
Proceedings of the First Workshop on Natural Language Processing for Turkic Languages (SIGTURK 2024), pages 62–70
August 15, 2024 ©2024 Association for Computational Linguistics

Towards a Clean Text Corpus for Ottoman Turkish

Fatih Burak Karagöz and Berat Doğan and Şaziye Betül Özateş
Boğaziçi University, Turkey

{fatih.karagoz,berat.dogan}@std.bogazici.edu.tr, saziye.ozates@bogazici.edu.tr

Abstract

Ottoman Turkish, as a historical variant of mod-
ern Turkish, suffers from a scarcity of available
corpora and NLP models. This paper outlines
our pioneering endeavors to address this gap
by constructing a clean text corpus of Ottoman
Turkish materials. We detail the challenges
encountered in this process and offer poten-
tial solutions. Additionally, we present a case
study wherein the created corpus is employed
in continual pre-training of BERTurk, followed
by evaluation of the model’s performance on
the named entity recognition task for Ottoman
Turkish. Preliminary experimental results sug-
gest the effectiveness of our corpus in adapting
existing models developed for modern Turkish
to historical Turkish.

1 Introduction

Natural Language Processing (NLP) has been ex-
tensively facilitated through widely spoken mod-
ern languages. These models cover various fields,
from sentiment analysis to medical assessments
and question-answering. Such applications require
extensive data sources, which are relatively more
straightforward to collect and optimize for mod-
ern languages due to the abundance of digitized
documents available on the Internet. However, in-
tegrating such applications into historical and less
commonly spoken languages presents significant
challenges due to the need for more available re-
sources in these languages. Collecting and optimiz-
ing documents in these languages is more complex,
necessitating more efficient data extraction meth-
ods to achieve comparable performance levels.

The development of software tools and the ap-
plication of automation for historical languages are
crucial for scholarly research, offering invaluable
insights into political, sociological, and historical
contexts. Among these languages, Ottoman Turk-
ish has a significant legacy in history, literature,
culture, and science, influencing three continents

over 600 years. This extensive historical impact
highlights the importance of applications and stud-
ies involving Ottoman Turkish, as they can generate
profound value across various fields.

One of the pathways to such value creation is
through the use of pre-trained language models
(PLMs), which have revolutionized natural lan-
guage processing by achieving state-of-the-art per-
formance across many tasks. However, the avail-
ability of clean text corpora is essential for the
automation of any language, as it is necessary for
training algorithms to perform tasks such as text
analysis (Agarwal et al., 2007), language modeling
(Snæbjarnarson et al., 2022), and information ex-
traction (Hamdi et al., 2020; Li et al., 2020). This
is particularly important for pre-training language
models, which require a comprehensive understand-
ing of a language’s statistical properties and intri-
cate patterns. Therefore, our study aims to create a
clean data corpus for the natural language process-
ing of Ottoman Turkish. Despite its importance,
integrating Ottoman Turkish into modern Natural
Language Processing (NLP) frameworks presents
significant challenges. Ottoman texts’ unique lin-
guistic and structural characteristics require special-
ized approaches for effective digitization, standard-
ization, and analysis. Leveraging advanced NLP
techniques, such as pre-training BERT models, has
the potential to scale these studies and meet the
growing demand for research in this area.

While striving to create a clean corpus for Ot-
toman Turkish texts, we faced several challenges
that impeded effective data collection. These chal-
lenges were addressed in four phases: (i) Convert-
ing PDF documents into clean text files, (ii) normal-
izing unique characters, (iii) handling intertwined
bidirectional text in Arabic and Latinized Turk-
ish, and (iv) minimizing the impact of decorative
textures. The solutions needed to be simple and
cost-efficient in terms of computational power al-
location, adhering to the philosophical principle of

62



Occam’s Razor (Bowen and Breuer, 1992), which
advocates simplicity. We chose Regular Expres-
sion (Regex) methods over competing hypotheses
and sophisticated machine learning techniques be-
cause Regex requires minimal additional memory,
in which optimizing computational overhead, and
allows for immediate application through modes of
Non-deterministic Finite Automata (NFA).

This paper summarizes our initial efforts to cre-
ate a clean text corpus of Ottoman Turkish texts that
can be used for various purposes including auto-
matic processing of Ottoman Turkish. We mention
some related work on data cleaning and extraction
in Section 2. We explain the methodology followed
to create the intended corpus of Ottoman Turkish
texts and state the main challenges faced and possi-
ble solutions to them in Section 3. Then we provide
a case study in Section 4 where we further pre-train
the BERTurk (Schweter, 2020) model using our
corpus to adapt it to Ottoman Turkish texts and
fine-tune the model on a named entity recognition
(NER) dataset for NER tagging of Ottoman Turkish.
The preliminary experiment results suggest that fur-
ther pre-training the BERTurk model, initially de-
signed for modern Turkish, with Ottoman Turkish
data is effective for Ottoman NER tagging. We con-
clude the paper and state future directions of this
study in Section 5. To the best of our knowledge,
this study represents the first attempt to provide
language resources and models for state-of-the-art
natural language processing of Ottoman Turkish.

2 Related Work

Modern languages provide relatively clean corpora
when obtained from web text sources (Sharoff,
2006). In contrast, historical languages require a
different approach due to the variety of digitization
methods used by various institutions (Piotrowski,
2012). Unique challenges, such as non-standard
orthography, mixed scripts, and the scarcity of
digitized texts, necessitate specialized approaches.
This section reviews several studies that have ad-
dressed these challenges and contributed to devel-
oping effective methods for language processing,
which can be utilized in historical document au-
tomation.

The Impresso project (Ehrmann et al., 2020) fo-
cuses on the semantic indexing of a multilingual
corpus of digitized historical newspapers. This
interdisciplinary research involves computational
linguists, designers, and historians collaborating to

transform noisy and unstructured textual content
into semantically indexed, structured, and linked
data. The authors highlight the challenges posed
by large-scale collections of digitized newspapers,
including incomplete collections, extensive and
messy data, noisy historical text, and the need for
robust system architecture. The project empha-
sizes the importance of transparency and critical
assessment of inherent biases in exploratory tools,
digitized sources, and annotations.

Piotrowski (2012) highlights the importance of
text normalization in processing historical lan-
guages. The study presents various techniques for
handling non-standard orthography, including us-
ing historical dictionaries and context-based nor-
malization algorithms. These methods help stan-
dardize the text, making it more suitable for NLP
tasks. The challenges of interpreting private use
area (PUA)1 characters and integrating Arabic sen-
tences within Ottoman Turkish texts are addressed
through mapping systems and regular expressions.

Jain et al. (2021) propose an extensible pars-
ing pipeline to process unstructured data, partic-
ularly within network monitoring and diagnos-
tics. Their methodology employs rule-based ex-
traction techniques to transform unstructured data
into structured formats, utilizing pattern mining
strategies and heuristics-based analysis. This ap-
proach demonstrates resilience to changes in data
structure and effectively filters out extraneous infor-
mation. Notably, the use of regular expressions for
pattern recognition and data extraction mirrors the
techniques employed in our study for processing
Ottoman Turkish texts. The pipeline’s capability
to handle diverse data structures without necessi-
tating labeled training data or manual intervention
underscores its robustness and efficiency in data
extraction tasks.

Nundloll et al. (2021) discuss the automation
of information extraction from historical texts us-
ing the Journal of Botany as a case study. They
document the use of OCR-based software for dig-
itization and the subsequent application of NLP
frameworks to customize entity recognition mod-
els. Tools like Prodigy and Spacy were employed
to identify specific entities such as plant names, ob-
servers, locations, and attributes. The authors em-

1The code points in these regions are not standardized
characters within Unicode. They remain intentionally unde-
fined, enabling third parties to create their own characters
without clashing with the assignments made by the Unicode
Consortium.

63



phasize the importance of creating training and test
datasets to evaluate the accuracy of the entity recog-
nition models, highlighting the iterative process of
model training, error-checking, and annotation.

3 Methods, Challenges, and Solutions

This study employs a systematic methodology to
extract, standardize, and analyze Ottoman Turkish
texts from historical documents. The process in-
volves several key steps and leverages various tools
and libraries to ensure efficient and accurate data
handling. In the following subsections, we first ex-
plain the source of data and then give the two main
steps of our method2 for creating a clean corpus of
Ottoman Turkish texts. For each step, we state the
challenges faced and explain our solutions to them.

3.1 Data

There are two primary Ottoman periodicals used
as data source: Sebilürreşad and Sırat-ı Müstakim
magazines.

Sırat-ı Müstakim was a prominent Ottoman Turk-
ish magazine that was first published on 1908. Dur-
ing the period of the Second Constitutional Monar-
chy, Mehmed Akif, a famous Turkish writer at
the time, took the position of editorial writer for
this magazine. Published weekly, the magazine
included written texts about various topics, includ-
ing religious, national, literary, and political issues
(Gündoğdu, 2008). The periodical was published
under the same name until 1912, and from issue
183 it continued to be published under the name
Sebilürreşad until 1925. Sebilürreşad had to sus-
pend its publication starting from its 641st issue
on 1925. Later, it resumed publication in May
1948, until March 1965, during which it released
359 issues (Ceyhan, 1991). These periodicals, first
published as Sırat-ı Müstakim and later as Sebilür-
reşad, contributed to Turkish culture, art, literature,
and intellectual life for a total of thirty-four years
(Çakır, 2014).

In our study, the issues of both periodicals pub-
lished between 1908-1925 have been taken into ac-
count. These issues have been collected as twenty
five volumes (seven of them under the name Sırat-ı
Müstakim and remaining eighteen as Sebilürreşad)
and made publicly available as images by National
Library of Turkey3 and as PDF documents in Latin

2The code is available under https://github.com/
Ottoman-NLP/Ottoman_LLM_Repos.

3Milli Kütüphane. https://www.millikutuphane.gov.tr/

script by Bağcılar Municipality.4 Figure 1 shows
example segments from each periodical.

3.2 Step 1: Data Extraction

The two periodicals used as our data source were in
PDF format. These PDF documents were created
using OCR systems and have a complex structure
due to the usage of both Latinized Turkish and Ara-
bic letters, recursive polluted texts such as dates,
page numbers, prices of the magazine, and illustra-
tions used in Ottoman textures. Also, the source
documents followed inconsistent margin formats
and illustrations. These inconsistencies varied from
document to document and page to page within the
same file. Variation in calligraphy, irrelevant notes,
and irregular design further exacerbating these chal-
lenges. These elements often led to misconducting
of text and incorrect character recognition, leading
to a poor corpus cleaning. Such variations posed
significant challenges for accurate text extraction
and processing.

Given these complexities, using multiple post-
OCR approaches could have been a more optimal
strategy for document assembly modeling (Lopresti
and Jiangying, 1997; D’hondt et al., 2017; Schulz
and Kuhn, 2017). However, OCR performance
heavily depends on image quality, and implement-
ing document-specific OCR solutions would be
computationally intensive and inefficient. Also,
most of these approaches require labeled training
data for post-OCR correction. Hence, we opted
not to use these supervised approaches in the data
extraction phase.

In order to represent the text data in a simpler
and cleaner format, we convert PDFs into TXT
format while maximizing text extraction accuracy.
The goal is to ensure that the resulting text files
represent the original content of the historical doc-
uments. For this purpose, we utilize a range of
Python tools and libraries.

Initially, we utilized Pdfplumber, a Python li-
brary known for its effective text extraction capa-
bilities. Our first attempt was defining rigid con-
straints on page margins to capture central text
bodies, excluding footnotes, repetitive dates, and
titles outside of these margins. However, these
constraints were less effective when the text align-
ment varied. Some documents started with wider
margins in a single column and changed arbitrar-
ily. Consequently, margin framing failed to extract

4Bağcılar Belediyesi. https://www.bagcilar.bel.tr/

64

https://github.com/Ottoman-NLP/Ottoman_LLM_Repos
https://github.com/Ottoman-NLP/Ottoman_LLM_Repos


Figure 1: Segments of two randomly selected pages from the magazines Sebilürreşad (back) and Sırat-ı Müstakim
(front).

text from documents that did not adhere to defined
rules.

After the unsuccessful trial in setting up one
script to extract all varied documents, we consider
another scheme where each document should have
a unique margin frame sets handling the extraction
processes. However, as discussed earlier, any given
document might not consistently follow the same
format, as the format occasionally changes from
page to page as well. Furthermore, creating scripts
for each document is an energy deterrent process
and disfavors automation extraction for later mod-
els.

For these reasons, the library used for PDF con-
version was later changed to PyMuPDF, a high
performance Python library for data extraction and
analysis for PDF documents, to ensure the expected
extraction of documents. In this alternative script,
the PDFs are converted without applying any mar-
gin rules into plain texts, and documents are subse-
quently reformatted using regular expression rules
during the text manipulation. By removing margin

constraints and employing direct text extraction,
the processing time for each document is signif-
icantly reduced. This improvement in through-
put enables the handling of larger datasets within
shorter time-frames. We then utilized regular ex-
pressions to define a regular pattern recognition
module. The illustrations are ignored and remain-
ing Arabic sentences did not require any intelligent
character recognition. This proved to be a com-
putationally efficient and time-effective method,
allowing us to have a more robust and efficient
text processing pipeline by addressing the specific
challenges posed by the unique characteristics of
Ottoman Turkish documents without using post-
OCR techniques.

3.3 Step 2: Text Standardization

Standardizing the extracted text is crucial for pro-
ponent analysis. Regular Expressions (Regex) are
employed to normalize the text, addressing incon-
sistencies such as varying orthographic represen-
tations and diacritics. This step ensures a uniform

65



text format, facilitating more reliable processing
and analysis.

We utilize various techniques for noise filter-
ing, which involves removing non-essential compo-
nents, segmenting relevant categories, and cleans-
ing the data. In this step, pattern recognition is
integral in identifying and extracting specific pat-
terns within the text, such as dates, names, or other
structured information. In the following subsec-
tions we discuss the challenges we faced in the text
standardization step and explain how we overcome
these challenges.

3.3.1 Normalization and Mapping

Some Arabic characters in the documents are oc-
casionally interpreted as Private Use Area (PUA)
characters (Unicode Consortium, 2021), as well as
some Latinized Turkish words loaned from Arabic.
This misinterpretation leads to poor identification
of Arabic text using standard Unicode ranges. Ini-
tially, a function was used to eliminate characters
with ordinals above 128; however, this approach
inadvertently removed both standard Arabic and
PUA characters, resulting in incomplete and inac-
curate text standardization.

In historical documents, it is plausible for PUA
characters to appear due to various factors such
as font issues, scanning techniques, OCR software
limitations or non-standard encoding. This is where
character normalization technique plays a pivotal
role as it standardizes various representations of
characters to ensure document uniformity. This
hurdle is overcome through normalization process
where different forms of the same letter, such as
accented characters, are converted to a common
form. We developed a mapping system to identify
and replace PUA characters with their equivalent
standard Arabic variations. If a character had no
equivalent, it was removed. As character normal-
ization applied the text, UNICODE range matching
for character level precision became operable. Fig-
ure 2 depicts this process on example words.

Figure 2: Normalization process of PUA characters by
mapping.

In addition to the normalization of Arabic charac-
ters, we also mapped accented Latin letters that are
no longer present in the current Turkish alphabet to
their equivalents. This is for reducing the number
of unknown words due to the accented letters when
adapting a model developed for modern Turkish to
Ottoman Turkish. The outcome of this operation is
visible in Figure 3 which shows a segment from the
Sebilürreşad magazine and its processed version.

3.3.2 Right-to-Left Scripts (RTL)
Arabic sentences posed another significant chal-
lenge for regex patterns, as well. Since Arabic is
written from right to left, sentences containing both
Latinized Turkish and Arabic text intertwined caus-
ing data-pollution as can be seen in the example in
Figure 4a. We debated whether to filter out Ara-
bic sentences altogether. However, Arabic texts
often provide relevant references, adding potential
contextual value to the documents. Therefore, it is
concluded that more viable options should be em-
ployed by preserving Arabic sentences to increase
document enhancement.

Therefore, we implemented a method to move
Arabic sentences to a new line and separate them
from Turkish sentences. The effect of this method
is visible in Figure 4b. This approach ensures that
each language maintains its correct orientation and
readability in different lines. Additionally, this sep-
aration makes it easier to define pattern rules for
different orthographies between Turkish and Ara-
bic. By segmenting Arabic characters, we effec-
tively isolated the two languages, preserving regex
pattern functionality.

3.3.3 Optional Translation Feature
After this segmentation process, Arabic sentences
were intended to be translated through an API to
enhance the contextual information of the main
text. However, directly integrating the translated
Arabic sentences within the main document proved
to be resource-intensive and time-consuming. Prior
to API translation, the script needed to encapsulate
Arabic sentences individually to flag their positions
for replacing the original text with the translations.
While processing the document in chunks helped
manage memory and reduce complexity, the NFA-
like backtracking and segmentation functionality
increased inefficiency, led to incorrect translations,
and caused frequent hits to the API rate limit.

Consequently, we proposed a new method: seg-
menting Arabic sentences into a separate text doc-

66



Figure 3: A segment from the PDF document of the 628th issue, 25th volume of Sebilürreşad magazine (on the left)
and its processed version (on the right). Note the omission of the Arabic sentence and normalization of accented
letters (in underlined words) in the processed version.

(a) PDF extraction by non-RTL formatting causes divergence.

(b) Expected format for the text in Figure 4a.

Figure 4: The effect of RTL formatting.

ument and removing them from the primary text
documents. These sentences’ line order and text
positions were mapped back to the main text sepa-
rately. This segmentation allowed Arabic sentences
to be translated independently, ensuring that con-
textual information relevant to the corresponding

Turkish sentences was preserved without requiring
complex filtering over the primary text documents.
This approach significantly enhanced performance
and simplified the rule-setting process for text ma-
nipulation. In the current version of the corpus
however, we do not use this feature. Hence, the cor-
pus does not include the translations of the Arabic
sentences in it. At present, we exclude all Arabic
texts from the corpus and only include Latinized
Ottoman Turkish texts in it for the sake of simplifi-
cation.

4 Evaluation on the Named Entity
Recognition Task

As the result of the data extraction and cleaning
steps explained in Section 3, we created a 17M-
token corpus of Ottoman Turkish texts. In its cur-
rent version, this corpus is too small to pre-train
a transformer-based language model from scratch.
Hence, in order to see its effect on a downstream
NLP task, we further pre-train a PLM which was
already pre-trained on various modern Turkish cor-
pora. Further or continual pre-training is a common
approach to train language models for low-resource
languages (Liu et al., 2021; Micallef et al., 2022).
By this way, we hope to benefit from the PLM’s
prior knowledge on Turkish words and grammati-
cal structures that are common in modern Turkish
and Ottoman Turkish.

In our preliminary experiments, we observed
that among different architectures and models,
BERTurk (Schweter, 2020), a Turkish language
model utilizing the BERT architecture and pre-
trained on modern Turkish text, reached the highest
F1 scores on several NLP tasks. Hence, we chose
to utilize BERTurk for our experiments. As in
the architecture of the original BERT base model,

67



BERTurk has 12 transformer layers. Each trans-
former layer consists of 12 attention heads and the
number of hidden units is 768. The model includes
a total of 110 million parameters that are fine-tuned
during the pre-training phase on a large corpus of
Turkish text data.

4.1 Continual Pre-training
We further pre-trained the BERTurk model with
sentences from our corpus (885K sentences in total)
to adapt it to the Ottoman Turkish context using
Masked Language Modelling with 15% masking
probability. We used Adam optimizer with the
learning rate of 5e-5 and the batch size is 32. The
training was performed on NVIDIA L4 accelerator
with 22.5 GB of GPU RAM and a system RAM of
62.8 GB.

4.2 Fine-tuning on the Named Entity
Recognition Task

As an extrinsic evaluation of our further pre-trained
BERTurk model, we utilize the model for the task
of named entity recognition (NER) on an Ottoman
Turkish NER dataset. The main reason behind this
choice is Ottoman Turkish being extremely low-
resource in terms of labeled datasets and we have
a newly annotated NER dataset for Ottoman Turk-
ish, albeit small. This dataset contains 462 training,
200 validation, and 200 test sentences sourced from
Servet-i Fünun journal. Due to the very rare oc-
currence of other entity types, annotation has been
performed only for PERSON and LOCATION entities.
The total number of PERSON entities in the dataset
is 386 while the number of LOCATION entities is
794. The inter annotator agreement (IAA) between
the two annotators of the dataset is measured as
0.82.

To observe the performance of our pre-trained
model on the NER task, we fine-tuned the model
on the mentioned Ottoman Turkish NER dataset
for 10 epochs using Adam optimizer with 5e-5
learning rate. We chose the batch size to be 32.
Table 1 shows the entity-level precision, recall and
F1 scores of BERTurk with and without the further
pre-training step on the test set of our NER dataset.
We see that there is only a slight improvement in the
performance when the model is further pretrained
on Ottoman Turkish texts.

4.3 Ablation Study
In order to analyze this outcome more deeply, we
performed an ablation study. Here, we further pre-

Models Precision Recall F1
BERTurk + PT 0.820 0.9 0.858
BERTurk 0.829 0.872 0.850

Table 1: Performance of the models on the test split of
the NER dataset.

Figure 5: NER task performance as the pre-training data
size grows

trained the model by incrementally increasing the
pre-training data, and at each stage, we fine-tuned it
on the NER data to test its performance on this task.
Figure 5 depicts the results of this study. We ob-
serve that the model reached its peak performance
after training with around 50% of the pre-training
corpus and started to decrease afterwards. Only
at the end of the pre-training we see a significant
increase in the performance. Table 2 shows the
exact scores in this case.

One possible reason for this mixed performance
might be our current approach to the inline Ara-
bic sentences or sentence parts in the corpus texts.
At present, we exclude all Arabic texts from the
main text as they are not relevant in a Turkish cor-
pus. Yet, deleting them might lead to gaps in the
meaning of text. We detect some cases in the cor-
pus where omitting Arabic phrases embedded in
Turkish sentences resulted in meaningless sentence
parts in the text. We believe dealing with the Ara-
bic parts of the corpus in a way that will not distort
the context will result in a cleaner corpus and better
pre-training performance.

One way of dealing with the Arabic parts in the
sentences could be facilitating machine translation
in reconstructing fragmented sentences and filling
in missing alphanumeric characters as proposed in
Section 3.3.3. However, the application of such
models is deterred by the intensive computational
resources required. Our preliminary analysis indi-

68



cated that approximately 8% of our data contains
Arabic sentences or sentence parts, with less than
.9% of it is being completely unusable. Thus, al-
though employing generative models to predict and
reconstruct the semantics and pragmatics of cor-
rupted Arabic sentences is highly beneficial, the
costs associated with this approach are outweighed
by the potential benefits, especially considering the
significant yet smaller proportion of Arabic sen-
tences compared to Turkish.

Models Precision Recall F1
BERTurk + 50% PT 0.833 0.896 0.864
BERTurk + 100% PT 0.820 0.9 0.858
BERTurk 0.829 0.872 0.850

Table 2: Performance of BERTurk when further pre-
trained on the half of the corpus and on the whole cor-
pus.

5 Conclusion

In this study, we presented the first foundations
of a clean Ottoman Turkish text corpus. We dis-
cussed the challenges faced in extracting clean text
data from documents with complex structures and
explained our approaches in handling these chal-
lenges. By domain adapting a PLM initially created
for modern Turkish to Ottoman Turkish using our
corpus, we demonstrated the potential to bridge
the gap between historical languages and modern
NLP frameworks. The preliminary experimental
findings highlight the effectiveness of our corpus
in enhancing NER tagging for Ottoman Turkish,
showcasing its utility for various NLP applications.

Our study takes one of the first steps towards
providing comprehensive resources for the state-
of-the-art natural language processing of Ottoman
Turkish. Future research directions may involve
expanding the corpus, refining preprocessing tech-
niques, and exploring additional NLP tasks to fur-
ther enrich the resources available in this historical
language.

Limitations

There are certain limitations of our study. Firstly,
the reliance on periodicals from a specific time
frame may introduce biases in the diversity of
language usage and topics covered. Additionally,
while efforts were made to ensure accuracy and
completeness, there may exist inherent errors or

omissions in the preprocessing step of the docu-
ments. Moreover, the current size of the corpus
might be too small to properly pre-train a BERT
model, so careful consideration should be given to
the scalability and generalizability of the model.

Ethics Statement

The source of text data used to create the corpus are
periodicals published between 1908 and 1925. As
these periodicals are publicly available and there
are no copyright restrictions associated with them,
we adhered to ethical guidelines in utilizing the
data for research purposes. In addition, Ottoman
Turkish is an extremely understudied language in
natural language processing. So, there is no risk of
exposure for our case.

References
Sumeet Agarwal, Shantanu Godbole, Diwakar Punjani,

and Shourya Roy. 2007. How much noise is too
much: A study in automatic text classification. In
Seventh IEEE International Conference on Data Min-
ing (ICDM 2007), pages 3–12. IEEE.

Jonathan P Bowen and Peter T Breuer. 1992. Occam’s
razor: The cutting edge of parser technology. Proc.
TOULOUSE, 92.

Ömer Çakır. 2014. II. Meşrutiyet Dönemi’nde
Sırat-ı Müstakîm ve Sebilürreşad dergilerine Türk
dünyasından gönderilen bazı mektuplar. Çankırı
Karatekin Üniversitesi Sosyal Bilimler Enstitüsü Der-
gisi, 5(1):237–246.

Abdullah Ceyhan. 1991. Sırat-ı müstakim ve Sebilür-
reşad mecmuaları fihristi, volume 55. Diyanet İşleri
Başkanlığı Yayınları.

Eva D’hondt, Cyril Grouin, and Brigitte Grau. 2017.
Generating a training corpus for ocr post-correction
using encoder-decoder model. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1006–1014.

Maud Ehrmann, Matteo Romanello, Simon Clematide,
Phillip Benjamin Ströbel, and Raphaël Barman. 2020.
Language resources for historical newspapers: the im-
presso collection. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
958–968, Marseille, France. European Language Re-
sources Association.

Abdullah Gündoğdu. 2008. Sırat-ı Müstakim (later,
Sebilürreşad) and the origin of the Japanese image
in Turkish intellectuals. Annals of Japan Association
for Middle East Studies, 23(2):245–259.

69

https://aclanthology.org/2020.lrec-1.121
https://aclanthology.org/2020.lrec-1.121


Ahmed Hamdi, Axel Jean-Caurant, Nicolas Sidère,
Mickaël Coustaty, and Antoine Doucet. 2020. As-
sessing and minimizing the impact of OCR quality
on named entity recognition. In Digital Libraries for
Open Knowledge: 24th International Conference on
Theory and Practice of Digital Libraries, TPDL 2020,
Lyon, France, August 25–27, 2020, Proceedings 24,
pages 87–101. Springer.

Rakesh Jain et al. 2021. Rule-based and relationship-
based extraction in network monitoring. Interna-
tional Journal of Data Processing, 18(3):121–139.

Lin Li, Tiong-Thye Goh, and Dawei Jin. 2020. How tex-
tual quality of online reviews affect classification per-
formance: A case of deep learning sentiment analysis.
Neural Computing and Applications, 32:4387–4415.

Zihan Liu, Genta Indra Winata, and Pascale Fung. 2021.
Continual mixed-language pre-training for extremely
low-resource neural machine translation. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 2706–2718, Online.
Association for Computational Linguistics.

Daniel Lopresti and Zhou Jiangying. 1997. Using con-
sensus sequence voting to correct ocr errors. Com-
puter Vision and Image Understanding, 67(1):39–47.
Cited on p. 34.

Kurt Micallef, Albert Gatt, Marc Tanti, Lonneke van der
Plas, and Claudia Borg. 2022. Pre-training data qual-
ity and quantity for a low-resource language: New
corpus and BERT models for Maltese. In Proceed-
ings of the Third Workshop on Deep Learning for
Low-Resource Natural Language Processing, pages
90–101, Hybrid. Association for Computational Lin-
guistics.

Vinay Nundloll, Koichi Watanabe, and Alan Cohen.
2021. Automating information extraction: Case
study of the Journal of Botany. Journal of Heliyon,
pages 4–6.

Michael Piotrowski. 2012. Natural Language Process-
ing for Historical Texts, volume 17 of Synthesis Lec-
tures on Human Language Technologies. Morgan &
Claypool.

Sarah Schulz and Jonas Kuhn. 2017. Multi-modular
domain-tailored ocr post-correction. In Proceedings
of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 2716–2726.

Stefan Schweter. 2020. BERTurk - BERT models for
Turkish.

Serge Sharoff. 2006. Creating general-purpose corpora
using automated search engine queries. In Marco
Baroni and Silvia Bernardini, editors, Wacky! Work-
ing Papers on the Web as Corpus. GEDIT, Bologna.
Cited on p. 25.

Vésteinn Snæbjarnarson, Haukur Barri Símonarson,
Pétur Orri Ragnarsson, Svanhvít Lilja Ingólfsdóttir,

Haukur Jónsson, Vilhjalmur Thorsteinsson, and Haf-
steinn Einarsson. 2022. A warm start and a clean
crawled corpus - a recipe for good language models.
In Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pages 4356–4366, Mar-
seille, France. European Language Resources Asso-
ciation.

Unicode Consortium. 2021. The Unicode® Standard:
Version 14.0 – Core Specification, version 14.0 edi-
tion. Unicode, Inc., Mountain View, CA.

70

https://doi.org/10.18653/v1/2021.findings-acl.239
https://doi.org/10.18653/v1/2021.findings-acl.239
https://doi.org/10.1006/cviu.1996.0502
https://doi.org/10.1006/cviu.1996.0502
https://doi.org/10.18653/v1/2022.deeplo-1.10
https://doi.org/10.18653/v1/2022.deeplo-1.10
https://doi.org/10.18653/v1/2022.deeplo-1.10
https://doi.org/10.5281/zenodo.3770924
https://doi.org/10.5281/zenodo.3770924
https://aclanthology.org/2022.lrec-1.464
https://aclanthology.org/2022.lrec-1.464
https://www.unicode.org/versions/Unicode14.0.0/
https://www.unicode.org/versions/Unicode14.0.0/

