
SIGUL2024 Workshop, pages 337–344
21-22 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

337

TELP – Text Extraction with Linguistic Patterns

João Cordeiro1, Purificação Silvano2, António Leal2, Sebastião Pais1

1University of Beira Interior and NOVA LINCS, 2University of Porto and CLUP
1Caminho do Biribau, 6200-060 Covilhã, Portugal
2Via Panorâmica, s/n, 4150-564 Porto, Portugal

1{jpcc, sebastiao}@ubi.pt
2{msilvano, jleal}@letras.up.pt

Abstract
Linguistic studies in under-resourced languages pose additional challenges at various levels, including the automatic
collection of examples, cases, and corpora construction. Several sophisticated applications, such as GATE
(Cunningham, 2002), can be configured/adjusted/programmed by experts to automatically collect examples from the
Web in any language. However, these applications are too complex and intricate to be operated, requiring, in some
cases, skills in computer science. In this work, we present TELP, a tool that allows for the simplified expression of
linguistic patterns to extract case studies automatically from World Wide Web sites. It is a straightforward application
with an intuitive GUI and a quick learning curve, facilitating its broad use by researchers from different domains. In
this paper, we describe the operational and technical aspects of TELP and some relatively recent and relevant use
cases in the field of linguistic studies.

Keywords: Text Extraction, Web Mining, Linguistic Tools, Empirical Linguistic Studies

1. Introduction
We are currently living in an era of abundance of in-
formation which has significantly grown with the rise
of the online community and which is expressed
in multimodal dimensions such as video, images,
sound, and text. The growing volume of online text
opens up new avenues of investigation for various
sciences, from social to computer sciences.
In Linguistics, text is an essential raw material to
carry out and deepen various studies. The major
obstacle is the difficulty in gathering many examples
characterizing certain phenomena. These exam-
ples are accessible on the Web but are difficult to
find manually.
One possibility for extracting information is using
web crawlers, such as in Di Pietro et al. (2014) or in
Sekhar et al. (2019), which systematically search
the domains specified by users (URLs). They are
practical tools but extract large volumes of informa-
tion, as they record all the collected pages, there-
fore providing excessive information unsuitable for
specific research purposes. They were designed
to index web pages, not just extract specific infor-
mation segments.
Another possibility is the use of sophisticated tools
for Natural Language Processing, like GATE (Cun-
ningham, 2002) or Sketch Engine (Kilgarriff et al.,
2008), which allow multiple linguistic processing
operations on corpora but, due to their sophistica-
tion, are complex tools with steep learning curves,
requiring a significant effort from the user, including
those outside computer science fields who are not
already familiar with them.
This is where the existence of easy-to-use auto-

matic tools crawling for specific information on the
web is very needed, and it was the driving rea-
son behind the application creation presented here.
The need for such tools is even more pressing in
under-resourced languages that lack adequate cor-
pora and resources.
The Text Extraction with Linguistic Patterns (TELP)
is a desktop application designed to extract textual
expressions from the Web, satisfying user-defined
language patterns. For example, in Linguistics, the
study of Discourse Relations (DR) is of great in-
terest, with diverse applications, including Natural
Language Processing (NLP). In particular, we may
be interested in studying the phenomenon of sen-
tences involving adverbial gerundive clauses with
compound gerund. These subordinated clauses
have the auxiliary verb “to have” in the -ing form
(“having”), followed by the past participle of the
main verb (cf. E1 and E2).

E1: Having served his country, he became a great
believer in the need for change and to stop
unnecessary wars.

E2: On November 13, the former Brazilian
striker had already undergone kidney surgery,
having been discharged two days later.

Therefore, to carefully study this linguistic phe-
nomenon, it is imperative to have a tool that can
select hundreds or even thousands of cases from
promising web sources. TELP can do this with high
precision, depending on the level of rules/patterns
the user indicates. In this case, it would be a simple

338

pattern, like “having+$VBN”1.
TELP is a tool from the crawler family but with high
precision, oriented towards pattern extraction, and
highly configurable. The user can define the URL
addresses from which the crawling will be carried
out, the crawling depth on each website, and a cor-
responding timeout. General lexical and syntactic
constraints can be activated to satisfy the user’s
needs better. The extracted textual segments (e.g.,
sentences) are presented in real time in the applica-
tion’s GUI2 and stored in HTMl5 files with patterns
duly marked in the text through CSS styling. These
features are better explained in Section 3.
In Section 2 we briefly present the related work and
our findings in our bibliographic research. Section 4
describes actual use cases performed by linguists
through TELP. In Section 5 we conclude the paper
and point out some possible further improvements.

2. Related Work
There are several available and popular web
crawlers, such as Apache Nutch, Storm Crawler,
Octoparse, and Heritrix, just to mention a few.
These are ready-to-use products to satisfy general-
purpose crawling tasks, and they all follow the same
operation method: the user defines some crawl-
ing parameters, including a set of URLs, and com-
mands the start of the process. The crawler will
keep on downloading all the web pages from a
given URL by recursively following its sub-links, to-
tally or partially. Still, they are all general in scope,
i.e., intended for general content extraction from
web pages. Crawlers were created as auxiliary
tools for Web indexing; therefore, the purpose is
to extract full content. However, there are specific
needs for extracting elements from the Web in dif-
ferent industrial or academic domains.
A systematic search in several scientific indexing
engines failed to yield an application with the same
or similar features as TELP. We have searched
through three engines, Google Scholar, IEEE
Xplore, and ACM Digital Library, using keywords
like “crawler”, “linguistic crawler”, "NLP crawler",
etc. The retrieved, analyzed and selected literary
material led us to identify some general-purpose
corpora creation crawlers (Di Pietro et al., 2014) or
some tailored for specific problems/domains/needs
like criminal activities (Westlake et al., 2011), sen-
timent analysis (Mei and Frank, 2015), software
engineering (Ferrari et al., 2017), bioinformatics
(Sekhar et al., 2019), among others. What changes
most significantly among each of these crawlers is
the theme of the pages that are obtained. These
are selected according to established areas. How-
ever, none of the observed crawlers are concerned

1VBN is the verb past participle tag used in the Penn
Treebank tagset (Marcus et al., 1993)

2Graphic User Interface.

with selecting parts or segments of the texts con-
tained in the pages. Despite being an application
from the crawler family, TELP also addresses this
need, only gathering the relevant information for
the user according to the defined linguistic patterns.
Another possibility for the automatic extraction of
specific corpora from the web would be using more
general NLP applications/tools that are popular
among the research community and capable of
performing various text manipulation operations,
including sophisticated linguistic operations. This
raises the question: why not adapt these tools for
the task at hand? In this regard, we analyze two
such tools in what follows.

2.1. Sketch Engine
The first tool we could consider is Sketch Engine
(Kilgarriff et al., 2008). It started as a corpus tool
designed to generate automatic corpus-based sum-
maries called word sketches, which detail a word’s
grammatical and collocational behavior. Initially
developed for English, its capabilities have been
extended to any language, offering features like
thesauruses and sketch differences for linguistic
research and lexicography. Key aspects include
the development from traditional corpus lexicog-
raphy to incorporating computational methods for
handling large data sets, enhancing lexicographic
efficiency, and supporting multi-language process-
ing with advanced grammatical relation identifica-
tion and analysis. The current version of Sketch
Engine3 has evolved significantly, becoming a com-
prehensive web application and commercial prod-
uct that serves linguists, lexicographers, transla-
tors, students, teachers, and publishers. It ana-
lyzes texts from ready-to-use corpora in several
languages to provide insights into language use,
trends, and emergent linguistic phenomena, like
co-occurrence analysis, text alignment, term extrac-
tion, etc.
However, "word sketches" were designed to op-
erate on existing corpora and not to perform the
extraction of collocations or another linguistic phe-
nomenon directly from web text, bringing only the
target segments, as TELP does. Moreover, it is
a commercial product and significantly more com-
plex in terms of usability due to its broader scale of
functionalities.
Since its inception, the Sketch Engine has included
a web crawler, WebBootCaT (Baroni et al., 2006),
but it is a general-purpose crawler, i.e., it collects
full text from web pages, allowing the user to define
only simple restrictions, such as language. More-
over, WebBootCaT uses third-party tools, such
as word searches on the Google search engine,
whereas TELP does not.

3Source: https://www.sketchengine.eu/

339

2.2. GATE
The second tool we could consider for extracting
textual segments from corpora is GATE4 (Cunning-
ham, 2002). This is a well-known and established
application/framework among the natural language
processing, computational linguistics, and machine
learning communities, having been used for multi-
ple research problems in these areas.
GATE provides a framework and a graphical de-
velopment environment for developing and deploy-
ing software components that process human lan-
guage. It is designed to work with texts of any
language and is flexible enough to handle various
tasks, including information extraction, document
classification, sentiment analysis, and more. It sup-
ports various NLP tasks through a collection of cus-
tomizable plugins and components. Researchers
and developers can use GATE to create complex
text processing pipelines that incorporate existing
components and plugins or develop their own. Its
architecture is based on the principle of modular-
ity, allowing for the easy addition and integration
of new components. While advantageous for cre-
ating customized solutions, this modular design
introduces complexity through its wide range of
options and configurations. Users must navigate
many components, each with its parameters and
functionalities, making the initial stages of learning
GATE daunting.
The GATE framework is developed and main-
tained using Java, which allows it to be platform-
independent and capable of running on any oper-
ating system that supports a Java Virtual Machine
(JVM)5. A good understanding of Java (since GATE
is Java-based) and familiarity with NLP principles
are necessary for more complex tasks, such as de-
veloping custom processing resources or plugins.
This can make the learning curve steeper for those
uncomfortable with programming or the underlying
concepts of NLP.
GATE is primarily focused on text and natural lan-
guage processing tasks and does not inherently
include web crawling capabilities as part of its core
functionalities. Users typically integrate GATE with
other tools or scripts designed for web crawling
to fetch the data that can then be processed and
analyzed using GATE’s extensive NLP features.
Therefore, despite all the potential and importance
of this framework, it cannot be used directly for the
purposes for which TELP was specifically designed,
as already explained, much less by those who do
not possess advanced programming skills.

2.3. Conclusion
Thus, to the best of our knowledge, TELP ad-
dresses a previously unmet need, being a handy

4GATE: General Architecture for Text Engineering
5The same holds on TELP.

tool for collecting rich, specific textual examples to
serve as relevant raw material in various studies.
It does not require advanced computational skills,
and thus, researchers and practitioners from differ-
ent communities and backgrounds can effectively
use it to fulfill their particular needs.

3. The TELP Application
In this section, we present TELP’s graphical inter-
face (GUI) and describe its most relevant opera-
tional features. At the end of the section, we will
focus more on the language for defining the linguis-
tic patterns that govern text extraction from web
pages.
In Figure 1, we show the TELP main view marked
with five labels so the reader can easily follow the
subsequent reference and description. Each label
designates an essential area of the view and will
be described below. Areas (1) and (2) are for input,
and areas (3) and (5) are for output. Area (4) is
also for input but more for parameterization and
control.

3.1. GUI Component Description
In area (1), there is a multi-line text box where the
user may insert a list of base URLs from which
he/she aims to extract text. In this example, two
URLs are shown in the box. In area (2), there is an-
other multi-line text box where the user inserts the
list of extraction patterns to which the text segments
must comply. These text segments are extracted
from the URLs indicated in area (1). The example
illustrates three extraction patterns, one per line,
separated by a comma.
In area (3), the last text segment extracted with the
pattern occurrence highlighted (in yellow) is visible.
In area (5), a set of relevant information relating to
the ongoing extraction process is presented. For
instance, a blue progress bar is related to the time-
out defined in the area (4), and the Time spent is
also shown in (5). The field Extracted reveals the
number of extracted segments so far. The set of all
extractions is displayed in another view, accessible
by the Extractions button available at the top of the
view, next to Main Control.
Finally, area (4) defines a set of parameters to con-
trol the extraction process. The “Stop” button is a
Start/Stop button that dynamically changes its label
depending on the current state: pre-extraction or in-
extraction. The “Clear” button resets the extracted
elements if we wish to restart the extraction without
the previously extracted data to avoid new cases
accumulating with those from previous extractions.
Additionally, in area (4), a combobox permits the
user to choose the language. So far, the two avail-
able languages are English (selected) and Por-
tuguese. Furthermore, four checkboxes can be
utilized for activating/deactivating the correspond-

340

Figure 1: Main view of the TELP application.

ing parameters. Thus, Casing controls case sen-
sitivity; Lemmatize allows one to lemmatize the
text and work with the lemmas of words instead of
their derived forms; when Scan all is active it will
process all URLs indicated in the area (1), instead
of just processing the selected one; and Full text
serves to explore areas of HTML considered less
conventional to store text. Finally, in area (4), the
Depth Limit defines the level of extractive depth
in the site’s hyperlink hierarchy and Timeout fields
stipulate the maximum extractive time allowed for
each site/URL. More about this will be explained in
Section 3.2.

3.2. Text Extraction Operation
The extraction process begins after the user
presses the Start button, assuming that he/she has
already entered the URLs/links in (1), from which
he/she intends to obtain the text and the linguis-
tic patterns, in (2), for the extraction. This is the
minimum the user must do before the extraction
begins. As mentioned before, the user can also
adjust some parameters for the extraction in area
(4). For example, extraction will be sequentially
performed for all links inserted in area (1) if the
Scan all checkbox is selected. In this case, each
of the links is searched sequentially, from the first

one that is selected to the last one. Otherwise, the
search will be conducted only on the link selected
in (1).
For a given URL u, the extraction follows a conven-
tional crawling algorithm that visits each sub-link
of u, let us say u1, u2, ...un, where u is a prefix for
any ui which is a hyperlink/link contained in u. For
example, if:

u = www.reuters.com
ui = www.reuters.com/world/
uj = www.reuters.com/world/europe/

both ui and uj are sub-links of u, let us represent it
as u ▷ ui and u ▷ uj . Furthermore, there are two
sub-link levels here, i.e., u ▷ ui ▷ uj . For a given
u only sub-links of u are visited in a systematic
recursive method up to a pre-defined depth. This
depth is exactly what “Depth Limit” means in area
(4). In our previous example, we have:

depth(u ▷ ui ▷ uj) = 3.

The textual content is carefully extracted for each
web page read. By default, the usual small text
segments related to the site’s structure or adver-
tisement are avoided. Here, some heuristics are
used to extract text composed of well-formed sen-
tences that effectively relate to the main subject

341

of that page. If the checkbox “Full text” from area
(4) is selected, this filtering care will not hold, and
all textual content will be extracted. Afterward,
NLP operations are performed on the extracted
text, starting with sentence tokenization, the part-
of-speech (POS) tagging of each sentence, and the
possible6 word case lowering and word lemmatiza-
tion. The current version of TELP uses the Apache
OpenNLP (Foundation, 2023) for POS tagging and
Morphadorner (Burns, 2013) for lemmatization.
After the NLP operation is performed, the sen-
tences are ready to be submitted to the list of ex-
traction patterns defined by the user in area (2). For
a given sentence, the first applicable pattern gener-
ates an extraction case, causing the sentence to be
actually stored and the occurrence of the respec-
tive pattern marked with CSS styling. In Section
3.4, the language for defining extraction pattern is
described.

Figure 2: Extractions with patterns marked.

The cases that are being extracted are dynamically
presented in the “Extractions” view, accessible from
the top of the main view (“Main Control”), as shown
in Figure 2.

3.3. Text Crawling Process
The extraction of well-structured text from web
pages poses several key obstacles, like the is-
sue of navigating through "spurious textual seg-
ments," such as those found in advertisements,
web page structural components (e.g., menus, side-
bars), which bear no relation to the central docu-
ment theme and very likely hold no value for the
user. A common feature of these extraneous seg-
ments is their deficiency in syntactical integrity, of-
ten evident just by looking at the inadequate or

6Depending on the settings in area (4).

nonexistent punctuation in these segments. Con-
sequently, our approach acknowledges these char-
acteristics, ensuring the extraction of well-formed
text segments. There are recent and sophisticated
methods, like in Trafilatura (Barbaresi, 2021), yield-
ing almost perfect text scraping from web pages.
In our case, we observed that we achieved a very
satisfactory result by following lexical heuristics that
closely matched the one mentioned. If the Full text
parameter (area 4 from Figure 1) is not set, almost
all extracted text is well-formed.
The method followed to gather valid sentence ex-
amples (named here as sentexes) from the World
Wide Web can be synthesized in Algorithm 1.

Algorithm 1 – Crawling “Sentexes" from the Web
1: Input: websites W = {w1, ..., wn}, patterns.
2: Output: collected text sentexes.
3: sentexes← {}
4: memory ← {}
5: for wi ∈W do
6: stxs← crawlPage(wi, memory, patterns)
7: sentexes← sentexes ∪ stxs
8: end for
9:

10: Store(sentexes)
11:
12: function crawlPage(url, memo, patterns)
13: text← selectText(url)
14: stxs← selectSentexes(text, ptrs)
15: for u ∈ subLinks(url) do
16: if u ̸∈ memo then
17: memo← memo ∪ {u}
18: s← crawlPage(u, memo, patterns)
19: stxs← stxs ∪ s
20: end if
21: end for
22: return stxs
23: end function

The crawling function (line 12), called at the begin-
ning (line 6) receives the base url from which the
crawling starts, the set of links/URLs already vis-
ited (memo), and the set of patterns to apply. This
function is recursive (line 18) and will “dive" until
the predefined depth (area (4) from Figure 1).
We can observe the verification of well-formed text
segments in line 13, ’selectText(urls),’ during web
page extraction, as well as the fulfillment of lin-
guistic patterns predefined by the user, in line 14,
“selectSentexes(text, patterns)”.
An important point here that needs clarification is
what happens, for example, when two or more pat-
terns are applicable to the same sentence from a
text (“selectSentexes" function, line 14), usually at
different positions in the sentence. In such cases,
each pattern applicable to the sentences produces
a different case, i.e., an independent sentex corre-

342

sponding to each applicable pattern (patterns).

3.4. Extraction Language
This application was essentially designed to be
operated mainly by people outside the field of Com-
puter Science and certainly unfamiliar with the very
notion of regular expression7. It is the case of lin-
guists who need to extract sentences in which cer-
tain grammatical conditions are satisfied. Thus, the
pattern definition language also constitutes an inter-
face, a mediator between the user’s needs and the
complexity of defining regular expressions involving
constraints on strings of different categories (lexical,
syntactic, semantic, etc.). Therefore, a relatively
simple yet expressive language was designed and
incorporated into TELP, enabling users to define
sentence extraction patterns from online text.
In this pattern language, the simplest level is the
lexical one, where sequences of words that must
appear in a sentence are indicated for it to be ex-
tracted. For example, in the “Patterns” box in area
(2), three patterns are visible, separated by com-
mas. The last pattern is the simplest one, requiring
the word “Ukraine” to be present in the sentence
and the word “war” in a later position8. This pat-
tern was satisfied in the fourth example presented
in Figure 2.
The language uses two operators, the disjunction
“|” and the conjunction “&”, which by default may
be omitted. For instance, “Ukraine war” means
exactly the same as “Ukraine & war”. The dis-
junctive operator allows a combination of lexical
variations within a single pattern. Thus, the pattern
“War|war Ukraine” represents two combinations
and a pattern like:

war|conflict Ukraine|Russia

represents four simple lexical combinations: “war
& Ukraine”, “war & Russia”, “conflict &
Ukraine”, and “conflict & Russia”. Note
that the first combination would match the last
sentence from Figure 2. The user can com-
bine/conjugate as many disjunctive conditions as
needed and quickly define a complex and powerful
lexical pattern. We have also defined a negation
operator, the tilde “~”, with which the user can force
a word not to occur in the sentence. For example,
“war & ~Ukraine” would match any phrase that
contains “war” but not “Ukraine”.
Additionally, the user may incorporate syntactic con-
ditions through POS tags. We can thus force, for
example, that, after a word (lexical constraint), there
must be the past participle of any verb, or an ad-
jective, or both, etc. One may use any tag from
the Penn Treebank tagset (Marcus et al., 1993).

7How computer scientists define information patterns.
8It does not have to be immediately followed.

The first pattern in area (2) illustrates one such
example, where area (3) displays the correspond-
ing extracted sentence with the pattern satisfaction
highlighted by TELP. In any extracted case these
patterns will be marked and thus visible in the in-
terface (the Extractions view, Figure 2).
TELP has specific controls for recording these ex-
tracted sentences/segments. The simplest way is
through the "Save" button in the lower left corner.
The data is saved in an HTML file whose name
consists of the extraction time stamp. For each
sentence, the patterns satisfied in the sentences
are delimited by specific tags, allowing both the
visualization (HTML+CSS) and subsequent pro-
cessing by other applications. For example, the
third sentence visualized in the view of Figure 2
could be saved as follows:

The yen last fetched 149.62 per dollar,
<ptr id="1">having slipped</ptr> to
150.17 on Oct.

Note the delimitation of the pattern occurrence (hav-
ing slipped) through the <ptr>...</ptr> tags
(abbreviation for pattern). Furthermore, the argu-
ment id="1" means that it is related to the first
pattern in the list of patterns defined by the user
in (2), in Figure 1. Therefore, it is not just a vi-
sual marking but also a semantic one, allowing the
recorded file to be subsequently processed auto-
matically by other tools.

4. Use Cases
In this section, we describe three actual scenarios
in which the TELP application was used to extract
relevant sentences for linguistic studies. The first
case we want to mention involves the extraction
of sentences combining verbs of movement and
prepositions in European Portuguese. Examples
were extracted from online newspapers and a cor-
pus was built using a sample from this extraction,
with sentences combining the verbs “ir” (to go) or
“vir” (to come) with either preposition “para” (to, to-
wards) or “até” (up to). According to the data, these
movement verbs can occur with both prepositions
(with minor changes in meaning) when the predica-
tions they project are understood as non-fictive mo-
tion events. On the contrary, when the predications
exhibit a fictive motion reading, (i) prepositions are
not interchangeable, and (ii) only “ir” combines with
both prepositions, whereas “vir” combines only with
“para”, rejecting the cooccurrence with “até”. In the
theoretical proposal put forward in (Leal et al., 2018)
the data collected using TELP was paramount to
detect these regularities and to validate the actual
use of these expressions by native speakers.
The second case involves adverbial perfect par-
ticipial clauses, that is, clauses with an auxiliary
verb ’have’ in the -ing form followed by the main

343

verb in the past participle. In this case, five lan-
guage varieties were considered: British English
and European, Brazilian, Angolan and Mozambi-
can Portuguese. Again, TELP was used to search
and extract complete sentences with this construc-
tion from different online journals of these five coun-
tries. These sentences were annotated with sev-
eral linguistic features, such as tense, temporal
interpretation or aspectual classes of predications.
The analysis of this corpus, presented in (Silvano
et al., 2021), revealed, for instance, that the tempo-
ral readings of adverbial perfect participial clauses
depend on different linguistic elements in English
and Portuguese (irrespective of the national vari-
eties). Later, this corpus was also annotated with
discourse relations using ISO 24617-8 (ISO, 2016),
and it was released in 2023 to the community, to-
gether with an application with a graphical user in-
terface (Silvano et al., 2023). The collection of data
for this study would have been much more complex
and time-consuming if it were not for TELP.
The third use case demonstrates how TELP can
be helpful in collecting data with specific patterns
in under-resourced languages. Such patterns may
be difficult or even impossible to access otherwise.
In this case, TELP was used to extract linguistic
patterns involving dative constructions. These con-
structions typically express a change of possession
or location, as in the example sentence dar o din-
heiro ao povo, which means "give money to the
people". TELP played a crucial role in acquiring
actual data from online Angolan newspapers, in-
cluding both news articles and comment boxes.
It is essential to highlight the importance of TELP
in obtaining data automatically for languages and
variants (e.g. African Portuguese variants) that still
have very few resources, both in terms of corpora
and case studies and in terms of automatic tools
for their processing. The research cases described
demonstrate the tool’s strategic importance in en-
suring the necessary material for conducting the
linguistic studies intended in these under-resourced
languages and varieties.

5. Conclusions
In conclusion, TELP (Text Extraction with Linguistic
Patterns) has emerged as an effective tool in Com-
putational Linguistics, meeting the critical need for
extracting specific textual segments from the web
through user-defined linguistic patterns. Unlike ex-
isting tools and frameworks such as Sketch En-
gine and GATE, which are either too complex for
non-specialists or lack direct web text extraction
capabilities, TELP offers a user-friendly interface
and allows for precise and efficient linguistic data
collection. It stands out for its simplicity, flexibil-
ity, and ability to accommodate the specific needs
of researchers, particularly in under-resourced lan-

guage studies. The demonstrated use cases under-
score TELP’s utility in facilitating empirical linguistic
research across different languages and linguistic
phenomena.
In terms of the application’s usability, formal evalu-
ation has yet to be conducted according to the prin-
ciples of Human-Computer Interaction (Dix, 2003),
because up to the current version of TELP, there
has been no need for it, given that its operational
complexity is extremely low. The application has
been used by various users, from students to senior
researchers. We have observed that users need
no more than 15 minutes to become thoroughly
familiar with the application. This is impossible with
any other application or tool reported in Section 2.
Currently, this version of TELP does not consider
the restrictions specified in “robots.txt” files,
which guide automated web access to respect web-
site owners’ wishes. However, future releases in-
tended for community use will incorporate adher-
ence to these protocols. This inclusion aims to
ensure ethical web scraping practices, respecting
site owners’ preferences and legal requirements,
thereby addressing potential concerns about unau-
thorized data access and content extraction.
Regarding future improvements, we are committed
to facilitating the easy integration of linguistic re-
sources from different languages into TELP. This
initiative aims to enhance the tool’s versatility and
utility across diverse linguistic landscapes. We are
also exploring the potential to incorporate seman-
tic conditions into our extraction patterns, possibly
resorting to new language models (Devlin et al.,
2018; Min et al., 2023), thereby enriching the con-
text and relevance of the data collected. By integrat-
ing these models, TELP aims to extract text based
on surface patterns and understand the underly-
ing meaning, enabling more nuanced and targeted
data extraction.

Acknowledgments
This work has been partially funded by NOVA
LINCS (UIDB/04516/2020) with the financial sup-
port of FCT.IP and the European Commission
through the Horizon 2020 project Pharaon, grant
agreement no. 857188.

6. References

Adrien Barbaresi. 2021. Trafilatura: A web scrap-
ing library and command-line tool for text discov-
ery and extraction. In Proceedings of the 59th
Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint
Conference on Natural Language Processing:
System Demonstrations, pages 122–131, Online.
Association for Computational Linguistics.

https://doi.org/10.18653/v1/2021.acl-demo.15
https://doi.org/10.18653/v1/2021.acl-demo.15
https://doi.org/10.18653/v1/2021.acl-demo.15

344

Marco Baroni, Adam Kilgarriff, Jan Pomikálek,
Pavel Rychlỳ, et al. 2006. Webbootcat: a web
tool for instant corpora. In Proceeding of the
EuraLex Conference, volume 1, pages 123–132.

Philip R. Burns. 2013. Morphadorner v2: A java
library for the morphological adornment of en-
glish language texts. Northwestern University,
Evanston, IL.

Hamish Cunningham. 2002. Gate, a general archi-
tecture for text engineering. Computers and the
Humanities, 36:223–254.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805.

Giulia Di Pietro, Carlo Aliprandi, Antonio E De Luca,
Matteo Raffaelli, and Tiziana Soru. 2014. Se-
mantic crawling: an approach based on named
entity recognition. In 2014 IEEE/ACM Interna-
tional Conference on Advances in Social Net-
works Analysis and Mining (ASONAM 2014),
pages 695–699. IEEE.

Alan Dix. 2003. Human-Computer Interaction. Pear-
son Education.

Alessio Ferrari, Beatrice Donati, and Stefania
Gnesi. 2017. Detecting domain-specific ambigu-
ities: an nlp approach based on wikipedia crawl-
ing and word embeddings. In 2017 IEEE 25th
International Requirements Engineering Confer-
ence Workshops (REW), pages 393–399. IEEE.

Apache Software Foundation. 2023. Apache
opennlp developer documentation. https://
opennlp.apache.org. Access: 2023-10-18.

ISO. 2016. ISO 24617-2: 2016. Language resource
management, Part 8: Semantic relations in dis-
course (DR-core). Standard, Geneva, CH.

Adam Kilgarriff, Pavel Rychly, Pavel Smrz, and
David Tugwell. 2008. The sketch engine. Practi-
cal Lexicography: a reader, pages 297–306.

António Leal, Fátima Oliveira, and Purificação Sil-
vano. 2018. Path scales. Tense, Aspect, Modal-
ity, and Evidentiality: Crosslinguistic perspec-
tives, 197:335.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank.

Joseph Mei and Richard Frank. 2015. Sentiment
crawling: Extremist content collection through a
sentiment analysis guided web-crawler. In Pro-
ceedings of the 2015 IEEE/ACM International
Conference on Advances in Social Networks
Analysis and Mining 2015, pages 1024–1027.

Bonan Min, Hayley Ross, Elior Sulem, Amir
Pouran Ben Veyseh, Thien Huu Nguyen, Oscar
Sainz, Eneko Agirre, Ilana Heintz, and Dan Roth.
2023. Recent advances in natural language pro-
cessing via large pre-trained language models:
A survey. ACM Computing Surveys, 56(2):1–40.

S.R. Mani Sekhar, G.M. Siddesh, Sunilkumar S.
Manvi, and K.G. Srinivasa. 2019. Optimized
focused web crawler with natural language pro-
cessing based relevance measure in bioinformat-
ics web sources. Cybernetics and Information
Technologies, 19(2):146–158.

Maria da Purificação Silvano, João Cordeiro, An-
tónio Leal, and Sebastião Pais. 2023. Dripps:
a corpus with discourse relations in perfect par-
ticipial sentences. In Language, Data and Knowl-
edge 2023 (LDK 2023): Proceedings of the 4th
Conference on Language, Data and Knowledge.

Purificação Silvano, António Leal, and João
Cordeiro. 2021. On adverbial perfect particip-
ial clauses in portuguese varieties and british
english. Romance Languages and Linguistic
Theory 2018: Selected papers from’Going Ro-
mance’32, Utrecht, 357:263.

Bryce G. Westlake, Martin Bouchard, and Richard
Frank. 2011. Finding the key players in online
child exploitation networks. Policy & Internet,
3(2):1–32.

https://opennlp.apache.org
https://opennlp.apache.org

	Introduction
	Related Work
	Sketch Engine
	GATE
	Conclusion

	The TELP Application
	GUI Component Description
	Text Extraction Operation
	Text Crawling Process
	Extraction Language

	Use Cases
	Conclusions
	References

