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Abstract
Automatic spell and grammar checking can be done using various system architectures, and large language models
have recently been used to solve the task with promising results. Here we describe a new method of creating
test data to measure the performance of spell and grammar checkers, including large language models. Three
types of test data represent different approaches to evaluation, from basic error detection to error correction with
natural language explanations of the corrections made and error severity scores, which is the main novelty of this
approach. These additions are especially useful when evaluating large language models. We present a spell and
grammar checking test set for Icelandic in which the described approach is applied. The data consists of whole
texts instead of discrete sentences, which facilitates evaluating context awareness of models. The resulting test set
can be used to compare different spell and grammar checkers and is published under permissive licenses.
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1. Introduction
Automatic spell and grammar checking deals with
various spelling and grammar errors in text, ty-
pos, deviations from the accepted language stan-
dard, and stylistic flaws. Work on Icelandic spell
and grammar checkers has evolved quickly in the
last years (see Óladóttir et al. (2022)), but Ice-
landic is still considered low-resourced in the Euro-
pean language technology field (Rehm and Way,
2023), and test sets for Icelandic spell and gram-
mar checkers are scarce. Methods for evaluating
spell and grammar checking systems range from
feedback from language experts to a fully auto-
mated approach based on a particular metric and
test set (Napoles et al., 2016; Fang et al., 2023;Wu
et al., 2023). Expert feedback can be hard to come
by, so automatic evaluation methods are valuable
tools.
Until now, evaluation data for spell and gram-
mar checkers has been limited to sentences, cor-
rected and annotated with predetermined error
categories. However, the paradigm shift that
emerges with the abilities of large language mod-
els (LLMs) opens upmany options for creating bet-
ter and more flexible spell and grammar checkers,
calling for a re-examination of how evaluation data
is prepared and applied.
Here we present a new method of creating test
data for evaluating spell and grammar checkers,
including modern LLM-based ones, both existing
and emerging. The dataset consists of complete

texts, which are manually annotated, and is in
three parts, each one annotated differently, to bet-
ter encompass strengths and weaknesses of the
models evaluated, from simply detecting errors to
explaining the corrections made. In particular, we
present data where language experts correct er-
rors in texts and annotate them with explanations
as to why they make a particular change, using
free-form text. In addition to explanations, sever-
ity scores are assigned to corrected errors. This
is an effort to move away from typical test data,
and towards more user-oriented data. Moreover,
the demand for explainable AI has been increas-
ing, and the method described here is a step to-
wards better evaluation of such systems as they
emerge. The test set is published under a permis-
sive license (Símonarson et al., 2023).

2. Related Work
Within automatic spell and grammar checking,
rule-based methods are being replaced by neu-
ral network-based methods. Solving the spell and
grammar checking task as a machine translation
task is a prevalent method (Yuan and Briscoe,
2016; Ji et al., 2017; Junczys-Dowmunt et al.,
2018; Korre and Pavlopoulos, 2022). LLMs can
be used for spell and grammar checking and mod-
els such as GPTs (Floridi and Chiriatti, 2020)
and LLaMa (Touvron et al., 2023) have broader
abilities than smaller models. They tend to be
better at evaluating and correcting text fluency,
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and they are in general good at finding errors
in text, including context-dependent errors (Pen-
teado and Perez, 2023; Li et al., 2023; Qu and
Wu, 2023). However, they sometimes overcorrect
text, paraphrasing it unnecessarily and detecting
errors where there are none, which is not as com-
mon with state-of-the-art (SOTA) methods.
The spell and grammar checking task is largely
language-dependent, and the most prominent and
accessible spell and grammar checkers for Ice-
landic are a rule-based one (Óladóttir et al., 2022)
and a byte-level neural network-based model (In-
gólfsdóttir et al., 2023). While the rule-based
method can detect syntactic inconsistencies and
errors, and justify its discoveries, the byte-level
model is more robust, capable of correcting texts
with multiple and complex errors, but lacks ex-
plainability. LLMs capable of checking spelling
and grammar are currently not available for Ice-
landic.
Recently developed test sets for evaluating spell
and grammar checkers contain corrected texts,
where errors have been annotated, either manu-
ally or automatically, corrected and often catego-
rized into error types (see e.g. Wang et al. (2022);
Bexte et al. (2022); Katinskaia et al. (2022) and Ko-
rre and Pavlopoulos (2022)). Some Icelandic error
corpora have been published in recent years, with
manually annotated errors which have been cor-
rected and categorized by error type (Arnardóttir
et al., 2021, 2022; Ingason et al., 2021b, 2022b,a).
Commonly used automated evaluation metrics for
spell and grammar error checkers include F0.5 and
GLEU (Wang et al., 2020). F0.5 is based on the
precision and recall metric but precision is given
twice the weight of recall. This means that cor-
rectly corrected errors are prioritized over all pos-
sible errors being corrected. F0.5 is included in
ERRANT (Bryant et al., 2017) and was used in
the CoNLL-2014 shared task (Ng et al., 2014).
The GLEU score rewards correct edits while it pe-
nalizes ungrammatical edits, and uses n-grams
to capture fluency and grammatical constraints.
It does not rely on error categories and is thus
a straightforward way to evaluate sequence-to-
sequence models (Napoles et al., 2015, 2016).

3. Creating the Test Set
The newly created test set includes common Ice-
landic spelling and grammar errors, but also errors
dependent on context and world knowledge. The
first step in creating the test set was text collec-
tion, where text sources were searched for partic-
ular error categories, and metadata files were cre-
ated for all collected erroneous documents. The
second step was proofreading these documents
according to Icelandic spelling and grammar stan-
dards, such as the Icelandic Language Council’s

spelling rules1 and an official resource on vari-
ous errors relating to language usage.2 Only un-
equivocal errors were corrected and not stylistic
ones, so a correction was not made unless the
original text was clearly erroneous. Finally, a re-
vision step examined the distribution in error cat-
egory and data type, and the aforementioned pro-
cess was repeated to ensure error category and
data type distribution. These steps were carried
out by a group of three annotators who were all na-
tive speakers of Icelandic and had either finished
a university degree in Icelandic at the undergrad-
uate level or had significant work experience as
professional proof-readers.
The texts to be corrected are sourced from real-
world data, i.e. texts which have been written by
a third party. Errors are naturally occurring to the
greatest extent possible and error examples are
of two kinds: natural examples, i.e. errors which
are found in the original text, and constructed ex-
amples, i.e. errors that haven’t been found in real-
world data so a text with the appropriate con-
text is found and it is perturbed so that it be-
comes erroneous (these instances are much rarer
and are recorded in a metadata file for each re-
viewed text). As mentioned, the test set evaluates
the general performance of a spell and grammar
checker, while also exercising its context aware-
ness. Therefore, the test set does not consist
of single sentences but of whole texts, which are
called error documents. Each error document,
which can range from being a few sentences to
a chapter in an essay, is proofread as a whole.
Two resources were used to search for errors
in; a subcorpus of the Icelandic Gigaword Cor-
pus, containing text from news media, both on-
line andwritten, (Barkarson et al., 2022; Barkarson
and Steingrímsson, 2022), along with the Icelandic
Common Crawl Corpus (Snæbjarnarson et al.,
2022; Miðeind, 2022), which consists of web texts.
These corpora reflect modern Icelandic language
and a common Icelandic writing style. Variation in
written Icelandic is minimal and these resources
reflect both relatively formal and informal language
use.
The resulting test set is in three parts and con-
tains roughly 380,000 words in total, with more
than 9,000 annotations. Texts of type 1 consist of
a little less than 200,000 words with around 3,300
annotations, while texts of type 2 consist of just
under 150,000 words with roughly 5,000 annota-
tions, and texts of type 3 consist of approximately
30,000 words with around 900 annotations.

1https://ritreglur.arnastofnun.is
2https://malfar.arnastofnun.is

https://ritreglur.arnastofnun.is
https://malfar.arnastofnun.is
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3.1. Three Types of Test Data
Unlike most test sets for spell and grammar check-
ing, the one discussed here is not annotated in
the same way throughout. The test set is in three
parts, which are annotated in different ways to fa-
cilitate different kinds of evaluation.
Type 1: Labeling only. Error spans in the texts
have been marked. The errors are not corrected
and individual errors are not labeled further.3
Type 2: Correction only. Texts are corrected as a
whole, without explicitly marking the span of each
error or labeling each error further.4
Type 3: Labeling, correction, explanation and
severity score. Errors in texts have beenmarked,
corrected and each correction is supported with
natural language explanations.5 Explanations can
consist of a fewwords to a few sentences, e.g. with
reference to Icelandic grammar and spelling stan-
dards. Providing an explanation to a correction is
helpful to users as it gives them nuanced informa-
tion on the error they made. Additionally, each er-
ror is annotated with a severity score on the scale
of 1 to 5, 5 being the most severe. Severity scores
give information on how important the correction is
and the aim of them is to express the potential for
reputational impact.
Annotating the documents in different ways al-
lows for different evaluation methods and evaluat-
ing different aspects of spell and grammar check-
ers. Type 1 is the most time-efficient method of
creating a test set, as errors are simply marked.
This method optimizes the annotator’s error label-
ing throughput, and can thus deliver examples of
more text types, vocabularies and error types than
the more labor-intensive types. The data resulting
from this method can be used to compute error de-
tection accuracy, but it can’t be used to evaluate
the accuracy of suggested corrections.
Annotating type 2 is less time-efficient than type
1, but it results in more information, i.e. which er-
rors are in the text and how they can be corrected.
Although error spans are not explicitly annotated,
they can be obtained automatically afterwards by
analyzing changes in the document. This method
of computing spans can be limiting but it was in
part chosen for its simplicity when correcting text,
making it possible for annotators to produce more
amounts of corrected texts. This data gives us
information on error detection accuracy and error
correction accuracy, as long as only one correction
is available, and can be used to calculate GLEU
scores.

3The Doccano annotation tool (Nakayama et al.,
2018) is used for this data type.

4Any text processing tool can be used when annotat-
ing this data.

5The Brat annotation tool (Stenetorp et al., 2012) is
used for this purpose.

Finally, type 3 is a novel kind of test data, pro-
viding the most amount of information. Not only
does it enable the computation of error detection
and error correction accuracy, but it also supplies
the reasoning behind the correction and a severity
score to the original error. Data can then be strat-
ified by severity and models can be trained on fil-
tered data. This type of data is elemental for eval-
uating explainable LLMs, in particular LLMs that in
addition to correcting, are able to instruct the user
on better language use, something that benefits
language learners and native speakers alike. Ex-
planations to corrections can be used to train LMs
by annotating the training data in an appropriate
way so that the model learns to formulate useful
explanations to the corrections. These additions to
corrections provide useful information when train-
ing and evaluating future LLMs.

3.2. Data Format
Texts in the test set are obtained from different
sources, which means that they can have different
licenses. Where possible, texts published under
permissive licenses were used and the resulting
test set is published under permissive licenses.
For every original document, at least two files are
published, the corrected text or output of the soft-
ware used to annotate errors, and a metadata file.
The metadata file includes information such as
text genre, text source and focus error category.
Texts from the Icelandic Common Crawl Corpus
are published under permissive licenses, so origi-
nal texts can be published with the test set, which
is done as .txt files for all data types. Texts from
the Icelandic Gigaword Corpus are, however, pub-
lished under more restricted licenses, so original
texts cannot be published. Instead, for data of type
2, changes to the texts (diffs) are published with a
reference to the original text, along with a program
which outputs the original text and the corrected
one. For data of types 1 and 3, the original acces-
sible document is listed. This approach makes the
test data accessible while also making more texts
employable when creating the test set.
Corrected data of type 1 is published as JSON
Lines files, where each line represents a docu-
ment. Information shown for each document in-
cludes the original text, error spans and their start
and end offset. Corrected data of type 2 is pub-
lished as a .txt file. Error spans are not anno-
tated when the data is created, but they are com-
puted afterwards, showing minimum changes. Fi-
nally, corrected data of type 3 is published as .ann
files, and information on each document includes
an error span’s start and end offset, the text in-
cluded in the span, the corrected version of that
text, the severity score and natural language ex-
planation. For more information on the format of
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all data types, see the dataset’s README file.

3.3. Classifying Documents
Each erroneous document in the dataset is cate-
gorized into one or more of five focus error cat-
egories, instead of each annotated error within a
document being classified. The focus categories
were chosen heuristically, based on what kinds
of errors we prioritized at this time for evaluating
a spell and grammar checker on. Available Ice-
landic error corpora are descriptive in that they
only include errors which are naturally occurring
and texts are not chosen for proofreading based
on whether they include a certain error. Evalu-
ating spell and grammar checkers on these cor-
pora gives results on the checkers’ general perfor-
mance on Icelandic text, but with the dataset pre-
sented in the paper, the aim is to expand the scope
of errors that we can evaluate spell and grammar
checkers on.
The annotators searched for these error types in
extensive text corpora, and corrected the ones
found, but if they could not be found, the correct
version was found and an error injected into the
text, which was then corrected. This process en-
sures that the dataset consists of these focus error
categories. As expected, documents classified as
containing a particular error category can contain
errors from other categories as well. As a result,
we are evaluating amodel’s performance on a par-
ticular type of error and at the same time evaluat-
ing its general correction abilities.
The five focus error categories are idiomatic ex-
pressions, which are Icelandic idioms/phrases
with a figurativemeaning. People commonlymake
errors in these idioms; a published language re-
source is used as a reference for these errors
(Halldórsson et al., 2022). Frequent errors made
by Icelandic informants is used as an umbrella
term to comprise various errors which can be
found in the texts, e.g. spacing errors, errors relat-
ing to punctuation and capitalization, and incorrect
cases of nouns, adjectives and pronouns. Errors
relating to context include inconsistent use of
words throughout a text and errors in personal pro-
nouns when they relate to a particular item or per-
son. Errors relating to cohesion or coherence
are e.g. errors in certain discourse markers, as an
example writing ’on the one hand’ and then not
providing a counterexample, or not using correct
pronouns when referring back to previously men-
tioned objects. Lastly, semantic analysis com-
prises errors which depend on the text’s meaning,
i.e. real-word errors, errors which cannot be iden-
tified and corrected unless the spell and grammar
checker has some world knowledge. An example
of such an error is ’My ant bought a car’. This sen-
tence is correct with regards to spelling and gram-

mar, but having world knowledge, a proofreader
would see that an ant is unlikely to buy a car, so a
correction (’aunt’) should be provided.
Boundaries between different error categories are
not always clear, and ambiguous errors arose
when the test set was created. An example of
this is the aforementioned error ’My ant bought a
car’, where the ’ant’ error can be considered an er-
ror due to semantic analysis or as a typographical
error. Both classifications can be reasoned, and
edge cases were discussed in detail amongst the
annotators before reaching a conclusion on how
to classify them.

3.4. Inter-Annotator Agreement
To measure inter-annotator agreement on the
data, we prepared 168 examples for evaluation
where an annotator had to indicate preference for
an original sentence or a corrected sentence. The
ordering of examples was random, i.e., the anno-
tator was blinded towards which example was the
original and which one was corrected. Four par-
ticipants, separate from the test set’s annotators,
performed the evaluation on all examples. They
all had either finished a university degree in Ice-
landic at the undergraduate level or had significant
work experience as professional proofreaders. On
average, the corrected sentences were preferred
in 92.3% of cases (ranging from 87.5% to 94.6%
for the annotators). We computed inter-annotator
agreement using Krippendorff’s Alpha (Krippen-
dorff, 2018) and the result was a score of 0.829,
indicating almost perfect reliability.

4. Discussion
Creating this test data as described above, using
the resources mentioned, has the possible limi-
tation of underlying texts being used for training
LLMs, since some of them are sourced from the
internet. This is hard to avoid, as we need a large
corpus in order to find naturally occurring errors.
On the other hand, in most cases, it is the erro-
neous version that is in the training data, not the
one corrected by our experts.
As part of future work, an LLMwill be fine-tuned on
the spell and grammar checking task for Icelandic.
Following this is possible work on enhancing text
beyond correcting explicit errors, e.g. improving
text fluency and making stylistic changes to better
conform to a particular register. Changes to be
made can be less distinct when it comes to these
categories, so which guidelines should be followed
would have to be considered.

5. Conclusion
We have presented a new test set for evaluat-
ing automatic spell and grammar checkers of dif-
ferent kinds, in particular large language mod-
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els. The test set is manually annotated for Ice-
landic spelling and grammar errors with a focus
on context-dependent errors. The data is anno-
tated in three different ways: with span-marking,
with corrections and with natural language expla-
nations of corrections and severity scores. Expla-
nations of corrections and error severity scores are
a novel addition to test data, particularly intended
for evaluating LLMs. The test set can be used
to evaluate current and future spell and grammar
checking systems and is published under a per-
missive license (Símonarson et al., 2023).
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