@inproceedings{arthur-etal-2024-multi,
title = "Bi-dialectal {ASR} of {A}rmenian from Naturalistic and Read Speech",
author = "Arthur, Malajyan and
Khurshudyan, Victoria and
Avetisyan, Karen and
Dolatian, Hossep and
Nouvel, Damien",
editor = "Melero, Maite and
Sakti, Sakriani and
Soria, Claudia",
booktitle = "Proceedings of the 3rd Annual Meeting of the Special Interest Group on Under-resourced Languages @ LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.sigul-1.27",
pages = "227--236",
abstract = "The paper explores the development of Automatic Speech Recognition (ASR) models for Armenian, by using data from two standard dialects (Eastern Armenian and Western Armenian). The goal is to develop a joint bi-variational model. We achieve state-of-the-art results. Results from our ASR experiments demonstrate the impact of dataset selection and data volume on model performance. The study reveals limited transferability between dialects, although integrating datasets from both dialects enhances overall performance. The paper underscores the importance of dataset diversity and volume in ASR model training for under-resourced languages like Armenian.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="arthur-etal-2024-multi">
<titleInfo>
<title>Bi-dialectal ASR of Armenian from Naturalistic and Read Speech</title>
</titleInfo>
<name type="personal">
<namePart type="given">Malajyan</namePart>
<namePart type="family">Arthur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Victoria</namePart>
<namePart type="family">Khurshudyan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karen</namePart>
<namePart type="family">Avetisyan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hossep</namePart>
<namePart type="family">Dolatian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Damien</namePart>
<namePart type="family">Nouvel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Annual Meeting of the Special Interest Group on Under-resourced Languages @ LREC-COLING 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maite</namePart>
<namePart type="family">Melero</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Soria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The paper explores the development of Automatic Speech Recognition (ASR) models for Armenian, by using data from two standard dialects (Eastern Armenian and Western Armenian). The goal is to develop a joint bi-variational model. We achieve state-of-the-art results. Results from our ASR experiments demonstrate the impact of dataset selection and data volume on model performance. The study reveals limited transferability between dialects, although integrating datasets from both dialects enhances overall performance. The paper underscores the importance of dataset diversity and volume in ASR model training for under-resourced languages like Armenian.</abstract>
<identifier type="citekey">arthur-etal-2024-multi</identifier>
<location>
<url>https://aclanthology.org/2024.sigul-1.27</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>227</start>
<end>236</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bi-dialectal ASR of Armenian from Naturalistic and Read Speech
%A Arthur, Malajyan
%A Khurshudyan, Victoria
%A Avetisyan, Karen
%A Dolatian, Hossep
%A Nouvel, Damien
%Y Melero, Maite
%Y Sakti, Sakriani
%Y Soria, Claudia
%S Proceedings of the 3rd Annual Meeting of the Special Interest Group on Under-resourced Languages @ LREC-COLING 2024
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F arthur-etal-2024-multi
%X The paper explores the development of Automatic Speech Recognition (ASR) models for Armenian, by using data from two standard dialects (Eastern Armenian and Western Armenian). The goal is to develop a joint bi-variational model. We achieve state-of-the-art results. Results from our ASR experiments demonstrate the impact of dataset selection and data volume on model performance. The study reveals limited transferability between dialects, although integrating datasets from both dialects enhances overall performance. The paper underscores the importance of dataset diversity and volume in ASR model training for under-resourced languages like Armenian.
%U https://aclanthology.org/2024.sigul-1.27
%P 227-236
Markdown (Informal)
[Bi-dialectal ASR of Armenian from Naturalistic and Read Speech](https://aclanthology.org/2024.sigul-1.27) (Arthur et al., SIGUL-WS 2024)
ACL
- Malajyan Arthur, Victoria Khurshudyan, Karen Avetisyan, Hossep Dolatian, and Damien Nouvel. 2024. Bi-dialectal ASR of Armenian from Naturalistic and Read Speech. In Proceedings of the 3rd Annual Meeting of the Special Interest Group on Under-resourced Languages @ LREC-COLING 2024, pages 227–236, Torino, Italia. ELRA and ICCL.