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Abstract

This paper discusses the organisation and find-
ings of the SIGTYP 2024 Shared Task on Word
Embedding Evaluation for Ancient and Histor-
ical Languages. The shared task was split into
the constrained and unconstrained tracks and
involved solving either three or five problems
for 12+ ancient and historical languages be-
longing to four language families and making
use of six different scripts.

There were 14 registrations in total, of which
three teams participated in each track. Out of
these six submissions, two systems were suc-
cessful in the constrained setting and another
two in the unconstrained setting, and four sys-
tem description papers were submitted by dif-
ferent teams.

The best average results for POS-tagging, lem-
matisation and morphological feature predic-
tion were 96.09%, 94.88% and 96.68% respec-
tively. In the mask filling problem, the winning
team could not achieve a higher average score
across all 16 languages than 5.95% at the word
level, which demonstrates the difficulty of this
problem. At the character level, the best aver-
age result over 16 languages was 55.62%.

1 Introduction

The importance of NLP for studies in the classics is
growing, as can be seen by the variety of technolo-
gies, digital text resources, and applications being
developed to support research tasks in this field
in recent years (Hawk et al., 2018; Neidorf et al.,
2019; Stifter et al., 2021; Johnson et al., 2021). As
the value of machine learning for historical linguis-
tics is becoming more apparent, academic interest
in word embedding models for use in these con-
texts is also increasing (Bamman and Burns, 2020;

Singh et al., 2021; Hu et al., 2021; Riemenschnei-
der and Frank, 2023; Dereza et al., 2023b).

Since the rise of word embeddings, their evalu-
ation has been considered a challenging task that
sparked considerable debate regarding the opti-
mal approach. The two major strategies that re-
searchers have developed over the years are intrin-
sic and extrinsic evaluation. The first amounts
to solving specially designed problems like se-
mantic proportions, or comparing the similarity
of machine-generated words or sentences against
human-generated examples. The second one fo-
cuses on solving downstream NLP tasks, such as
sentiment analysis or question answering, probing
word or sentence representations in real-world ap-
plications.

In recent years, sets of downstream tasks called
benchmarks have become a very popular, if not
default, method to evaluate general-purpose word
and sentence embeddings. Despite the general
trend towards multilinguality and ever-growing at-
tention to under-resourced languages, ancient and
historical languages remain under-served by em-
bedding evaluation benchmarks, and the goal of
this shared task is to bridge this gap. We argue that
there is a need for a universal multilingual evalua-
tion benchmark for embeddings learned from an-
cient and historical language data and view this
shared task as a proving ground for it.

2 Related work

Starting with decaNLP (McCann et al., 2018)
and SentEval (Conneau and Kiela, 2018), general-
purpose multitask benchmarks for Natural Lan-
guage Understanding (NLU) have become increas-
ingly common in the literature, and new ones
are reported regularly (Wang et al., 2019, 2020;
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Shavrina et al., 2020; Xu et al., 2020; Kurihara
et al., 2022; Urbizu et al., 2022; Berdicevskis
et al., 2023). However, even the largest multi-
lingual benchmarks, such as XGLUE, XTREME,
XTREME-R or XTREME-UP (Hu et al., 2020;
Liang et al., 2020; Ruder et al., 2021, 2023), only
include modern languages.

The EvaLatin evaluation campaign (Sprugnoli
et al., 2020, 2022) attracted some embedding-
based solutions for POS-tagging, lemmatisation,
and morphological feature prediction challenges
(Wróbel and Nowak, 2022; Mercelis and Keers-
maekers, 2022), but it did not specifically focus on
embedding evaluation. Moreover, it was confined
to Latin, which is the English of the ancient world
in terms of language resources and technologies
available. Individual scholars focusing on Latin
and Ancient Greek mostly adopt Large Language
Models (LLMs) together with their evaluation tech-
niques through downstream tasks (Bamman and
Burns, 2020; Singh et al., 2021; Yamshchikov
et al., 2022; Riemenschneider and Frank, 2023;
Krahn et al., 2023), while those working with less-
resourced languages tend to translate intrinsic eval-
uation datasets from modern languages or create
their own diagnostic tests (Tian et al., 2021; Hu
et al., 2021; Dereza et al., 2023a). However, this
is not a universal rule: the latest paper on distribu-
tional semantic models of Ancient Greek proposes
a new dataset for intrinsic evaluation, AGREE
(Stopponi et al., 2024), while some recent papers
featuring medieval French and Spanish adopt trans-
former models and test them on Named Entity
Recognition (Grobol et al., 2022; Torres Aguilar,
2022).

3 Setup and Schedule
For the purposes of our evaluation, languages
are distinguished in accordance with ISO 639-3
codes1 except for Latin, which was manually sepa-
rated as discussed in Section 4. As a result, differ-
ent historical stages of Irish and Latin are treated
as distinct ‘languages’ in this paper. Such a dis-
tinction may be linguistically arbitrary, at least in
the case of certain texts. However, as Universal
Dependencies (UD) (Zeman et al., 2023) corpora
are separated in accordance with ISO 639 codes,
and the majority of data used in this evaluation was
drawn from this resource, the same system for dis-
tinguishing languages was utilised here.

1https://iso639-3.sil.org

The Shared Task involved three problems (here-
after also referred as ‘challenges’ and ‘downstream
tasks’) for 13 languages in the constrained setting
and five problems for 16 languages in the uncon-
strained setting. These languages belong to four
language families and use six different scripts (see
Table 1 for detailed information).

3.1 Subtasks
A. Constrained

1. POS-tagging
2. Lemmatisation
3. Morphological feature prediction

B. Unconstrained

1. POS-tagging
2. Lemmatisation
3. Morphological feature prediction
4. Filling the gaps (mask filling)

a. Word-level
b. Character-level

3.2 Timeline
The final timeline of the shared task is as follows.

05 Nov 2023: Release of training & validation data
02 Jan 2024: Release of test data
15 Jan 2024: System submission
22 Jan 2024: Paper submission
29 Jan 2024: Notification of acceptance
05 Feb 2024: Camera-ready submission

A tokenisation error was identified in the test
data for problem 4a and in the Classical Chinese
test data for problem 4b after the test data had
been released. It was promptly corrected on 12 Jan
2024.

4 Data
For problems 1-3, data from Universal Dependen-
cies v.2.12 (Zeman et al., 2023) was used for 11
ancient and historical languages, omitting corpora
which contained fewer than 1,000 tokens or for
which only a test set was available. Old Hun-
garian texts, annotated to the same standard as
UD corpora, were added to the dataset from the
MGTSZ website2 (HAS Research Institute for Lin-
guistics, 2018; Simon, 2014). Old Hungarian data
was edited to simplify complex punctuation marks

2http://oldhungariancorpus.nytud.hu/
en-codices.html
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Language Code Script Dating Train-T Valid-T Test-T Train-S Valid-S Test-S

Ancient Greek ♣ grc Greek 800 BCE – 110 CE 334,043 41,905 41,046 24,800 3,100 3,101

Ancient Hebrew ♢ hbo Hebrew 900 – 999 CE 40,244 4,862 4,801 1,263 158 158

Classical Chinese ♠ lzh Hanzi 47 – 220 CE 346,778 43,067 43,323 68,991 8,624 8,624

Coptic ♢ cop Coptic 0 – 199 CE 57,493 7,282 7,558 1,730 216 217

Gothic ♣ got Latin 400 – 799 CE 44,044 5,724 5,568 4,320 540 541

Medieval Icelandic ♣ isl Latin 1150 – 1680 CE 473,478 59,002 58,242 21,820 2,728 2,728

Classical & Late Latin ♣ lat Latin 100 BCE – 399 CE 188,149 23,279 23,344 16,769 2,096 2,097

Medieval Latin ♣ latm Latin 774 – early
1300s CE 599,255 75,079 74,351 30,176 3,772 3,773

Old Church Slavonic ♣ chu Cyrillic 900 – 1099 CE 159,368 19,779 19,696 18,102 2,263 2,263

Old East Slavic ♣ orv Cyrillic 1025 – 1700 CE 250,833 31,078 32,318 24,788 3,098 3,099

Old French ♣ fro Latin 1180 CE 38,460 4,764 4,870 3,113 389 390

Vedic Sanskrit ♣ san Latin
(transcr.) 1500 – 600 BCE 21,786 2,729 2,602 3,197 400 400

Old Hungarian ♡ ohu Latin 1440 – 1521 CE 129,454 16,138 16,116 21,346 2,668 2,669

Old Irish ♣ sga Latin 600 – 900 CE 88,774 11,093 11,048 8,748 1,093 1,094

Middle Irish ♣ mga Latin 900 – 1200 CE 251,684 31,748 31,292 14,308 1,789 1,789

Early Modern Irish ♣ ghc Latin 1200 – 1700 CE 673,449 115,163 79,600 24,440 3,055 3,056

Table 1: Language families: ♣ – Indo-European, ♢ – Afro-Asiatic, ♠ – Sino-Tibetan, ♡ – Finno-Ugric. The
‘Code’ column refers to an ISO 639-3 code with the exception of Medieval Latin. The ‘Script’ column refers to the
scripts used in the dataset rather than the script(s) typical for a particular language. The ‘Dating’ column describes
the period when texts in the dataset were created, not when a particular language existed, cited according to the
electronic editions/corpora these texts come from. Finally, we provide the size of each subset in sentences (S) and
tokens (T).

masked src

Cé [MASK] secht [MASK]
im gin sóee suilgind, co bráth,
mó cech delmaimm, issed
ma do-ruirminn.

Cé betis secht tengtha im
gin sóee suilgind, co bráth,
mó cech delmaimm, issed
ma do-ruirminn.

Table 2: An example of training data for word-level gap
filling (problem 4a).

masked src

Cé betis se[_]ht te[_]gtha im
gin s[_]ee suilgind, co bráth,
mó cech[_]delmaimm,
isse[_] ma do-ruirminn.

Cé betis secht tengtha im
gin sóee suilgind, co bráth,
mó cech delmaimm, issed
ma do-ruirminn.

Table 3: An example of training data for character-level
gap filling (problem 4b).

used to approximate manuscript symbols. Tokens
which were POS-tagged PUNCT were altered so
that the form matched the lemma. Otherwise, no
characters intended to approximate orthographic
manuscript features were changed.

As the ISO 639-3 standard does not distinguish

between historical stages of Latin, as it does be-
tween other languages like Irish, but it was desir-
able to approximate this distinction for Latin, we
further split Latin data. This resulted in two Latin
datasets; Classical and Late Latin, and Medieval
Latin. This split was dictated by the composition
of the Perseus (Celano et al., 2014) and PROIEL
(Haug and Jøhndal, 2008) treebanks. As the Late
Latin Vulgata is mixed with the work of Classical
Latin authors in these treebanks, it was unfeasible
to separate Classical Latin from Late Latin, though
this may have been preferable. For the purposes of
this evaluation we use the ISO 639-3 code lat for
the Classical and Late Latin dataset, and we apply
the faux-code, latm, to Medieval Latin.

Historical forms of Irish were only included in
mask filling challenges, as the quantity of historical
Irish text data which has been tokenised and anno-
tated to a single standard to date is insufficient for
the purpose of training models to perform morpho-
logical analysis tasks. The Irish texts for problem 4
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were drawn from CELT3 (Ó Corráin et al., 1997),
Corpas Stairiúil na Gaeilge4 (Acadamh Ríoga na
hÉireann, 2017), and digital editions of the St. Gall
glosses5 (Bauer et al., 2017) and the Würzburg
glosses6 (Doyle, 2018). This provides a good case
study of how performance may vary across differ-
ent historical stages of the same language. Each
Irish text taken from CELT is labelled ‘Old’, ‘Mid-
dle’ or ‘Early Modern’ in accordance with the lan-
guage labels provided in CELT metadata. Because
CELT metadata relating to language stages and text
dating is reliant on information provided by a va-
riety of different editors of earlier print editions,
this metadata can be inconsistent across the corpus
and on occasion inaccurate. To mitigate compli-
cations arising from this, texts drawn from CELT
were included in the dataset only if they had a sin-
gle Irish language label and if the dates provided
in CELT metadata for the text match the expected
dates for the given period in the history of the Irish
language.

The upper temporal boundary was set at
1700 CE, and texts created later than this date were
not included in the dataset. The choice of this date
is driven by the fact that most of the historical lan-
guage data used in word embedding research dates
back to the 18th century CE or later, and we would
like to focus on the more challenging and yet unad-
dressed data. A detailed list of text sources for each
language in the dataset is provided on our GitHub.7

The resulting datasets for each language were
then shuffled at the sentence level and split into
training, validation and test subsets at the ratio of
0.8 : 0.1 : 0.1. Table 1 provides an overview of
the data: language family, script, dating, and the
size of each subset in sentences and tokens.

For word-level mask filling (problem 4a), 10%
of tokens in each sentence were randomly replaced
with a [MASK] token. Masked Language Models
(MLMs) conventionally mask 15% of tokens, and
Wettig et al. (2023) showed that an even higher
masking rate could be beneficial for models the
size of BERT-large.8 However, our dataset is sub-

3https://celt.ucc.ie/publishd.html
4http://corpas.ria.ie/index.php
5http://www.stgallpriscian.ie/
6https://wuerzburg.ie/
7https://github.com/sigtyp/ST2024/blob/main/

list_of_text_sources.md
8BERT (Devlin et al., 2019) was pretrained on Book-

Corpus, a dataset consisting of 11,038 unpublished books,
and English Wikipedia, which contains 6,780,526 arti-
cles as of February 2024: https://huggingface.co/

stantially smaller; moreover, sentences from his-
torical texts are often much shorter than in mod-
ern language due to their genre or purpose (e.g.
glosses, annals, charters etc.) For these reasons, it
was unfeasible to set the masking rate higher than
10% for the benchmark presented in this paper, par-
ticularly for the smallest datasets.

For character-level gap filling (problem 4b), sen-
tences were split into individual characters for lan-
guages with alphabetical writing systems. For
Classical Chinese, each Hanzi character was de-
composed into individual strokes with the help of
hanzipy9 package with the deepest decomposi-
tion level available, ‘graphical’. Then, 5% of char-
acters in each sentence were randomly replaced
with a [_] token.

There were no restrictions on masked
word/character position, and they could also
be consecutive. Some sentences could have more
than one masked word or character, and some
(shorter) ones could have none.

For problems 1-3, participants received the data
in CONLL-U format.10 The data for tasks 4a and
4b was released in tsv format, as shown in Tables 2
and 3.

After the end of the competition an updated ver-
sion of the dataset, including test labels, was pub-
lished on Zenodo11 (Dereza, 2024).

5 Evaluation

The shared task was hosted on CodaLab12 and will
remain available for post-competition submissions
for anyone who would be interested in testing their
approach on our data.

Our evaluation script calculates a score for each
problem in the task (POS-tagging, lemmatisation
etc.) per language with the metrics listed in Table 4.
Following the authors of GLUE and SuperGLUE
(Wang et al., 2019, 2020), we weigh each down-
stream task equally and provide a macro-average
of per-problem scores as an overall score for a lan-
guage. These scores are then averaged by CodaLab
and displayed on the leaderboard as Rank.

bert-large-uncased
9https://github.com/Synkied/hanzipy

10https://universaldependencies.org/format.
html

11https://doi.org/10.5281/zenodo.10655061
12Unconstrained track: https://codalab.lisn.

upsaclay.fr/competitions/16818
Constrained track: https://codalab.lisn.upsaclay.
fr/competitions/16822
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As is common in evaluation benchmarks (Wang
et al., 2020; Hu et al., 2020; Ruder et al., 2021),
we use multiple metrics for every problem (e.g.
F1 and Accuracy @1 for POS-tagging) except for
morphological annotation. This helps to smooth
out shortcomings that individual metrics may have
and to make the evaluation scenario more forgiv-
ing for complicated problems (e.g. combining Ac-
curacy @1 and Accuracy @3 for lemmatisation).
Accuracy @1 is usually referred to as simply ‘ac-
curacy’ and calculated as a ratio of correct predic-
tions to all predictions. While Accuracy @1 ver-
ifies if the top prediction is correct or not, Accu-
racy @3 is a milder metric that checks if the correct
answer is among top-3 predictions.

In the case of morphological annotation, we cal-
culate a macro-average of Accuracy @1 per tag,
and also introduce punishment for predicting incor-
rect features. For example, if a token should only
have two morphological features, and a system pre-
dicts the correct value for one, but the incorrect
value for the other, and then also suggests a fea-
ture that this token should not have at all, the score
achieved for this token will be 1 + 0− 1 = 0.

The evaluation scripts for both constrained and
unconstrained tracks are available on the Shared
Task GitHub.13

Task Metrics

POS-tagging Acc@1, F1
Detailed morphological
annotation

Macro-average
of Acc@1 per tag

Lemmatisation Acc@1, Acc@3
Filling the gaps (word-level) Acc@1, Acc@3
Filling the gaps (character-level) Acc@1, Acc@3

Table 4: Evaluation metrics.

6 Baseline Models

Baselines were provided for the three challenges
which are shared by both the constrained and un-
constrained tracks. As the aim of this Shared Task
was to provide a benchmark for embedding mod-
els, multi-layer perceptron network models were
developed to classify token data for each of the
three challenges. For the sake of ensuring simplic-
ity across the baseline models and results, model
design and input data format was kept as similar as
possible across all challenges. Slight variation was

13https://github.com/sigtyp/ST2024/

tolerated, however, depending on the requirements
of each specific challenge.

Specific models were trained for each of the 13
languages for both the POS-tagging and lemmati-
sation challenges. By contrast, the approach taken
for the morphological annotation challenge was to
train a language-agnostic model for each of the 44
morphological features used across all languages
in the dataset. This was found to produce better
results than using language specific models, partic-
ularly for morphological features which were not
common across all languages in the dataset. It
also reduced model training time, as the alterna-
tive would have been to create a discrete model for
each feature in use by each individual language, re-
sulting in significantly more models.

Early stopping was applied during training of
all models to avoid overfitting. Validation loss
was used as a metric to determine when early stop-
ping should be applied for POS-tagger and morpho-
logical feature analysis models. However, track-
ing validation accuracy instead was found to pro-
duce better results when training lemmatiser mod-
els. All POS-tagger and morphological feature
analysis models used 64 neurons per hidden layer,
as did lemmatiser models for smaller datasets, how-
ever, for languages with larger datasets this was
found to be insufficient. To avoid hampering per-
formance, lemmatiser models were created with up
to 1024 neurons per hidden layer, depending on the
size of the dataset.

Aside from the areas of divergence just men-
tioned, the design aspects common to all models
are as follows:

• Hidden layers: 2
• Activation: ReLU
• Dropout: 20%
• Optimiser: Adam (Kingma and Ba, 2015)

6.1 Data Preparation
Text data was pre-processed before being used in
model training for each of the three challenges.
Feature engineering was carried out on the input
data to ensure models would focus on the most
valuable information to inform morphological anal-
ysis. For each token which would be used as input
data across all three challenges, the following in-
formation was extracted:

1. The token itself (entirely in lower case letters)
2. The length of the sentence in which the token

occurs (number of tokens)
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3. The length of the token itself (number of letter
characters)

4. Whether the token occurred first in the sen-
tence (Boolean: true or false)

5. Whether the token occurred last in the sen-
tence (Boolean: true or false)

6. Whether the first letter of the token was capi-
talised (Boolean: true or false)

7. Whether the entire token was in all caps
(Boolean: true or false)

8. Whether the entire token was in all lowercase
(Boolean: true or false)

9. The first letter of the token
10. The second letter of the token
11. The third letter of the token
12. The last letter of the token
13. The second last letter of the token
14. The third last letter of the token
15. The previous token (entirely in lower case)
16. The following token (entirely in lower case)

In addition to the information listed above, lan-
guage codes were also extracted for the morpholog-
ical annotation challenge. This was necessary be-
cause the models themselves were not trained on in-
dividual languages for this particular challenge, but
language information would nevertheless be useful
in identifying morphological features. Once this
information had been generated for each token, it
was compiled and vectorised so that it could be
used as input data in model training and validation.

POS-tags and lemmata associated with each to-
ken were extracted from the training and validation
sets on a language-by-language basis. They were
then encoded and set aside to be used as labels
during model training. Generating label data for
morphological annotation models was more com-
plicated. First, the training data for all languages
was combined, as was the validation data for all
languages. Next, morphological features associ-
ated with each token across all of the combined lan-
guages were extracted. If a particular morphologi-
cal feature was not used by a given token, a value
of ‘_’ was generated to indicate non-use. In the
case of features common across many languages,
this resulted in relatively balanced training and val-
idation datasets. However, for uncommon features
this could result in less than 1% of labels having
values other than ‘_’. This would result models
simply learning to classify every token as ‘_’ for
that feature. To overcome this issue, if more than
80% of labels in any training or validation set had

the value ‘_’, the size of the dataset was reduced
by dropping random instances of ‘_’ values until at
least 20% of the dataset had labels with other val-
ues. Finally, these were encoded for model train-
ing.

7 Submitted Systems

There were 14 registrations in total, of which three
teams submitted to each track. Out of these six
submissions, two systems were successful in the
constrained setting and another two in the uncon-
strained setting, and four system description papers
were submitted by different teams.

We expected that participants would use the
same pre-training technique for every problem,
as is common in benchmarking, but the winning
teams applied different pre-training approaches to
different problems. At the same time, all partici-
pants leveraged various transformer architectures,
with RoBERTa (Liu et al., 2019) and its modifica-
tions being the most popular one.

While all participants outperformed our base-
lines for morphological feature prediction with the
best average result about 96% across 13 languages,
only the winning teams beat the baselines for POS-
tagging and lemmatisation, achieving average re-
sults of 95.25% and 93.67% respectively in the con-
strained setting, and 96.09% and 94.88% in the un-
constrained setting. Baselines were not provided
for the mask filling problems which formed a part
of the unconstrained track only. At the word level,
the winning team could not achieve a higher aver-
age accuracy across all 16 languages than 5.95%,
with the best result for an individual language be-
ing 16.9% for Medieval Icelandic. This outlines
the particular difficulty of this specific problem. At
the character level, the best average result over 16
languages was 55.62% and the best result for an
individual language was 74.59% for Gothic.

The combined results of the constrained and un-
constrained settings for problems 1-3 are provided
in Table 5. Table 6 shows results for problem
4 from the unconstrained track. Finally, average
results across all problems for each track can be
found in Table 7. These tables are provided in the
Appendix A.

7.1 Constrained Setting
For the constrained subtask, participants were not
allowed to use anything apart from the provided
datasets, but they could reduce and balance them
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if they saw fit. Our intention was to avoid any
cross-lingual transfer in the constrained setting, in-
cluding the transfer between the languages within
the provided dataset. However, we seem to have
failed to communicate this properly, and one of the
systems submitted to this track made use of cross-
lingual transfer within the dataset. Nevertheless,
the system with embeddings pre-trained for each
language individually achieved a better result.

7.1.1 Heidelberg-Boston

The winning team in the constrained track, repre-
senting Heidelberg University and Sattler College,
submitted a system that uses a combination of con-
textual word and character embeddings pre-trained
from scratch for each language in the dataset in-
dividually14 (Riemenschneider and Krahn, 2024).
Bringing together the hierarchical tokenisation
method (Sun et al., 2023) and the DeBERTa-V3
architecture (He et al., 2023) for POS-tagging
and morphological feature prediction, and using
character-level nanoT5 models (Nawrot, 2023) for
lemmatisation allowed the team to be on par with
the winners of the unconstrained track, achieving
the average score of 95.25%, 93.67% and 96.18%
across 13 languages for POS-tagging, lemmatisa-
tion and morphological feature prediction respec-
tively.

7.1.2 Team 21a

The team representing Allen Institute for Artificial
Intelligence pretrained a multilingual transformer
model, LiBERTus,15 that follows RoBERTa’s pre-
training architecture (Liu et al., 2019) and takes
inspiration from Conneau et al. (2020) regarding
the scaling of BERT models to multiple languages.
The authors point out that their model struggles
with multiword expressions in Coptic and Ancient
Hebrew (Miranda, 2024), which most likely refers
to composite characters and vowel markings. De-
spite the use of cross-lingual transfer, the model’s
average score falls about 10% behind that of the
winning team, reaching the average of 82.47%,
81.98% and 90.70% across 13 languages for POS-
tagging, lemmatisation and morphological feature
prediction respectively.

14https://github.com/bowphs/
SIGTYP-2024-hierarchical-transformers

15https://github.com/ljvmiranda921/LiBERTus

7.2 Unconstrained Setting
For the unconstrained subtask, participants could
use any additional data in any language, includ-
ing pre-trained embeddings and LLMs. Surpris-
ingly, the winning team did not make use of em-
beddings at all in problem 4b, although this shared
task was specifically dedicated to embedding eval-
uation. Still, we accepted this submission in full
as the variety of approaches the team tried may be
insightful for the reader.

7.2.1 UDParse
The winner of the unconstrained track is the UD-
Parse team from Orange Innovation. To solve
problems 1-3, the team trained their own UD-
Parse parser16 with the use of openly available
contextualised embeddings: multilingual mBERT
(Devlin et al., 2019), XLM-RoBERTa (Conneau
et al., 2020) and GPT2 (Radford et al., 2019), and
language-specific slavicBERT (Arkhipov et al.,
2019) for Old Church Slavonic and Old East Slavic
and heBERT (Chriqui and Yahav, 2022) for An-
cient Hebrew. The team used distilBERT (Sanh
et al., 2019) for word-level mask filling and an
embedding-less n-gram based model for character-
level mask filling (Heinecke, 2024). They achieve
the average score of 96.09%, 86.47% and 96.68%
across 13 languages for POS-tagging, lemmatisa-
tion and morphological feature prediction respec-
tively. Their average results across 16 languages
for word-level and character-level mask-filling are
3.77% and 55.62% respectively.

7.2.2 TartuNLP
The TartuNLP team from the University of Tartu
submitted a system based on the adapters frame-
work (Poth et al., 2023) that uses parameter-
efficient fine-tuning (Dorkin and Sirts, 2024).
They applied the same approach uniformly to all
tasks and 16 languages by fine-tuning stacked
language- and task-specific adapters for XLM-
RoBERTa.17 Although their system, achieving
the average of 85.67% and 88.14% across 13 lan-
guages in POS-tagging and morphological feature
prediction, is outperformed by UDParse, this is
probably explained by the effectiveness of the UD-
Parse morphological parser rather than by the qual-
ity of embeddings employed by either team. At the

16https://github.com/Orange-OpenSource/
udparse

17https://github.com/slowwavesleep/
ancient-lang-adapters/tree/sigtyp2024
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same time, TartuNLP outperforms UDParse in lem-
matisation by 8.41%, achieving 94.88% on average
across 13 languages, and in word-level mask filling,
achieving 5.95% on average across 16 languages.
The team’s results for character-level mask filling
generally concede 10-15% to the winner, which
highlights an interesting observation: a very sim-
ple character-based n-gram model can be more ef-
fective in a low-resource setting than cutting edge
approaches.

8 Discussion
Analysing results of the competition, we made a
few interesting observations. First of all, data
scarcity does have an effect on sequence labelling
tasks, such as POS-tagging and morphological fea-
ture prediction, but this effect is not as dramatic
as one might expect. Thus, the difference between
the smallest corpus of 21K tokens (Vedic Sanskrit)
and the biggest corpus of 599K tokens (Medieval
Latin) is only 9.5% on average for POS-tagging
and 11.3% for morphological feature prediction.
The same is true for lemmatisation; however, mod-
els trained for this task seem to be more susceptible
to orthographic variation and lexical variety in the
data, as well as to the morphological complexity
of a language. Thus, we see poorer results for lem-
matisation across all languages despite the milder
metrics.

Cross-lingual and cross-temporal (i.e. from
modern languages to their ancestors) transfer could
have played an important role in the systems that
used XLM-RoBERTa. However, Riemenschnei-
der and Krahn (2024) showed that similar results
can be achieved with pre-training on modestly
sized monolingual data without any transfer.

Mask filling tasks appeared to be much harder
than we expected even for SOTA models. The
problem could be attributable to the following rea-
sons, or to some combination thereof:

• High lexical variety
• Orthographic variation
• Relatively short sentences
• Code-switching (e.g. Latin in historical Irish

texts)
• Data scarcity (mask filling requires more

training data than, for example, POS-tagging)
• Composite characters and vowel markings in

Coptic and Ancient Hebrew
• Non-trivial character decomposition in Clas-

sical Chinese

9 Conclusion

The Shared Task on Word Embedding Evaluation
for Ancient and Historical Languages attracted par-
ticipants from five major research institutions and
was an important step towards creating a univer-
sal multilingual evaluation benchmark for embed-
dings learned from ancient and historical language
data. The best average results across 13 languages
for POS-tagging, lemmatisation and morphologi-
cal feature prediction were 96.09%, 94.88% and
96.68% respectively. However, participants only
managed to achieve an average of 5.95% at word-
level and 55.62% at character-level across 16 lan-
guages in more challenging mask filling tasks.

The dataset and evaluation scripts are available
on our GitHub,18 and the post-competition phase
on CodaLab will remain open for anyone interested
in testing their approach on our data. We are plan-
ning to further expand the dataset with more lan-
guages and add more downstream tasks in the next
release of the benchmark. We would appreciate
any suggestions and collaboration from both com-
puter scientists and historical linguists.
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A Shared Task Results

AVG chu cop fro got grc hbo isl lat latm lzh ohu orv san

POS-tagging

Baseline 92.76 93.36 94.98 91.57 93.73 90.33 94.07 94.00 92.39 97.22 90.91 93.59 90.33 89.37

Constrained HDB-BOS 95.25 96.57 96.92 93.10 95.41 96.39 96.68 96.08 95.54 98.43 92.92 95.98 94.46 89.71
Team 21a 82.47 94.62 42.65 85.14 93.48 93.49 27.26 93.85 92.43 94.41 81.79 94.42 91.23 87.32

Unconstrained UDParse 96.09 97.00 97.33 96.01 96.47 96.49 97.84 96.88 96.83 98.79 93.76 96.71 94.99 90.02
TartuNLP 85.67 66.35 60.99 94.51 92.72 95.72 94.15 96.67 95.86 98.79 83.28 75.14 75.67 83.83

Lemmatisation

Baseline 91.95 89.60 95.74 91.93 91.95 91.06 95.28 93.78 92.08 97.03 98.81 89.43 84.44 84.24

Constrained HDB-BOS 93.67 94.49 95.07 92.63 93.31 94.08 97.29 96.63 96.00 98.46 99.18 85.92 90.09 84.59
Team 21a 81.98 79.59 46.32 83.32 90.79 88.30 61.75 94.58 92.35 97.22 99.84 69.97 78.44 83.21

Unconstrained UDParse 86.47 59.56 74.78 92.47 92.81 94.02 96.85 97.96 96.74 98.91 99.96 63.43 68.55 88.10
TartuNLP 94.88 92.70 98.28 95.11 95.41 93.39 98.15 97.23 96.99 98.69 99.91 86.91 89.23 91.48

Morphological feature prediction

Baseline 33.32 85.07 47.41 28.27 18.95 25.10 42.78 35.83 18.17 30.94 43.58 23.20 25.55 08.34

Constrained HDB-BOS 96.18 96.04 98.60 97.87 95.32 97.46 97.46 95.29 95.17 98.68 95.52 96.30 95.00 91.58
Team 21a 90.70 94.06 80.47 94.08 93.96 96.50 71.20 94.79 93.31 97.98 85.98 94.64 92.16 90.00

Unconstrained UDParse 96.68 96.49 98.88 98.33 96.23 97.78 97.05 95.92 96.66 98.83 96.24 96.62 95.16 92.60
TartuNLP 88.14 67.14 74.86 98.01 92.40 97.33 95.14 95.53 95.91 98.83 88.75 75.62 80.00 86.33

Table 5: Results of the SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical
Languages for problems 1-3. The winner of each track (constrained / unconstrained) is marked in bold, and the
overall best result is underlined. The team names are as provided by participants, except HDB-BOS, which stands
for ‘Heidelberg-Boston’. For language code reference, see Table 1.

AVG chu cop fro got grc hbo isl lat latm lzh ohu orv san sga mga ghc
Mask filling: word-level

UDParse 3.77 2.80 0.00 3.28 2.67 3.07 5.39 3.42 3.51 4.73 6.10 6.31 5.03 3.86 2.79 4.03 3.29
TartuNLP 5.95 2.42 1.87 7.22 3.40 3.01 0.00 16.90 11.45 14.39 10.46 0.06 6.05 4.79 3.21 3.99 6.00

Mask filling: character-level

UDParse 55.62 66.77 0.00 62.77 74.59 68.46 36.85 66.45 67.91 72.93 0.00 66.52 66.77 70.10 58.38 53.38 58.09
TartuNLP 48.38 53.79 45.10 52.46 67.34 61.15 18.56 57.32 65.79 69.84 0.25 45.65 48.04 64.52 34.86 39.49 49.88

Table 6: Results of the SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical
Languages for problem 4. The winner is marked in bold, and the absolute best result across all languages is
underlined. The team names are as provided by participants. For language code reference, see Table 1.

AVG chu cop fro got grc hbo isl lat latm lzh ohu orv san sga mga ghc
Baseline 72.68 89.35 79.38 70.59 68.21 68.83 77.38 74.54 67.55 75.07 77.77 68.74 66.77 60.65 – – –

Constrained HDB-BOS 95.02 95.70 96.65 94.54 94.68 95.98 97.14 96.00 95.57 98.53 95.88 92.73 93.18 88.62 – – –
Team 21a 85.05 89.42 56.48 87.51 92.74 92.76 53.41 94.41 92.69 96.54 89.21 86.34 87.28 86.84 – – –

Unconstrained UDParse 61.93 71.15 58.90 71.10 73.07 71.84 67.05 71.98 72.38 74.79 59.20 70.61 69.15 69.61 30.59 28.71 30.69
TartuNLP 55.74 49.85 51.52 68.93 69.74 70.25 60.94 72.88 73.15 76.15 56.54 51.98 55.66 65.51 19.03 21.74 27.94

Table 7: Overall results of the SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical
Languages averaged across all problems for a given language. The winner for each setting is marked in bold. The
team names are as provided by participants, except HDB-BOS, which stands for ‘Heidelberg-Boston’. For language
code reference, see Table 1.
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