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Abstract
SIGTYP’s Shared Task on Word Embedding
Evaluation for Ancient and Historical Lan-
guages was proposed in two variants, con-
strained or unconstrained. Whereas the con-
strained variant disallowed any other data to
train embeddings or models than the data pro-
vided, the unconstrained variant did not have
these limits. We participated in the five tasks
of the unconstrained variant and came out first.
The tasks were the prediction of part-of-speech,
lemmas and morphological features and fill-
ing masked words and masked characters on
16 historical languages. We decided to use a
dependency parser and train the data using an
underlying pretrained transformer model to pre-
dict part-of-speech tags, lemmas, and morpho-
logical features. For predicting masked words,
we used multilingual distilBERT (with rather
bad results). In order to predict masked charac-
ters, our language model is extremely small: it
is a model of 5-gram frequencies, obtained by
reading the available training data.

1 Introduction

Since word embeddings and the transformer archi-
tecture (Vaswani et al., 2017) found their way into
natural language processing (NLP), results for all
NLP tasks improved to unseen levels. Multilin-
gual pretrained language models like multilingual
BERT (Devlin et al., 2019) and XLM-RoBERTa
(Conneau et al., 2020) include word embeddings
for up to 100 languages. However, historical lan-
guages are most unlikely to be covered by these
models. Since corpora of historical languages are
limited in size and will most likely not grow any-
more (unless an archaeological miracle unearths
corpora yet unheard of) it will be difficult to include
these languages to existing or new language models.
In the SIGTYP Shared Task on Word Embedding
Evaluation for Ancient and Historical Languages
2024 (ST 2024)1, it is proposed to present word

1https://sigtyp.github.io/st2024.html

embeddings/models for 16 historical languages (cf.
Table 1) for which part of speech (POS) (task 1),
lemmas (task 2), morphological features (task 3)
must be predicted. A fourth task asks to unmask
masked words (task 4a) or characters (including
spaces and punctuation, task 4b). Both masked
words and masked characters can appear in an adja-
cent position. 10% of words and 5% of characters
are masked. The shared task comes in two vari-
ants, constrained and unconstrained. In the first
variant, only the data provided by the organizers
can be used to train models, the unconstrained task
allows any additional data to be used for training
and inference.

The data used for the Shared Task (Dereza et al.,
2024) has been compiled from various sources.
Old, Middle, and Early Modern Irish is taken from
Bauer et al. (2017), Doyle (2018), Ó Corráin et al.
(1997), Acadamh Ríoga na hÉireann (2017); the
Old Hungarian corpus origins from Simon (2014)
and HAS Research Institute for Linguistics (2018),
all other corpora have been published in version
2.12 of the Universal Dependencies project (UD)
(Zeman et al., 2023)2.

Both the training and the test data for the tasks 1,
2, and 3 is in CoNLL-U3 format, i.e. the documents
are segmented into tokenised sentences. The values
for POS and the morphological features in tasks
1 and 3 are the UPOS and UFeats sets of the UD
project. However not all languages use all possible
features, e.g., the Old French data does not use the
features Number or Person.

The Evaluation of the shared task is carried out
by the CodaLab platform (Pavao et al., 2023) and
uses the metrics shown in Table 2. In case of multi-
ple metrics per task an unweighted average of the
metrics was used.

We participated in all five tasks of the uncon-
2https://universaldependencies.org, (Nivre et al.,

2020)
3https://universaldependencies.org/format.html
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Language Code Script Dating corpus size in tokens corpus size in sentences
Train Valid Test Train Valid Test

Ancient Greek grc Greek VIII c. BCE – 110 CE 334,043 41,905 41,046 24,800 3,100 3,101
Ancient Hebrew† hbo Hebrew X c. CE 40,244 4,862 4,801 1,263 158 158
Classical Chinese‡ lzh Hanzi 47 – 220 CE 346,778 43,067 43,323 68,991 8,624 8,624
Coptic† cop Coptic I – II c. CE 57,493 7,282 7,558 1,730 216 217
Gothic got Latin V – VIII c. CE 44,044 5,724 5,568 4,320 540 541
Medieval Icelandic isl Latin 1150 – 1680 CE 473,478 59,002 58,242 21,820 2,728 2,728
Classical and Late lat Latin I c. BCE – IV c. CE 188,149 23,279 23,344 16,769 2,096 2,097
Latin
Medieval Latin latm Latin 774 – early XIV c. CE 599,255 75,079 74,351 30,176 3,772 3,773
Old Church Slavonic chu Cyrillic X – XI c. CE 159,368 19,779 19,696 18,102 2,263 2,263
Old East Slavic orv Cyrillic 1025 – 1700 CE 250,833 31,078 32,318 24,788 3,098 3,099
Old French fro Latin 1180 CE 38,460 4,764 4,870 3,113 389 390
Vedic Sanskrit san Latin 1500 – 600 BCE 21,786 2,729 2,602 3,197 400 400

(transcr.)
Old Hungarian* ohu Latin 1440 – 1521 CE 129,454 16,138 16,116 21,346 2,668 2,669
Old Irish sga Latin 600 – 900 CE 88,774 11,093 11,048 8,748 1,093 1,094
Middle Irish mga Latin 900 – 1200 CE 251,684 31,748 31,292 14,308 1,789 1,789
Early Modern Irish ghc Latin 1200 – 1700 CE 673,449 115,163 79,600 24,440 3,055 3,056

Table 1: Data (†Afro-Asiatic language family, ‡Sino-Tibetan, *Finno-Ugric; all other languages are from the
Indo-European language family)

Task Metrics
1 POS-tagging Accuracy @1, F1
2 Morph/ annotation Macro-average

of Acc. @1 per tag
3 Lemmatisation Acc. @1, Acc. @3
4a Filling masked words Acc. @1, Acc. @3
4b Filling masked chars. Acc. @1, Acc. @3

Table 2: Evaluation metrics

strained variant of the shared task, even though our
approach for filling mask characters does not use
any other data than the data provided by the orga-
nizers. Apart from task 4 (filling masked words)
we got the best results of all participants.

2 Related Work

Even though this shared task is not about depen-
dency parsing, POS tagging and lemmatisation are
often present in dependency parsing. The shared
task in dependency parsing 2018 (Zeman et al.,
2018) processed three historical languages, An-
cient Greek, Latin, and Old Church Slavonic, for
which annotated data was present in the Univer-
sal Dependencies project at the time. In many of
the approaches word embeddings were used (calcu-
lated on corpora of these languages using word2vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014), or fastText (Grave et al., 2018), the latter
already provides word embeddings for Latin. The
best results of the participants of the 2018 shared
tasks for historical languages are above 98% for

Latin, above 97% for Ancient Greek, and above
96% for Old church Slavonic for POS tagging.
Lemmatisation for these languages also performs
similarly well as modern languages. Sprugnoli
et al. (2021) also studied the creation and evalua-
tion word embeddings on Latin for the analysis of
language change. More recently, several large lan-
guage models for Classical Greek and Latin have
been provided by (Riemenschneider and Frank,
2023) who evaluated this models on POS-tagging
and lemmatisation (as this shared task), and depen-
dency parsing. Brigada Villa and Giarda (2023)
exploited models trained on Modern English to
parse Old English, similar to our approach.

Evidently, word embeddings can be used for
other tasks as well. E.g., Hamilton et al. (2016)
use word embeddings of earlier version of English
(but not going beyond the 1800s) to detect semantic
shifts in English.

3 Approaches

3.1 Tasks 1 – 3: Inference of POS, Lemmas,
and morphological features

Tasks 1, 2 and three consists of predicting the POS,
the lemma, and morphological features of 13 his-
torical languages (Table 1, exluding Old, Midlle
and Early Modern Irish).

In order to infer POS, lemmas, and morpholog-
ical features we used our syntactic dependency
parser UDParse4. This parser is an evolution of
UDpipe (Straka, 2018), which won the CoNLL

4https://github.com/Orange-OpenSource/udparse
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2018 Shared Task on dependency parsing (Zeman
et al., 2018). UDpipe is a graph parser using
pretrained word embeddings and embeddings of
POS and characters to take the context into ac-
count. Word embeddings are loaded before the
training, POS and characters embeddings are cal-
culated from the training data. In contrast to UD-
Pipe, UDParse uses word embeddings created by a
pretrained transformer instead of contextless word
embeddings produced by fastText5. This config-
uration proved to be very successful (Heinecke,
2020; Akermi et al., 2020), so we tried training
models for the 13 languages for which the depen-
dency syntax training data was available using dif-
ferent pretrained transformer models: bert-base-
multilingual-uncased (Devlin et al., 2019), XLM-
RoBERTa, GPT2 (Radford et al., 2019) and lan-
guage specific models like slavicBERT (Arkhipov
et al., 2019) for Old Church Slavonic and Old East
Slavic or heBERT6 for Ancient Hebrew. For the
training we used 60 epochs with an initial learn-
ing rate of 10−3, which decreased to 10−4 after
40 epochs7, batch size was 32. We then chose
for each language and each of task (1: POS, 2:
lemmas, 3: morphological features) the best under-
lying pretrained transformer model (cf. Table 3).
In nearly all cases XLM-RoBERTa produced the
best results on the validation dataset (even though
the difference, notably to multilingual BERT, was
very small). For some languages we used different
transformer models for tasks 1 to 3 to obtain the
best results (on validation data).

Note that the test-data provided by the organiz-
ers was already tokenized. This simplifies enor-
mously the tasks of assigning a POS, a lemma, or
morphological features, especially for (historical)
languages, which do not always come with stan-
dardized orthographies.

Even though the challenging fact was that most
of these languages are not covered by any of the
underlying pretrained language models, the results
(Table 5, columns 2, 3, and 4) for POS, lemmas,
and features, are well above 90% (except the lem-
mas for Old Hungarian and Old East Slavic). Partly
this can be explained by the fact that the modern de-
scendants of these languages are covered by XLM-
RoBERTa etc., and at least some of the words of the

5http://github.com/facebookresearch/fastText/
blob/master/pretrained-vectors.md

6https://huggingface.co/avichr/heBERT
7Decreasing the learning rate after 40 epochs is a result of

experimenting with UDParse at an earlier stage.

Language POS Lemma Morphological
code features
chu XLMR XLMR XLMR
cop XLMR GPT2 XLMR
fro XLMR mBERT XLMR
got XLMR mBERT mBERT
grc XLMR XLMR XLMR
hbo heBERT XLMR heBERT
isl XLMR XLMR XLMR
lat XLMR XLMR XLMR
latm XLMR XLMR XLMR
lzh mBERT mBERT mBERT
ohu XLMR XLMR mBERT
orv XLMR XLMR XLMR
san mBERT mBERT XLMR

Table 3: Best underlying pretrained transformer models
per language and task 1, 2, and 3. For language codes
please refer to Table 1.

historical languages still exist in the contemporary
languages. Thus, the modern languages might have
helped their ancestors. For comparison, UDParse
on modern languages, covered by XLM-RoBERTa
or mBERT has results8 only slightly above the re-
sults obtained on historical language (Table 4).

Code UPOS Lemma
fr 97.93 98.41
he 97.81 97.60
hu 97.07 95.51
ru 99.35 98.90

Code UPOS Lemma
fro 96.01 95.11
hbo 97.84 98.15
ohu 96.71 86.91
orv 94.99 89.23

Table 4: UDParse results for some modern languages
(left) compared to historical languages (right, results
copied from Table 5)

However, this does not explain the worse than
average results for Old Hungarian and Old East
Slavic whose descendants are also covered by
XLM-RoBERTa. Old East Slavic contains some
characters absent in its modern successors (Rus-
sian, Ukrainian and Belorussian). Similarly, the
Old Hungarian corpus contains diacritics and char-
acters not used in Modern Hungarian. This could
have played a role. For the above average results
for Coptic (not covered by XLM-RoBERTa and
written in an alphabet totally absent in the vocabu-
lary of XLM-RoBERTa), UDParse seems to exploit
the word and character vectors produced during
training to perform well in the lemmatisation.

8For the results for other languages cf. https:
//github.com/Orange-OpenSource/UDParse/blob/
master/doc/results.md
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Code UPOS Lemma Morph. Word Char Avg.
feat. fill fill

chu 97.00 92.70 96.49 2.80 66.77 71.15
cop 97.33 98.28 98.88 0.00 0.00 58.90
fro 96.01 95.11 98.33 3.28 62.77 71.10
got 96.47 95.41 96.23 2.67 74.59 73.07
grc 96.49 93.39 97.78 3.07 68.46 71.84
hbo 97.84 98.15 97.05 5.39 36.85 67.05
isl 96.88 97.23 95.92 3.42 66.45 71.98
lat 96.83 96.99 96.66 3.51 67.91 72.38
latm 98.79 98.69 98.83 4.73 72.93 74.79
lzh 93.76 99.91 96.24 6.10 0.00 59.20
ohu 96.71 86.91 96.62 6.31 66.52 70.61
orv 94.99 89.23 95.16 5.03 61.34 69.15
san 90.02 91.48 92.60 3.86 70.10 69.61
ghc — — — 3.29 58.09 30.69
mga — — — 4.03 53.38 28.71
sga — — — 2.79 58.38 30.59

Table 5: Results (Word filling failed for Coptic (cop)
and character filling missing for Coptic and Classical
Chinese (lzh). For Old Irish (sga) Middle Irish (mga),
and Early Modern Irish (hgc), only data for the word
and character filling tasks was available)

All results for tasks 1, 2, and 3 are well above
the baseline provide by the shared task’s organisers
(Table 6) with the exception of the lemmatisation
of Old Hungarian (ohu).

Code UPOS Lemma Morph. feat
chu 3.64 3.09 11.42
cop 2.35 2.54 51.47
fro 4.44 3.18 70.06
got 2.74 3.46 77.28
grc 6.16 2.33 72.68
hbo 3.77 2.86 54.26
isl 2.88 3.45 60.09
lat 4.44 4.90 78.49
latm 1.56 1.65 67.89
lzh 2.85 1.10 52.66
ohu 3.12 –2.53 73.42
orv 4.66 4.79 69.60
san 0.65 7.24 84.26

Table 6: Difference with respect to the baseline

3.2 Task 4a: Filling masked words

The task of filling one or several single words in
a sentence was the most challenging task for his-
torical languages. Consequently, our results are ex-
tremely low (Table 5, column 5). This is probably
more due to the chosen approaches than to the fact
that the pretrained transformers have been trained
little or not at all on these languages. We tried
two classical approaches, an encoder (distilbert-

base-multilingual-cased, Sanh et al. (2019)) and an
encoder/decoder (facebook/mbart-large-50, Tang
et al. (2020)). In the first case we used Hug-
gingface’s AutoModelForMaskedLM, the AdamW
(Loshchilov and Hutter, 2019) optimiser with a
learning rate of 5 ∗ 10−5, a batch size of 8 and
early stopping, which stopped the training after 4
to 6 epochs depending on the language. For the
training process, we did not use the masks pro-
vided in the training corpus, but masked words
randomly with a probability of 15%. In the sec-
ond case (with mBART) we used Huggingface’s
MBartForConditionalGeneration (other hyper-
parameters were identical).

The difference between distilBERT and mBART
was marginal, possibly linked to a problem not
identified before the shared task’s deadline. We
submitted the results of the first approach. How-
ever since this approach only predicts a single
token (in the sense of distilBERT’s vocabulary)
for each masked word instead of a word (in most
cases two or more tokens) our prediction was
wrong for all masked words which are repre-
sented by more than one distilBERT token. In
other words, masked words which are not in dis-
tilBERT’s vocabulary, could not be predicted with
this approach. The second approach, based on
MBartForConditionalGeneration, did indeed
return most times a word (or more) for a masked
word, but we had cases where only a space was
obtained.

3.3 Task 4b: Filling masked characters

For this subtask we chose a very old idea: a
simple n-gram count and applying the most fre-
quent n-gram which matches the masked char-
acter and its context. We trained our model by
counting all n-grams in the unmasked part of
the training corpus. We then looked for every
masked character in test sentences and tried to
find the frequency of all n-grams which include
the masked character (we experimented with 3-
grams and 5-grams, the latter proved to work
much better): for instance, forthe following string
“Ne voloi? aler nule part.”9 which includes a
masked character, we take the frequencies of all
the 5 character windows around the masked char-
acters, including spaces (“ ”) from the training

9Taken from the Old French training corpus. The shared
task data used “[_]” as placeholder for masked characters. We
replaced it with a single character not occurring anywhere in
the data. For a better readability we use “?” here.
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corpus. “?” is the masked character. The letter in
inverted colors is the candidate letter:

1. “oloi?” →
• “oloi e ” which has frequency of 6 in the

training corpus,
• “oloi l ” (frequency of 3),
• “oloi r ” (8),
• “oloi t ” (15, at this stage, this 5-gram is

the best match. It is therefore kept while
the other 5-grams are discarded)

2. “loi? ” →
• “loi e ” (2),
• “loi l ” (2),
• “loi r ” (6),
• “loi s ” (1),
• “loi t ” (22, new best match so far)

3. “oi? a” →
• “oi a a” (1),
• “oi e a” (17),
• “oi f a” (1),
• “oi l a” (3),
• “oi r a” (3),
• “oi s a” (14),
• “oi t a” (57, retained),
• “oi z a” (8)

4. “i? al” →
• “i t al” (3); discarded since with “oit a”

above we have found a more frequent
match already

5. “? ale” →
• “ ale” (3),

• “ a ale” (1),
• “ e ale” (3),
• “ i ale” (2),
• “ l ale” (1),
• “ n ale” (2),
• “ r ale” (6),
• “ s ale” (2),
• “ t ale” (17),
• “ z ale” (1),

• “ « ale” (1); all discarded

In this example “oi t a” is the most frequent
replacement for one the 5-grams which contain
the masked character (“oi? a”). So, we can
replace the masked character by “t” to obtain
“Ne voloit aler nule part.”. Note that at least in
this example for each of the five 5-ngrams the best
match is the one where the masked character is the
same (“t”), but this was not always the case.

The results of this approach can be found in
Table 5, column 6. For time reason we could not
implement the needed post processing for Classical
Chinese (lzh) to rebuild the Hanzi characters from
the decomposed characters in the train/validation
and test data. Apparently we did not submit the
Coptic data to the evaluation server, but a run after
the deadline resulted in an accuracy of 62.26%.
Interestingly, the score for Ancient Hebrew (hbo)
is only half as good as for the other languages.
Since the number of different characters of Ancient
Hebrew is rather low (cf. Table 7), the reason of this
bad result must be found elsewhere. Surprisingly
the evaluation of the validation corpus, resulted in
around 60% accuracy.

lang. characters
code
san 37
cop 41
got 50
fro 64
hbo 67
latm 77
mga 77
sga 78

lang. characters
code
ghc 92
lat 116
isl 118
ohu 120
chu 124
orv 156
grc 176
lzh 318

Table 7: Number of different characters in the fill
masked characters test data. Many languages contain
accentuated characters, digits, Classical Latin (lat) con-
tains citations in Greek which account for the unex-
pected high number of different characters.

We think a more word-context-aware approach
could have improved the results, even a simple
word based bi- or trigram. For instance in the Old
French validation corpus is the following masked
character “se je ai dite [_]ne response”. Our ap-
proach finds for the 5-gram “ ?ne ” the 5-gram
“ ne ” (the most frequent) instead of the correct

“ u ne ”. Due to the approaching deadline, we did
not have the time to implement and test this.
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4 Conclusion

We successfully used rather old and well-
established techniques to provide a solution to
the five tasks of this year’s SIGTYP shared task.
Putting aside the failed results for filling-masked-
words task, we got very good results for POS
tagging, lemmatization, and morphological fea-
ture assignment, which are as good as for mod-
ern languages and well above the baseline. We
are not aware of any state-of-the-art values for
filling masked characters, however, even though
our results are first placed in the shared task, they
are probably perfectible. For modern languages,
word embedding or transformer-based methods,
e.g. such as CharacterBERT, (El Boukkouri et al.,
2020) will probably yield much better results.
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Ben Moshe, Gözde Berk, Riyaz Ahmad Bhat, Erica
Biagetti, Eckhard Bick, Agnė Bielinskienė, Kristín
Bjarnadóttir, Rogier Blokland, Victoria Bobicev,
Loïc Boizou, Emanuel Borges Völker, Carl Börstell,
Cristina Bosco, Gosse Bouma, Sam Bowman, Adri-
ane Boyd, Anouck Braggaar, António Branco,
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Kuyrukçu, Aslı Kuzgun, Sookyoung Kwak, Kris
Kyle, Veronika Laippala, Lorenzo Lambertino, Ta-
tiana Lando, Septina Dian Larasati, Alexei Lavren-
tiev, John Lee, Phuong Lê Hồng, Alessandro Lenci,
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149



šová, Larraitz Uria, Hans Uszkoreit, Andrius Utka,
Elena Vagnoni, Sowmya Vajjala, Socrates Vak, Rob
van der Goot, Martine Vanhove, Daniel van Niekerk,
Gertjan van Noord, Viktor Varga, Uliana Vedenina,
Giulia Venturi, Veronika Vincze, Natalia Vlasova,
Aya Wakasa, Joel C. Wallenberg, Lars Wallin, Abi-
gail Walsh, Jonathan North Washington, Maximilan
Wendt, Paul Widmer, Shira Wigderson, Sri Hartati
Wijono, Seyi Williams, Mats Wirén, Christian Wit-
tern, Tsegay Woldemariam, Tak-sum Wong, Alina
Wróblewska, Mary Yako, Kayo Yamashita, Naoki
Yamazaki, Chunxiao Yan, Koichi Yasuoka, Marat M.
Yavrumyan, Arife Betül Yenice, Olcay Taner Yıldız,
Zhuoran Yu, Arlisa Yuliawati, Zdeněk Žabokrtský,
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