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Abstract
Low-resourced data presents a significant challenge for neural machine translation. In most cases, the low-resourced
environment is caused by high costs due to the need for domain experts or the lack of language experts. Therefore,
identifying the most training-efficient data within an unsupervised setting emerges as a practical strategy. Recent
research suggests that such effective data can be identified by selecting ’appropriately complex data’ based on its
volume, providing strong intuition for unsupervised data selection. However, we have discovered that establishing
criteria for unsupervised data selection remains a challenge, as the ’appropriate level of difficulty’ may vary depending
on the data domain. We introduce a novel unsupervised data selection method named ’Capturing Perplexing Named
Entities,’ which leverages the maximum inference entropy in translated named entities as a metric for selection. When
tested with the ’Korean-English Parallel Corpus of Specialized Domains,’ our method served as robust guidance for
identifying training-efficient data across different domains, in contrast to existing methods.

Keywords: Machine Translation, Data Selection, Unsupervised Method

1. Introduction

With the advent of large-scale models capable
of translating numerous languages in various di-
rections(Aharoni et al., 2019), the field of ma-
chine translation is entering a new era. For in-
stance, ’No Language Left Behind(NLLB Team
et al., 2022)’, which demonstrated outstanding
performance across a range of languages, was
trained on over 40,000 combinations of 200 lan-
guages. These models can be regarded as pre-
trained or foundational, as they have acquired gen-
eral knowledge for translation. Nevertheless, they
might sometimes face challenges when translat-
ing domain-specific data, despite their extensive
training on diverse datasets. To address this, fine-
tuning the pre-trained models with target domain
data can enhance their specialization(Fadaee and
Monz, 2018; Zan et al., 2022).

However, when addressing narrow or specialized
domains, the model must recognize words that are
relatively rare in general corpora. This presents a
challenge, as rare words often consist of sparse
tokens, such as those composed of single char-
acter tokens. Named entities, such as names of
persons, organizations, etc., frequently lack syn-
onyms, making it even more perplexing to build
contextualized representations, especially in nar-
row domains. This also underscores the point that
acquiring domain-specific translation data is costly,

This work was initially started in TelePIX, the previous
affiliation of the first author.

The code is available in the following hy-
perlink : https://github.com/comchobo/
Capturing-Perplexing-Named-Entities

as translators are required who possess not only
domain expertise but also familiarity with domain-
specific terminology.

To reduce data acquisition costs, one might
consider strategically identifying data for labeling
rather than making random selections. Several re-
searchers(Paul et al., 2021; Feldman and Zhang,
2020; Sorscher et al., 2022) have suggested var-
ious measurement methods aimed at selecting
’effective’ data for training. Some of those fo-
cus on ’Data difficulty,’(Paul et al., 2021; Meding
et al., 2022) identifying data that poses a chal-
lenge to a given model. ’Data forgettability(Toneva
et al., 2019)’ or ’Memorization(Feldman and Zhang,
2020)’ could serve as alternative criterion. How-
ever, these methods require a supervised setting
for selection, which may be inefficient for machine
translation. For instance, pruning a dataset is un-
likely to yield a better model if the dataset was
curated by domain experts (Maillard et al., 2023).

In an unsupervised setting, where training-
efficiency should be guessed without a label,
Sorscher et al. (2022) demonstrated that the Eu-
clidean distance between a data point’s represen-
tation and its cluster centroid can serve as an ef-
fective criterion for data selection. This approach is
supported by several concrete theoretical analyses
and provides straightforward guidance for data se-
lection. However, it remains uncertain whether this
criterion can be universally applied to parameter-
efficient fine-tuning methods(Houlsby et al., 2019;
Hu et al., 2022; Liu et al., 2022), which are com-
monly used. We observed that this measure-
ment method might not always align with training-

https://github.com/comchobo/Capturing-Perplexing-Named-Entities
https://github.com/comchobo/Capturing-Perplexing-Named-Entities
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Figure 1: A diagram illustrates our method, which utilizes a pre-trained multilingual model for machine
translation and a named entity recognition model that has been fine-tuned on the target language. Our
method comprises three steps: 1) capturing named entity tokens in the machine-translated sentences, 2)
calculating the inference entropy of those tokens, and 3) using the maximum entropy value as a measure
for selection.

efficiency, indicating that it may not consistently
correlate with performance improvement, despite
using the same pre-trained weights and dataset
size. These findings are detailed in Section 5.2.

We propose a novel method for unsupervised
data selection, which we refer to as ’Capturing Per-
plexing Named Entities’. Our method identifies data
that should be selected, by assessing the perplex-
ity of named entity tokens translated by a given
pre-trained model, as described in Figure 1. The
motivations behind this approach are as follow:

• Since named entities in domain-specific data
are challenging to translate without recogniz-
ing the complex patterns within the domain,
they represent one of the most difficult por-
tions to translate. Therefore, these entities
should be given priority for efficient domain
adaptation.

• The entropy score of a vocabulary distribu-
tion can indicate the model’s level of perplexity.
Given that synonyms for named entities are
unlikely to exist, the model should not exhibit
a high entropy score for named entities.

In several experiments targeting domain-specific
’Korean to English’ translation, our method con-
sistently identified the most training-efficient data.

This indicates that our measurement method has a
stronger correlation with performance improvement
compared to existing methods, which can vary sig-
nificantly across different data domains. For clarity
in our discussion, ’MDS’ will serve as the abbrevia-
tion for Measurement method for Data Selection,
and ’Value by MDS’ will denote the specific value it
calculates.

2. Related Works

2.1. Named entities in Machine
Translation

Translating named entities presents a significant
challenge in machine translation(Ugawa et al.,
2018), although it is crucial for delivering accu-
rate information(Tjong Kim Sang and De Meul-
der, 2003). Incorrect translations of named en-
tities, even with few errors, can lead to infor-
mation distortion. For instance, in Table 1, the
human-translated and machine-translated Korean
to English-sentences may seem similar. However, a
closer examination reveals differences in the individ-
ual’s name (Steven Strasburg), the league (Major
League Baseball), and an adjective (original). De-
spite these mistakes causing critical distortions, re-
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Languages Data Examples Scores

Korean 메이저리그 자유계약선수(FA) 최대어 투수 중 한 명인 스티븐 스트라스버
그가원소속팀워싱턴과 7년 2억4,500만달러에도장을찍었다.

COMET
90.92

English
Steven Strasburg, one of the biggest free agent (FA) pitchers in Major League
Baseball, has signed a 7-year, $ 245 million contracts with his original team
Washington.

ChrF++
67.94

Translated
Steven Strasberg, one of the biggest pitchers in the Major League Free
Agent (FA) league, signed a seven-year, $ 245 million contract with former
team Washington.

BLEU
27.38

Korean 고메스부상이후에버턴지휘봉을잡게된카를로안첼로티감독은지난주

"고메스의회복이순조롭게이뤄지고있다"고밝혔다.
COMET
90.99

English Manager Carlo Ancelotti, who took the helm of Everton after Gomez’s injury,
revealed last week that "Gomez’s recovery is going smoothly."

ChrF++
64.47

Translated Coach Carlo Ancelotti, who took over Everton after Gomes’ injury, said last
week, "Gomes’ recovery is progressing smoothly."

BLEU
24.86

Table 1: Example pairs with high COMET and ChrF++ scores but low BLEU scores were selected from
sports domain data. The first column represents the source (Korean), the target (English), and the
machine-translated (Korean to English) result. Words that may cause critical semantic distortions are
highlighted in red. The last column lists the evaluation scores of the machine-translated sentences,
calculated using three different metrics.

cent metrics such as COMET(Rei et al., 2020)1 and
ChrF++(Popović, 2015) show scores high enough
to be interpreted as satisfactory results. Given that
some rare named entities are more common in
domain-specific data, building precise contextual-
ized representations of data, which contains named
entities, is even difficult to capture by recent deep-
model based metrics.

One current approach to translate named enti-
ties precisely, integrates a knowledge base(Zhao
et al., 2020) or employs a transliteration model once
tokens are identified as named entities(Sharma
et al., 2023). However, these strategies often rely
on specialized algorithms that act as a workaround,
rather than directly boosting the translation model’s
performance or robustness. Multi-task learning
has demonstrated improvements in translation per-
formance when additional annotations for named
entities are provided(Xie et al., 2022). However,
this method may incur significantly higher labeling
costs.

2.2. Data Selection for Training
Throughout several training cycles, metrics such
as forgetting scores(Toneva et al., 2019), memo-
rization(Feldman and Zhang, 2020), diverse en-

1We used https://huggingface.co/Unbabel/
wmt22-comet-da to evaluate using COMET score.

sembles(Meding et al., 2022), and normed gradi-
ents(Paul et al., 2021) could be used as one of the
measurement methods for data selection (MDS).
EL2N, which quantifies the error magnitude, acts
as a training-free MDS. However, these methods
require annotations, limiting their application to su-
pervised settings only. As high-quality data has
been shown to significantly outperform large vol-
umes of low-quality or synthetic data(Maillard et al.,
2023), it is generally recommended that the data
with elaborate annotations should not be pruned.

In an unsupervised setting, one might explore
data uniqueness—for example, by measuring the
Euclidean distance between a data representation
and its centroid(Sorscher et al., 2022) (referred
to as Selfsup)—as a form of unsupervised MDS.
Measuring uncertainty, which could be estimated by
the entropy of the probability distribution, also might
be one of MDS(Brown et al., 1990; Wu et al., 2021).
However, empirical evidence suggests that when
training with small datasets, excessively unique
data (indicated by high values in MDS Selfsup) may
impede training(Sorscher et al., 2022). Therefore,
selecting data using the appropriate type of MDS
and determining the optimal value for MDS are
crucial. Nonetheless, establishing a standard for
this is challenging, to the best of our knowledge.

In machine translation, reference-free Quality Es-
timation (QE) methods, which operate as an un-

https://huggingface.co/Unbabel/wmt22-comet-da
https://huggingface.co/Unbabel/wmt22-comet-da
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supervised MDS, are gaining focus. One strategy
involves the intuition of ’seeking perplexing data’
by identifying attention distractions or uncertain-
ties(Peris and Casacuberta, 2018). More sophisti-
cated reference-free QE algorithms, which can be
implemented using deep models(Rei et al., 2021),
have demonstrated competitive results when com-
pared to their reference-requiring counterparts(Rei
et al., 2020). However, these methods, relying on
sentence embedding models, are often confounded
by even slight literal differences. We have observed
and discussed this phenomenon in Section 2.1.

3. Existing Methods

We consider the multilingual translation model as
a ’pre-trained model’, with subsequent training on
specific data referred to as ’fine-tuning’.

3.1. EL2N
Paul et al. (2021) previously used the average error
from several minimally trained models to identify
data that could not be easily trained in a few epochs.
This method requires paired data for its computa-
tions, hence categorized as a supervised approach.
Intuitively, the EL2N value from a pre-trained model
signifies an average error or incorrect confidence,
enabling the identification of the most problematic
data for a given model. If Y and Ŷ represent the
original and translated sentences in the target lan-
guage, respectively, EL2N can be described as
follows:

EL2N(Y , Ŷ ) = 1
L

∑L
l=1 ∥yl − ŷl∥

L = min(|Y |, |Ŷ |)
where ŷ represents the predicted token distribution,
and y is the actual label. Given that the translated
sentence may contain a different number of tokens
from original sentence, we chose the shorter token
length, represented by the cardinality of Y and Ŷ .

3.2. Entropy
Brown et al. (1990) demonstrated that uncertainty
in prediction is quantifiable by entropy. Various
studies have reported performance improvements
by employing entropy to select data for training(Jiao
et al., 2021; Wu et al., 2021). Building on this con-
cept, we considered entropy as an indicator of the
pre-trained model’s perplexity regarding specific
sentences, selecting them as candidates for fine-
tuning. The entropy of the vocabulary distribution
is defined as:

H(ŷ) = 1
V

∑
i∈V −P (ŷi)logP (ŷi)

where V is a vocabulary. We adopted averaged
entropy as MDS which is as follows:

AvgEntropy(Ŷ ) = 1
L

∑L
l=1 H(ŷl)

where L is a length of the sentence Ŷ .
However, given that the optimal entropy level

may differ by token types, such as adjectives
or synonyms, we hypothesized that employing
AvgEntropy as an MDS might lead the model to
become either overconfident or overly cautious.

3.3. Selfsup
Sorscher et al. (2022) observed that within clus-
tered image representations, data points distant
from their centroids often exhibit unique patterns,
which have high Euclidean distance to the cen-
troid. However, its effectiveness as an MDS for
fine-tuning translation models remains unverified.
To adapt this approach to the language domain, we
utilized sentence embeddings for the source data
and applied k-means clustering. If xA represents
a sentence embedding of source language data x,
clustered around centroid A, then the MDS Selfsup
can be described as:

Selfsup(xA) = ||xA −A||
If the sentence embeddings are well-aligned,

MDS Selfsup is expected to capture training-
efficient data for fine-tuning. Although recent sen-
tence embedding models demonstrate decent per-
formance, their accuracy in domain-specific data
remains questionable. Our findings provide support
for this doubt, as illustrated in Table 1, where the
COMET score failed to detect semantic distortion.

3.4. Reference-free COMET
Rei et al. (2021) proposed a Reference-free
COMET, which was trained to estimate quality with-
out reference, only with source and translated sen-
tences. Reference-free COMET was designed to
predict quality annotations using a sentence em-
bedding model. Its output range is 0 to 1, where
1 denotes the best quality. We expected that
Reference-free COMET as an MDS would be in-
versely proportional to the training-efficiency since
it would detect examples that the model could not
translate well.

4. Proposed Method

Our hypothesis posits that complex patterns pos-
sessed by named entities are essential for fine-
tuning. This is particularly true in domain-specific
machine translation, where rare words and ex-
pressions occur frequently but are not present in
the general domain. By incorporating these char-
acteristics into data selection, we measured the
maximum entropy while translating named entities,
which are unlikely to have alternative answers. In
summary, our method specifically targets perplex-
ing named entities.
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// Dataset X in source language consists
of sentences x

// fpre is pre-trained multilingual model
// d is an index of segments.
// len is an amount of data to sample.

1 def PruneByMDS(X, d, len = 2000):
2 X ′ ← empty dictionary
3 for x in X:
4 ŷ ← fpre(x)
5 X ′[’Value by MDS’].insert(fMDS(ŷ))
6 X ′[’Sentence’].insert(x)
7 X ′.sortby([’Value by MDS’])
8 X ′ ← X ′.split_into(4)
9 X ′ ← X ′.select(d)

10 X ′ ← X ′.sample(len)
11 return X ′

Figure 2: Pseudo code for the experiment data
preparation. We sorted and split the data into 4
segments based on each value by MDS. Then, we
sampled 2,000 sentences from each segment for
fine-tuning.

PerEnts(Ŷ ) = max({H(ŷx)|x ∈ NE(ŷ)})
where NE(ŷ) represents a set of named entity to-
ken indices in the machine-translated sentence ŷ,
predicted by a named entity recognition model. We
will use the abbreviation ’PerEnts,’ to refer to our
method.

5. Experiments

5.1. Settings for experiments
We attempted to evaluate our method, which is one
of the unsupervised MDSs, with various datasets.
We sorted the data based on the values of each
MDS and divided it into four segments to verify that
each MDS is proportional to training-efficiency. If it
is proportional and invariant across data domains,
it can be regarded as ’robust guidance’ for unsu-
pervised data selection. We also conducted multi-
ple data samplings for fine-tuning to precisely as-
sess the capabilities of MDSs. This process follows
the same cycle as described in the pseudo-code,
shown in Figure 2. Note that the highest segment
index (3 in our case) represents data subsets with
the highest values according to each MDS.

Models and Datasets As a pre-trained transla-
tion model, we used ’NLLB-1.3B(NLLB Team et al.,
2022)2’ multilingual model. We then employed the
’Korean-English Parallel Corpus of Specialized Do-
mains(Flitto, 2021) 3’, published by the National

2https://huggingface.co/facebook/
nllb-200-distilled-1.3B

3This research (paper) used datasets from ’The Open
AI Dataset Project (AI-Hub, S. Korea)’. All data informa-

Data Domain Train / Test
Medical 200k / 25k
Travel 160k / 20k
Law 120k / 15k
Sports 160k / 20k

Table 2: The number of sentences of ’Korean-
English Parallel Corpus of Specialized Domains’
dataset, released with train/test splits.

Information Society Agency of South Korea, as the
domain-specific dataset. Given the scarcity of open
datasets in the Korean language available for pub-
lic download, we adopted this approach despite its
limited access being restricted to nationals. There
are ’Law, Medical, Travel, Sports’ domains, show-
ing each distribution in Table 2. The ’Law’ domain
consists of precedents from the Supreme Court of
South Korea. The ’Sports’ domain includes vari-
ous articles about international sports events. The
other domains were compiled from domain-specific
articles, thus containing names of locations (in the
Travel domain) or names of medicines (in the Med-
ical domain).

Training and Hyperparameters Given the po-
tential variability in domain-specific translation,
such as extremely unique domains or low-resource
environments, we randomly sampled 2,000 sen-
tences from each segment, regarding the pre-
defined seeds. We employed IA3 training(Liu
et al., 2022) to simulate practical fine-tuning envi-
ronments. For hyperparameters, we set the epoch
to 10, and the batch size to 32, and searched for
the best learning rate from three options [1e-2, 2e-
2, 3e-2] during each fine-tuning trial. Given that
fine-tuning with a low-resource dataset might re-
sult in high variance between models, we took the
average scores of three fine-tuned models, using
sampled data with 3 different seeds.

Implementations of MDSs Since our method
requires named entity recognition model in
the target language, which is English in our
case, we employed the ’d4data/biomedical-ner-
all4’ fine-tuned model to capture entities in the
’medical’ domain dataset, such as names of
medicines. For datasets in other domains, we used
’RashidNLP/NER-Deberta5’ model, trained with
Few-NERD dataset(Ding et al., 2021), which we
conjectured far more comprehensive than CoNLL-
2003 dataset(Tjong Kim Sang and De Meulder,

tion can be accessed through ’AI-Hub (www.aihub.or.
kr)’.

4https://huggingface.co/d4data/
biomedical-ner-all

5https://huggingface.co/RashidNLP/
NER-Deberta

https://huggingface.co/facebook/nllb-200-distilled-1.3B
https://huggingface.co/facebook/nllb-200-distilled-1.3B
www.aihub.or.kr
www.aihub.or.kr
https://huggingface.co/d4data/biomedical-ner-all
https://huggingface.co/d4data/biomedical-ner-all
https://huggingface.co/RashidNLP/NER-Deberta
https://huggingface.co/RashidNLP/NER-Deberta
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MDSs Average Performance
BLEU ChrF++ COMET

Not fine-tuned 21.42 45.57 76.39
Random 33.71 56.90 80.71
Supervised method
EL2N (Paul et al., 2021) 34.01 57.25 80.84
Unsupervised methods
Entropy (Jiao et al., 2021) 33.64 57.05 80.86
Selfsup (Sorscher et al., 2022)* 33.85 57.11 80.81
Reference-Free COMET (Rei et al., 2021)* 33.88 57.22 80.92
PerEnts (ours) 34.09 57.19 80.82

Table 3: Average test-set performance across 4 domains. We divided the dataset for each domain into four
segments after sorting by each MDS and sampled 2,000 sentences three times from each segment. Given
our conjecture that invariance across data domains is an important characteristic of an unsupervised
MDS, we reported scores fine-tuned with subsets from either the highest (3) or lowest (0), denoted with
an asterisk) segment. The highest scores among the unsupervised MDSs are highlighted in bold.

Figure 3: The scores for each segment index across the four domains. The best BLEU scores among
the segment indices were marked with a black star. Experimental results demonstrated that our method
consistently identified the most training-efficient data by selecting the highest segment (3), whereas other
methods varied by data domain.

2003). To implement MDS Selfsup, we used
the monolingual sentence embedding model ’BM-
K/KoSimCSE-roberta-multitask6’, which is special-
ized for the Korean (source) language. Lastly,
’Unbabel/wmt23-cometkiwi-da-xl’ was employed for
Reference-Free COMET(Rei et al., 2021)7.

6https://huggingface.co/BM-K/
KoSimCSE-roberta-multitask

7https://huggingface.co/Unbabel/
wmt23-cometkiwi-da-xl

5.2. Main Results
We employed BLEU(Post, 2018), ChrF++(Popović,
2015), and COMET scores(Rei et al., 2020)8 for
evaluation, as presented in Table 3. The fine-tuned
models were evaluated using pre-split test sets. It is
important to note that, identifying the optimal value
for each MDS requires access to every segment
index, necessitating a complete parallel corpus for
comparison. To simulate a practical strategy where
access is limited, we reported averaged scores
by selecting either the highest (3) or lowest (0)
segment index. For instance, the domain-average

8We used https://huggingface.co/Unbabel/
wmt22-comet-da to evaluate using COMET score.

https://huggingface.co/BM-K/KoSimCSE-roberta-multitask
https://huggingface.co/BM-K/KoSimCSE-roberta-multitask
https://huggingface.co/Unbabel/wmt23-cometkiwi-da-xl
https://huggingface.co/Unbabel/wmt23-cometkiwi-da-xl
https://huggingface.co/Unbabel/wmt22-comet-da
https://huggingface.co/Unbabel/wmt22-comet-da
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The numbers of Correctly Guessed / Newly Guessed named entities
EL2N Entropy Selfsup Reference-Free PerEnts

(Supervised) COMET (Ours)
Law 652/3842 721/3788 589/3837 690/3732 702/3968
Travel 2242/17389 2079/17693 1610/18159 2035/17686 1944/18554
Sports 1822/8087 1841/8785 1875/8648 1900/8736 1922/8442

Table 4: We observed the number of named entities that models could guess for each domain test dataset.
Among the words translated by the NLLB model for each test set, named entities (NEs) were stored and
classified as a ’Pre-trained Named Entities’. Additionally, NEs observed in the learning datasets created
by each method were stored and classified as an ’Observed Named Entities’. If an NE inferred from a
model’s test data is not present in either the Pre-trained or Observed, it is categorized as ’Newly Guessed’.
Furthermore, if such a guess is accurate, it is classified as ’Correctly Guessed’.

score for EL2N was determined by selecting seg-
ment index 3, while for MDS Selfsup, segment in-
dex 0 was chosen.

Our method, referred to by the abbreviation ’Per-
Ents,’ achieved the highest BLEU score among the
MDSs, even surpassing the supervised method
(EL2N). Although other existing methods outper-
formed ours for COMET and ChrF++ scores, we
propose that the BLEU score might be the most
critical metric for domain-specific translation due to
its ability to capture semantic distortion, as demon-
strated in Table 1.

Additionally, to assess the robustness of the
MDSs, we calculated the average scores across
four different domains, as presented in Figure 3.
The best performing segment index, selected by
other MDSs, was neither 0 nor 3, suggesting that
these MDSs are sensitive to the data domain. We
conjectured that this observation could complement
the assertion by Sorscher et al. (2022) that ’The
best selection strategy depends on the amount
of initial data.’ Even though the same pre-trained
weights and the same volume of data were used for
each fine-tuning procedure, the data domain could
play an important role as a factor. Furthermore, our
selection of a well-regarded monolingual sentence
embedding model9 for implementing MDS Selfsup
did not result in decent performance, supporting
the idea that the sentence embedding model could
be confounded by slight literal differences.

5.3. Experiments for Generalizability
Fine-tuning on overly complex or specialized do-
mains can lead to overfitting, which undermines
generalization. Particularly, our method, which
identifies data with complex named entities, may be
prone to overfitting. To verify this, we evaluated the
generalizability of each model trained with data gen-
erated by MDSs. Initially, for each test set, words

9https://huggingface.co/BM-K/
KoSimCSE-roberta-multitask

MDSs Averaged Performance
BLEU ChrF++ COMET

PerEnts 34.09 57.16 80.82
*Mean 33.94 57.19 80.82
Selfsup 33.85 57.11 80.81
*Multilingual 33.3 56.78 80.02

Table 5: The results of MDS variants. ’*Mean’ de-
notes that it averaged entropy instead of choos-
ing max in our method(PerEnts), and ’Multilingual’
adopted a multilingual sentence embedding model
for ’Selfsup’. Both variants used the same segment
index to achieve the highest average performance.

translated by the NLLB model were stored and clas-
sified as a ’Pre-trained Named Entities’. Similarly,
named entities identified in the training datasets
selected by each MDSs were cataloged as an ’Ob-
served Named Entities’. While translating test data,
a new named entity predicted by a model, which
is not in Pre-trained or Observed Named Entities,
it is considered ’Newly Guessed’. If such a guess
is accurate, it is deemed ’Correctly Guessed’. The
counts of Newly Guessed and Correctly Guessed
named entities are presented in Table 4.

We could observed that our method do not just
memorize named entities in a given train dataset.
Although obvious correlations between ’Correctly
Guessed Named Entities’ were not exposed, our
method can help a model to guess correct named
entities, without an abuse generating named enti-
ties.

5.4. Additional Study

Since the intuition for each MDS could be imple-
mented in various forms, we implemented some
MDS variants. e.g., adopting average entropy in-
stead of max for our method. We also employed
multilingual sentence embedding model ’sentence-

https://huggingface.co/BM-K/KoSimCSE-roberta-multitask
https://huggingface.co/BM-K/KoSimCSE-roberta-multitask
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transformers/LaBSE(Feng et al., 2022)10’ for imple-
menting MDS Selfsup. The results are reported
in Table 5. Although there were less significant
degradations, it can be argued that our method’s
focus on finding maximum entropy more effectively
captures the ’unlearned parts.’ and it reveals a lim-
itation in the representation ability of multilingual
sentence embedding models.

6. Limitations

We attempted to verify our method under various
situations and data domains. However, it’s impor-
tant to note that our experiments were conducted
with a single translation direction and a single data
size (2k). We acknowledge that testing on multi-
ple translation directions and diverse amounts of
datasets could potentially provide a more compre-
hensive validation of MDSs, including our method.
Additionally, the impact of utilizing named entities
may vary by language, e.g., languages that use
uppercase letters. Although we recognize the im-
portance of diverse environments and theoretical
analysis, limited experiments were done based on a
strategic decision to verify generalizability for prac-
tical usage. We believe that these limitations could
be interesting topics for future research, exploring
which measurement method can generally affect
the performances of fine-tuned models.

7. Conclusion

To identify the most training-efficient data for anno-
tating in domain-specific machine translation, we
explored various measurement methods that could
serve as a benchmark for selection, collectively
referred to as ’MDS.’ We recognized named enti-
ties as ’complex patterns’ requiring highly confident
prediction. As a result, we introduced ’Capturing
Perplexing Named Entity’ as one of the MDSs. This
approach has seen effective as a guidance for se-
lecting training data, even in unsupervised settings.
Despite the common challenge of identifying effec-
tive data for annotation in deep learning—a chal-
lenge that we could not directly address in terms
of the relationship between memorizable patterns
and generalizability due to a lack of theoretical anal-
ysis—we hope our findings will pave the way for
more in-depth research in the future.
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