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Abstract

This paper lays the groundwork for initiating
research into Source Language Identification;
the task of identifying the original language
of a machine-translated text. We contribute a
carefully-crafted dataset of translations from
a typologically diverse spectrum of languages
into English and use it to set initial baselines for
this novel task. The dataset is publicly available
on our GitHub repository: damiaanr/gtnc.

1 Introduction

In an era of globalisation, the world is becoming
increasingly reliant on machine translation. But
as translation tools find their way into people’s
daily routines, they spark curiosity about previously
unexplored tasks, such as identifying the source
language of a machine-translated text. This is an
emerging challenge that has been referred to as
Source Language Identification (SLI, La Morgia
et al. 2023). The task has a relevant application in
forensics: knowledge of an individual’s native lan-
guage can offer crucial insights into their identity.

The problem of classifying the original language
of a machine-translated text inherently relies on
finding markers in the translation that hint at the
source (i.e., traces of ‘source language interfer-
ence’). In a first exploration of the field, Reij-
naers and Herrewijnen (2023) indicated that such
markers can be related to typological differences
between the languages involved in the translation
process, aligning with theory on human translation
(Teich, 2003, pp. 217–20). Typological features
contribute to the explainability of SLI models (Kre-
dens et al., 2020, pp. 17–19), a quality essential
in forensic contexts (Cheng, 2013, pp. 547–49).
However, owing to the novelty of the task, research
on SLI is hindered by a lack of sufficiently sized
datasets that contain machine translations from a
large number of languages into a single language.

This work aims to fill this gap to propel this
emerging area of research forward. We introduce
Google Translations from NewsCrawl (GTNC):
a unique dataset of state-of-the-art machine transla-
tions from a diverse set of languages into English,
offering a rich typological diversity to facilitate ex-
periments with a wide range of source languages.
The dataset spans 50 languages (listed below), con-
tains 7,500 sentences per language, and is repre-
sentative of real-world data given its domain (news
articles) and the translation engine used (Google
Translate). In addition, we offer initial baselines
for future work on SLI and thereby confirm the
feasibility of the task.

The next section of this paper will discuss exist-
ing datasets that may be used for SLI. In address-
ing their limitations, we propose a novel dataset in
Section 3, which we will then use in a series of ex-
periments in the section that follows. The findings
reiterate the value of a typological approach in SLI.

Included languages Amharic, Arabic, Bengali,
Bulgarian, Chinese, Croatian, Czech, Dutch, En-
glish (untranslated), Estonian, Finnish, French,
German, Greek, Gujarati, Hausa, Hindi, Hungarian,
Icelandic, Igbo, Indonesian, Italian, Japanese, Kan-
nada, Korean, Kyrgyz, Latvian, Lithuanian, Mace-
donian, Malayalam, Marathi, Odia, Oromo, Pashto,
Persian, Polish, Portuguese, Punjabi, Romanian,
Russian, Shona, Spanish, Swahili, Tagalog, Tamil,
Telugu, Tigrinya, Turkish, Ukrainian, and Yoruba.

2 Existing datasets

In the realm of human translation, several corpora
exist that contain translations from multiple lan-
guages into a single language, among which the
most popular is a collection of proceedings of the
European Parliament (Europarl, Koehn 2005). Nu-
merous studies have leveraged this corpus to pro-
vide empirical evidence for distinctions between
original and translated texts (Koppel and Ordan
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2011; Rabinovich and Wintner 2015; Volansky
et al. 2013), while some have explicitly aimed to
identify the European source language of these
documents (Rabinovich et al. 2017; van Halteren
2008). However, machine translations are divergent
from human translations in a systematic (Fu and
Nederhof, 2021) and measurable (van der Werff
et al., 2022) way: machine translations often ex-
hibit less morphological and lexical diversity (Van-
massenhove et al., 2021) and adhere more closely
to the structure of the source text (Ahrenberg,
2017). Moreover, machine translations are more
susceptible to source language interference (Toral,
2019, p. 279), particularly concerning the struc-
tural properties of the source language (Bizzoni
et al. 2020, p. 288; Popovic et al. 2023). As such, a
dataset of purely machine translations is desirable.

A handful of datasets exist that contain ma-
chine translations from multiple languages into
one. An example is DEMETR (Karpinska et al.,
2022), consisting of translations from ten, predomi-
nantly Indo-European languages1 into English. The
dataset was constructed to aid models in detecting
errors in machine translation output. As a result, a
downside is that the authors post-edited the transla-
tions to ensure their correctness, thereby potentially
eliminating valuable hints that pointed to the source
language of these texts. DEMETR is also modest in
size, comprising only 100 sentences per language.

Another example is MLQE-PE (Fomicheva et al.,
2022), containing the translations of 9,000 sen-
tences for each of five, diverse Indo-European lan-
guages2 into English. Apart from the small number
of classes, a drawback of this dataset is that the
samples vary widely in length across languages
(Figure 2a) and are often noisy (e.g., containing
URLs or HTML tags). This could potentially bias
SLI models towards relying on spurious features
instead of learning linguistic patterns purely gov-
erned by typology.

A comparison of the key features mentioned
above can be found in Table 1. Notably, all of
the above-cited datasets were created to evaluate
machine translation models. The mentioned lim-
itations thus only come to light when analysing
their usefulness for SLI, highlighting the need for a
dataset crafted specifically for the task. In the next
section, we will introduce such a dataset.

1DEMETR includes Chinese, Czech, French, German,
Hindi, Italian, Japanese, Polish, Russian, and Spanish.

2The relevant languages in MLQE-PE include Estonian,
Nepali, Romanian, Russian, and Sinhala.

Table 1: Comparison of dataset size characteristics for
usage in a many-to-one context.

Dataset # languages # sentences/lang.
DEMETR 10 100
MLQE-PE 5 9,000
GTNC 50 7,500

3 A dataset for SLI

In the subsections below, we will describe the steps
taken to build GTNC and will provide analyses into
its diversity and characteristics. The data and all
code used to generate them is available on GitHub.

3.1 Selecting the source texts

To enable a fair comparison of translations across
languages, we would ideally obtain a collection of
parallel source texts. Yet, while creating a ‘one-to-
many’ corpus is relatively straightforward, building
a many-to-one variant is practically impossible—it
would require the spontaneous utterance of identi-
cal content in each language. We therefore aimed
to make the data as parallel as possible.

On the presumption that the news genre is both
universal and relatively consistent worldwide, we
selected NewsCrawl (Kocmi et al., 2022) as the
repository for the source texts as it contains sen-
tences scraped from news articles in 59 languages
and is ‘parallel by year’. For GTNC, we sampled
from articles that appeared in 2020, ’21, and ’22,
with equal proportions of each year per language.

To enable analyses on the typological level, be-
yond the prediction of individual language labels,
we aimed to include a large number of languages
in GTNC. Ultimately, we selected 50 languages.3

English sentences were naturally left untranslated,
allowing for experiments with both translated and
original texts. Figure 1 illustrates the data’s diver-
sity, based on the World Atlas of Language Struc-
tures (WALS, Dryer and Haspelmath 2013). WALS
is a resource (wals.info) that contains typological
features for over 2,000 languages in tabular format.

3.2 Filtering the samples

The source sentences from NewsCrawl are already
shuffled and duplicate-free. We additionally re-

3We excluded 9 languages for the following reasons: noise
(Kinyarwanda and Somali), similarity to other languages in
light of dataset diversity (Bosnian, Serbian, Kazakh), lack
of available WALS features to enable effective typological
analyses (Afrikaans), lack of data (Tigre and Bambara), and
incompatibility with Google Translate (South Ndebele).
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Figure 1: Visualisation of language diversity in GTNC. Columns represent typological features and rows correspond
to languages (tagged by ISO 639-1 codes). Hues in columns denote different classes for each feature (overlap in
colour thus hints at languages being similar). White boxes indicate unset features. Blue lines act as indicators of
feature clusters, of which two are exemplified. Note that each row can intuitively be viewed as a language’s unique
‘signature’, with SLI involving the identification of these signatures through the artifacts they leave in a translation.

moved sentences that contained either of:

• A total of < 30 or > 400 characters.

• Non-alphanumerics, excluding ;:()!? and
equivalences in other languages.

• Characters that directly followed a period (.)
and were not a white space, a digit, a question
mark, another period, or an exclamation mark.

• Four consecutive, identical characters.

• Not .!? or equivalences in other languages as
the last character of the sentence.

• Latin alphabet characters for non-Latin-script
languages and vice-versa.

• Russian: Ukrainian-specific characters (as the
Russian corpus also contained Ukrainian text).

Furthermore, samples that were deemed ‘short’ or
‘bad’ by JusText (Pomikálek, 2011) were also left
out.4 JusText is a tool for removing boilerplate
content (i.e., frequently-used and non-unique text).

3.3 Translating and aligning by length
The samples were obtained by using Google Trans-
late.5 To avoid a spurious correlation between
sentence length and language class—which an
SLI-model could potentially exploit—we aimed
at maintaining a consistent average and median

4This step was not available for Amharic, Hausa, Japanese,
Oromo, Odia, Punjabi, Pashto, Shona, Tigrinya, and Chinese.

5The data were translated on June 20th, 2023, using the
v3 Translation API. To support the creation of this dataset,
Google granted the equivalent of USD $1, 000 in API credits.

length of 125 characters across all resulting English
translations. This was accomplished by selecting
sentences of specific lengths, determined by pre-
computed, frequentist character-to-character ratios
for every translation pair. Ultimately, 42, 667, 664
source characters were translated into 46, 460, 290
English characters (µ ≈ 126.42 characters per sam-
ple; not including the original English sentences
from NewsCrawl). The data over all languages is
normal (Figure 2b). As the resulting ratios might be
of interest to other studies in machine translation,
we included them as appendix material in Table 2.

Finally, all translated samples were scored by
Monocleaner (Sánchez-Cartagena et al., 2018) to
denote their ‘fluency’. These annotations are es-
sentially language-model scores, calculated as the
normalised perplexity of character 7-grams.
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(a) MLQE-PE: Separate length distributions per class.
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(b) GTNC: Normally distributed length across all classes.

Figure 2: Sample length across many-to-one datasets.
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4 Preliminary Experiments

In this section, we will use the English translations
from GTNC to predict the source language of both
individual samples and combinations of sentences.

4.1 Input representation

It is through parts of speech that hints about a lan-
guage’s structure—and thereby its typology—may
be obtained (Cutting et al., 1992, p. 133). Given the
structural nature of source language interference in
machine translation, we opted for part of speech
(PoS) tags as input features for our models.

When discerning between human-translated and
original texts, many studies have achieved good per-
formance by representing input texts as sequences
of PoS tags; generally by training an SVM (Hearst
et al., 1998) on frequency counts of PoS n-grams
(Baroni and Bernardini 2005, p. 268; Rabinovich
et al. 2017, p. 534; Pylypenko et al. 2021, p. 8603).
In a recent study, Popovic et al. (2023) did so for
machine translations and likewise indicated the ef-
ficacy of PoS tags, affirming their relevance in SLI.

Of the above, the work closest to ours is the pa-
per by Rabinovich et al. (2017). Its authors perform
source language identification on human-translated
texts and report an accuracy of 75.61% when con-
sidering samples from 14 source languages.

4.2 Model architecture and training

To enable the model to capture structural patterns
over longer distances, we conducted our experi-
ments using a bidirectional LSTM (Graves and
Schmidhuber, 2005) of 64 hidden dimensions. In
correspondence with the granularity of the data,
the LSTM operates on the sentence level, classi-
fying one sentence at a time. At every timestep,
it takes in a 70-dimensional input vector, consist-
ing of a one-hot encoding of a token’s PoS tag
(fine-grained), concatenated with a multi-hot vec-
tor that additionally encodes grammatical number,
tense, and person, pronominal type, definiteness,
verb form, and whether a word is possessive and/or
reflexive. All PoS and morphological tags were as-
signed by SpaCy (spacy.io) and adhere to the Uni-
versal Dependencies standard (Nivre et al., 2017).

The final hidden state of the LSTM is concate-
nated for every direction and subsequently pro-
cessed by a single feed-forward layer that directly
maps to output classes (i.e., possible source lan-
guages). To obtain a prediction for a group of
sentences, the logits of this layer are averaged over
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Figure 3: Performance over number of sentences.

all individually classified samples within the group.
We trained all LSTMs for 20 epochs and aver-

aged ‘best epoch’-results over three runs. Opti-
misation was done using Adam (Kingma and Ba,
2017) with a learning rate of 1e-3, a weight decay
parameter of 1e-4, and a batch size of 16. Data
was split into train and test fractions of 0.9 and 0.1
respectively.

4.3 Initial baseline results for SLI

Figure 3 illustrates the model’s accuracy as a func-
tion of the number of sentences.6 Individual sam-
ples were classified with an accuracy of 15.68%.
Note that we work with samples of only a few tens
of tokens in size (Figure 2b), while Rabinovich
et al. (2017) use samples of 1,000 tokens. Naturally,
the longer the document, the more opportunity the
source language has to leave its fingerprints. The
positive correlation between document length and
accuracy, as shown in Figure 3, provides evidence
that supports this tendency.

Inspired by the same work, we reconstructed a
phylogenetic tree using hierarchical agglomerative
clustering applied to the averaged confusion scores
for all Indo-European languages in GTNC. The
tree is shown in Figure 4. ‘Ward’s method’ was
used as linkage criterion (Ward, 1963). The model
was trained only on the 24 Indo-European source
languages present in GTNC (excluding English).
The tree provides intuitive evidence that the model
tends to confuse genetically similar languages, in-
dicating that the model exploits language-specific
patterns that align with their typology. This, in turn,
implies that the sentences in GTNC do indeed carry
typological features of their source counterparts,
rendering it a well-suited dataset for SLI. The tree-
figure additionally provides insight into the kind of
errors that the model makes. For example, when
contrasted with the frequently referenced ‘gold tree’
by Serva, M. and Petroni, F. (2008), Greek is be-
ing misclassified as being part of a branch with

6Ideally, the samples would have appeared in natural se-
quence, however, due to lack of data, they were drawn i.i.d.
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Figure 4: Reconstructed phylogenetic tree.

Bulgarian, among other Slavic languages in higher
branches. This suggests that the model mistakenly
relies on similar markers to discern between En-
glish translations from Greek and those from Slavic
languages. A logical next step for future research
would therefore involve a detailed analysis of the
specific markers employed by such models. Based
on the figure, a similar argument could be made for
Farsi, or the East Slavic sub-branch.

5 Conclusion and discussion

We showcased GTNC: a thoughtfully designed
dataset of Google-Translated news articles from
diverse languages into English. Our experiments
provide compelling evidence attesting to the feasi-
bility of SLI and emphasise the dataset’s suitability
for typological approaches—a quality that holds
significant promise on the path to explainable SLI.

As our goal was to introduce a dataset, we de-
liberately avoided a lengthy discussion on the un-
derlying phenomena that enable the identification
of a source language in the first place; i.e., a more
in-depth analysis of how ‘artifacts’ of the typology
of the original language are left behind in a trans-
lation. An exploration of the involved scientific
concepts, particularly ‘translationese’ (Nida and
Taber, 1969) and ‘interlanguage’ (Selinker, 1972),
and how they relate to machine translation, would
demand a thorough examination that is beyond the
scope of this short paper.

While GTNC encompasses a wide array of lan-
guages, the number of samples per language re-

mains limited. We encourage the community to
improve our dataset using the tools that we have
made available. Beyond SLI, the data may also
help other applications, such as evaluating Google
Translate’s performance across languages. We
hope that GTNC will additionally foster explo-
ration in new directions.
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Table 2: Character-to-character ratios of languages in GTNC, relative to English. n = 100.

Source = 100 chrs. Target = 125 chrs.
Length Ratio Realised length

µ σ/µ → ← µ σ/µ

Amharic (am) 155.7 .16 1.56 0.64 124.7 .15
Arabic (ar) 129.9 .15 1.30 0.77 128.1 .15
Bengali (bn) 111.4 .14 1.11 0.90 127.5 .14
Bulgarian (bg) 103.5 .12 1.04 0.97 124.8 .11
Chinese (zh) 421.7 .16 4.22 0.24 123.4 .19
Croatian (hr) 111.1 .12 1.11 0.90 122.6 .11
Czech (cs) 112.9 .15 1.13 0.89 126.3 .12
Dutch (nl) 94.7 .11 0.95 1.06 125.7 .10
English (en) 100.0 1.00 1.00 125.0
Estonian (et) 111.0 .15 1.11 0.90 123.9 .12
Finnish (fi) 104.6 .12 1.05 0.96 125.1 .12
French (fr) 92.0 .11 0.92 1.09 125.9 .10
German (de) 93.6 .11 0.94 1.07 126.3 .11
Greek (el) 91.9 .13 0.92 1.09 126.1 .11
Gujarati (gu) 108.1 .16 1.08 0.92 127.5 .14
Hausa (ha) 100.1 .16 1.00 1.00 123.4 .14
Hindi (hi) 117.1 .16 1.17 0.85 122.2 .13
Hungarian (hu) 106.8 .12 1.07 0.94 122.6 .12
Icelandic (is) 103.1 .12 1.03 0.97 126.8 .12
Igbo (ig) 109.3 .14 1.09 0.92 121.4 .16
Indonesian (id) 100.0 .14 1.00 1.00 125.3 .13
Italian (it) 97.1 .12 0.97 1.03 125.1 .10
Japanese (ja) 236.9 .28 2.37 0.42 142.9 .23
Kannada (kn) 102.3 .17 1.02 0.98 126.8 .15
Korean (ko) 229.0 .24 2.29 0.44 170.9 .18
Kyrgyz (ky) 101.9 .15 1.02 0.98 126.5 .14
Latvian (lv) 110.1 .11 1.10 0.91 124.9 .12
Lithuanian (lt) 107.9 .14 1.08 0.93 125.3 .12
Macedonian (mk) 100.2 .11 1.00 1.00 127.1 .11
Malayalam (ml) 87.6 .17 0.88 1.14 129.5 .14
Marathi (mr) 103.1 .13 1.03 0.97 122.5 .14
Odia (or) 106.6 .16 1.07 0.94 123.6 .14
Oromo (om) 82.3 .17 0.82 1.22 121.0 .17
Pashto (ps) 114.7 .13 1.15 0.87 127.7 .13
Persian (fa) 119.5 .13 1.19 0.84 127.4 .15
Polish (pl) 102.8 .13 1.03 0.97 124.5 .12
Portuguese (pt) 100.6 .11 1.01 0.99 122.4 .10
Punjabi (pa) 102.2 .14 1.01 0.99 125.0 .13
Romanian (ro) 97.3 .12 0.97 1.03 124.7 .11
Russian (ru) 106.7 .14 1.07 0.94 125.5 .13
Shona (sn) 100.5 .14 1.01 0.99 122.7 .14
Spanish (es) 95.2 .11 0.95 1.05 125.4 .10
Swahili (sw) 100.5 .14 1.00 1.00 124.1 .13
Tagalog (tl) 90.6 .12 0.91 1.10 127.0 .11
Tamil (ta) 89.0 .18 0.89 1.12 125.8 .15
Telugu (te) 105.9 .16 1.06 0.94 123.8 .14
Tigrinya (ti) 130.9 .20 1.31 0.76 127.9 .18
Turkish (tr) 104.7 .17 1.05 0.96 127.0 .13
Ukrainian (uk) 111.0 .13 1.11 0.90 123.3 .13
Yoruba (yo) 107.8 .16 1.08 0.93 124.8 .14
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