion
that the corpus participants are well-disposed to-
wards cats.

5. Conclusions and Future Work

We have introduced the new Query Wizard for MY
DGS — ANNIS and shown how it simplifies the pro-
cess of building queries in the ANNIS AQL query
language for the DGS Corpus. It allows users to
build queries out of small building blocks, and helps
them to understand how the queries are built up.
It removes the burden of regular expression build-
ing from users, and means that they do not have
to remember the spellings of annotation tier and
metadata names. It also allows users to select
from the valid sets of metadata options. While user
studies are still ongoing, initial feedback has been
very favourable.

New corpus releases will be published as sep-
arate datasets in MY DGS — ANNIS. These new
datasets may introduce new tiers or change struc-
tural aspects to account for new corpus (meta)data

Showing historgram of top 100 results, see table below for complete dataset.

e linear scale
logyg scale

30.0

25.0

20.0

& Download as CSV
221 items with a total sum of 310 (query on DGS-Corpus-r3-en)

rank #G2|Gloss count
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2 $INDEX1 18
3 $INDEX1*

4 || $INDEX1
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6 $GEST-NMA
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9
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o

Figure 12: MY DGS — ANNIS frequency analysis
of signs with a collocation distance of 1 to 2 from
signs with gloss word caT

and improvements to the ANNIS software. The
Query Wizard will allow users to choose the desired
corpus release and will adjust its query outputs ac-
cordingly.

There are also a number of features yet to be
added to the Query Wizard. These include negated
searches and fine-grained control over handedness
of sign execution. Entering HamNoSys may be fur-
ther improved by integrating the HamNoSys Builder
interface more directly into the Query Wizard or
supporting the use of HamNoSys character names,
such as hampinch12open. Options could also be
included to allow users to search special classes
of signs such as numbers and fingerspellings.
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Abstract
The limited global competency in sign language makes the objective of improving communication for the deaf and
hard-of-hearing community through computational processing both vital and necessary. In an effort to address
this problem, our research leverages the Irish Sign Language hand shape (ISL-HS) dataset and state-of-the-art
deep learning architectures to recognize the Irish Sign Language alphabet. We streamline the feature extraction
methodology and pave the way for the efficient use of Convolutional Neural Networks (CNNs) by using Motion
History Images (MHIs) for monitoring the sign language motions. The effectiveness of numerous powerful CNN
architectures in deciphering the intricate patterns of motion captured in MHlIs is investigated in this research. The
process includes generating MHIs from the ISL dataset and then using these images to train several CNN neural
network models and evaluate their ability to recognize the Irish Sign Language alphabet. The results demonstrate
the possibility of investigating MHIs with advanced CNNs to enhance sign language recognition, with a noteworthy
accuracy percentage. By contributing to the development of language processing tools and technologies for Irish
Sign Language, this research has the potential to address the lack of technological communicative accessibility and

inclusion for the deaf and hard-of-hearing community in Ireland.

Keywords: Motion History Images, Irish Sign Language Recognition, Convolutional Neural Networks

1. Introduction

Sign Languages (SLs), expressed visually through
gestures within a three-dimensional signing space,
and without a written form serve as the principal
mode of communication for numerous deaf and
hard-of-hearing communities in their daily inter-
actions. The fact that sign languages are often
overlooked by current natural language processing
and machine translation technologies exacerbates
the existing communication challenges faced by
the estimated 72 million deaf individuals worldwide
(Murtagh et al., 2022; Murtagh, 2021). Irish Sign
Language (ISL) maintains a unique place in the
sign language landscape, serving as the principal
means of communication for Ireland’s deaf and
hard-of-hearing community (Leeson and Saeed,
2012). Irish Sign Language (ISL) constitutes a
gestural mode of communication devoid of writ-
ten or spoken articulation. It serves as the primary
means of interaction for approximately 5,000 Deaf
individuals within Ireland. An additional 40,000
hearing individuals engage with ISL, exhibiting a
spectrum of usage frequency from regular to oc-
casional within the country (School of Linguistic,
Speech and Communication Sciences, 2016) (Irish
Deaf Society). Notwithstanding its cultural and lin-
guistic significance, ISL like numerous other sign
languages across the world faced with technologi-

cal constraints due to its visual and spatial proper-
ties. Human-Computer Interaction (HCI) is strongly
linked to advancements in computer vision, with
recognition being a focus for research. The failure
to integrate sign languages into modern technolo-
gies has hindered the development of accessible
information and services for the ISL community,
compounded by the challenge of the limited avail-
ability of comprehensive datasets for training and
evaluating Al models in computational processing.
The purpose of this research is to utilize an Irish
Sign Language dataset and explore the effective-
ness of sophisticated neural network frameworks in
recognizing ISL hand motions from motion history
images. The efforts are ongoing in the development
of a computational system that will automatically
annotate sign language data, hence improving com-
munication accessibility and inclusivity for the ISL
community.

The paper’s outline is structured as follows: Sec-
tion 2 offers an overview of relevant research in sign
language recognition. In Section 3, the proposed
methodology is presented, covering the dataset
description, data augmentation techniques, and ex-
perimental architectures. Section 4 elaborates on
the experimental results, and Section 5 culminates
in the conclusion.
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2. Related Work

In recent years, the evolution of artificial intel-
ligence (Al) and computer vision has fueled
dramatic advances in sign language understand-
ing, solving major issues for those with dead
and hard-of-hearing communities (LeCun et al.,
2015). This section presents the progress of
sign language recognition, with an emphasis on
the critical role of deep learning approaches in
improving accessibility and communication among
the deaf and hard-of-hearing populations.

One of the foundational contributions to this
field was proposed by Mathieu De Coster et al.
(De Coster et al., 2021), by presenting a novel ap-
proach to enhance the performance of the Video
Transformer Network (VTN) for isolated sign recog-
nition leveraging multi-modal inputs, including hu-
man pose key points and hand crops, extracted
from RGB videos. Their adaptation addresses the
challenge of limited labeled data available for sign
language recognition by enriching the model’s in-
put with pre-processed information that captures
essential features of sign language, such as hand
shapes and body movements. The methodology
demonstrated a significant improvement in sign
recognition accuracy, achieving 92.92% on the
AUTSL dataset, underscoring the potential of com-
bining pose estimation and self-attention mech-
anisms in deep learning models for more accu-
rate and interpretable sign language recognition.
This research was conducted under the SignON
project (Sig), funded by the European Union’s Hori-
zon 2020. Mathias Mdller et al. (Mdller et al.,
2022), present the inaugural shared task for au-
tomatic translation between signed and spoken lan-
guages, specifically focusing on Swiss German
Sign Language (DSGS) to German and vice versa.
This pioneering effort marks a significant departure
from the traditional text-to-text machine translation,
necessitating the processing of visual information
such as video frames or human pose estimation.
The task attracted seven teams, all participating in
the DSGS-to-German track, showcasing state-of-
the-art techniques. Additionally, it generated the
first publicly available dataset of system outputs
paired with human evaluation scores for sign lan-
guage translation, thereby setting a foundational
benchmark for future research in this emergent
field. Neha Deshpande et al. (Deshpande et al.,
2022) investigate the use of convolutional neural
networks (CNNs) for facial expression recognition
in sign language videos, targeting Ekman’s six ba-
sic expressions (fear, disgust, surprise, sadness,
happiness, anger) plus a neutral category. They
enhance the performance of pre-trained general
facial expression models through fine-tuning, data
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augmentation, class balancing, and image pre-
processing. Their method, validated using K-fold
cross-validation, significantly improves accuracy on
sign language datasets, showcasing the effective-
ness of CNNs in sign language facial expression
recognition and contributing valuable insights to the
field. In the pioneering work, Wong et al. (Wong
et al., 2022) introduce a novel Hierarchical Sign
I3D model (HS-I3D), significantly advancing the
field of sign spotting in continuous sign language
videos. By innovatively applying a hierarchical spa-
tiotemporal network architecture to learn coarse-
to-fine sign features, their approach adeptly cap-
tures signs at varying temporal levels, leading to
more accurate sign localization. Evaluated on the
ChalLearn 2022 Sign Spotting Challenge - MSSL
track, the HS-13D model notably achieved a state-
of-the-art 0.607 F1 score, marking it as the compe-
tition’s top-performing solution. This achievement
not only demonstrates the model’s effectiveness
in identifying and localizing signs with high preci-
sion but also emphasizes the utility of incorporating
random sampling techniques during model train-
ing. (Hsieh et al., 2010) introduced an adaptive
approach for hand gesture recognition in human-
machine interactions. The novel approach, which
integrated an adaptive skin color algorithm with fa-
cial recognition algorithms, demonstrated outstand-
ing accuracy even in low-light circumstances and
complicated backdrops. This research conducted
experiments in which five persons made 250 hand
motions at different distances from the webcam.
The proposed system demonstrated its practicality
and usefulness in real-world applications, with an
average accuracy of 94.1% and a processing time
of 3.81 milliseconds per frame. This study lays the
framework for future advances in sign language
recognition algorithms. (Yalginkaya et al., 2016)
highlighted the importance of sign language recog-
nition in improving communication for those with
speech and hearing impairments. Their system,
which used Motion History Images (MHI) and a
nearest neighbor approach, obtained an excellent
classification accuracy of 95%, demonstrating the
capacity of machine learning to bridge communica-
tion gaps. This demonstrates Al's revolutionary in-
fluence on increasing accessibility for underserved
populations. The implementation of convolutional
neural networks (CNNs) has accelerated develop-
ments in the recognition of sign language. (Barb-
huiya et al., 2021) used CNN frameworks to extract
and categorize characteristics in sign language
motions, resulting in excellent classification accu-
racy. Using pre-trained CNN models like "AlexNet"
and "VGG-16," they demonstrated the usefulness
of deep neural networks in practical applications
of sign language recognition systems. Quantita-
tive evaluations demonstrate the efficacy of the



CNN-based method, with the model achieving high
accuracy rates in sign language categorization of
99% when using random validation and 70% when
utilizing leave-one-out validation. Simultaneously,
(Wadhawan and Kumar, 2020) made significant
advances in deep learning-based CNNs for sign
language identification by representing static signs.
Through testing and analysis, they were able to
get exceptional training precision, outperforming
earlier methods and creating new opportunities for
identifying a wider variety of hand signals. The
suggested approach achieved remarkable training
accuracy of 99.90% and 99.72%, respectively. This
demonstrates how Al-driven methods for sign lan-
guage processing are evolving and improving. Ban-
tupalli et al. (Bantupalli and Xie, 2018) proposed
an innovative technique to address communication
challenges encountered by individuals who have
speech impairments. Their research focuses on
the creation of a vision-based application for sign
language translation into text. Using current ad-
vances in deep learning and computer vision, they
extracted important temporal and spatial informa-
tion from video sequences. They specifically used
Inception to recognize spatial features and a Re-
current Neural Network to analyze temporal data.
The experiment yielded good results, with an av-
erage accuracy of 90% with the softmax layer and
55% with the pooling layer. The study emphasizes
the transformative potential of technology-driven
solutions in overcoming societal difficulties, as well
as the significance of interdisciplinary collabora-
tion in fostering social innovation. R.S. Sabeenian
et al. (Sabeenian et al., 2020) investigated the
challenges linked to speech impairment affecting
communication via speech and hearing. Despite
the growing usage of sign language as an alternate
communication tool, non-signers continue to face
a hurdle in communicating effectively with signers.
Making use of recent advances in computer vision
and deep learning, the authors concentrated on cre-
ating a deep learning-based application for trans-
lating sign language into text. Their method used
a proprietary Convolutional Neural Network (CNN)
to recognize signs in video frames, with the MNIST
dataset used for model training. The constructed
model attained 93% accuracy, indicating its useful-
ness in sign language identification and translation.
Dongxu Li et al. (Li et al., 2020) developed the
Word-Level American Sign Language (WLASL) (Li,
2020) video collection, which includes over 2000
words performed by 100+ signers, to overcome
the limitations of existing sign language datasets.
Their research enabled testing with deep learning
methods for word-level sign identification, contrast-
ing holistic visual appearance-based and 2D hu-
man pose-based approaches. Furthermore, they
suggested a novel Pose-based Temporal Graph

Convolution Networks (Pose-TGCN) method to im-
prove pose-based recognition. Both approaches
produced equivalent results, with up to 62.63% top-
10 accuracy on 2000 words/glosses, demonstrat-
ing the dataset’s importance in improving sign lan-
guage recognition research.

In spite of these developments, there is still a
significant shortfall of research using this approach
for Irish Sign Language (ISL). By filling up this gap,
future research will have the chance to improve
accessibility and inclusion for members of the ISL
community.

3. Proposed Methodology

This section covers the architectures used for sign
language recognition, as well as the dataset utilized
and data augmentation aspects.

3.1.

In this research, we utilized the Irish Sign Language
hand-shape dataset (ISL-HS) (Oliveira et al., 2017),
which consists of real hand images. The ISL-HS
dataset consists of 23 static gestures representing
English alphabet signs and three dynamic motions
(J, X, and Z). The recording method was led by
the dataset documentation, with six people (three
men and three women) practicing fingerspelling of
the ISL alphabet, with each action recorded three
times. The videos were captured at 30 frames
per second (fps) and 640x480 pixels, for a total of
468 recordings. From these films, 52,688 frames
were retrieved for static forms and 5,426 frames
for dynamic motions, for a total of 58,114. We
used both static and dynamic form images in this
investigation.

Dataset

3.2. Preprocessing and Augmentation
Strategies

3.2.1. Data PreProcessing

In our approach to the Irish Sign Language hand
shape dataset, the first stage entailed converting
the dataset into motion history images (MHIs). To
accomplish this, we employed a tailored Python
script that made use of computer vision <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>