@inproceedings{poudel-etal-2024-bidirectional,
title = "Bidirectional {E}nglish-{N}epali Machine Translation({MT}) System for Legal Domain",
author = "Poudel, Shabdapurush and
Bal, Bal Krishna and
Acharya, Praveen",
editor = "Melero, Maite and
Sakti, Sakriani and
Soria, Claudia",
booktitle = "Proceedings of the 3rd Annual Meeting of the Special Interest Group on Under-resourced Languages @ LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.sigul-1.7/",
pages = "53--58",
abstract = "Nepali, a low-resource language belonging to the Indo-Aryan language family and spoken in Nepal, India, Sikkim, and Burma has comparatively very little digital content and resources, more particularly in the legal domain. However, the need to translate legal documents is ever-increasing in the context of growing volumes of legal cases and a large population seeking to go abroad for higher education or employment. This underscores the need for developing an English-Nepali Machine Translation for the legal domain. We attempt to address this problem by utilizing a Neural Machine Translation (NMT) System with an encoder-decoder architecture, specifically designed for legal Nepali-English translation. Leveraging a custom-built legal corpus of 125,000 parallel sentences, our system achieves encouraging BLEU scores of 7.98 in (Nepali {\textrightarrow} English) and 6.63 (English {\textrightarrow} Nepali) direction"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="poudel-etal-2024-bidirectional">
<titleInfo>
<title>Bidirectional English-Nepali Machine Translation(MT) System for Legal Domain</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shabdapurush</namePart>
<namePart type="family">Poudel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bal</namePart>
<namePart type="given">Krishna</namePart>
<namePart type="family">Bal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Praveen</namePart>
<namePart type="family">Acharya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Annual Meeting of the Special Interest Group on Under-resourced Languages @ LREC-COLING 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maite</namePart>
<namePart type="family">Melero</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Soria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Nepali, a low-resource language belonging to the Indo-Aryan language family and spoken in Nepal, India, Sikkim, and Burma has comparatively very little digital content and resources, more particularly in the legal domain. However, the need to translate legal documents is ever-increasing in the context of growing volumes of legal cases and a large population seeking to go abroad for higher education or employment. This underscores the need for developing an English-Nepali Machine Translation for the legal domain. We attempt to address this problem by utilizing a Neural Machine Translation (NMT) System with an encoder-decoder architecture, specifically designed for legal Nepali-English translation. Leveraging a custom-built legal corpus of 125,000 parallel sentences, our system achieves encouraging BLEU scores of 7.98 in (Nepali → English) and 6.63 (English → Nepali) direction</abstract>
<identifier type="citekey">poudel-etal-2024-bidirectional</identifier>
<location>
<url>https://aclanthology.org/2024.sigul-1.7/</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>53</start>
<end>58</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bidirectional English-Nepali Machine Translation(MT) System for Legal Domain
%A Poudel, Shabdapurush
%A Bal, Bal Krishna
%A Acharya, Praveen
%Y Melero, Maite
%Y Sakti, Sakriani
%Y Soria, Claudia
%S Proceedings of the 3rd Annual Meeting of the Special Interest Group on Under-resourced Languages @ LREC-COLING 2024
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F poudel-etal-2024-bidirectional
%X Nepali, a low-resource language belonging to the Indo-Aryan language family and spoken in Nepal, India, Sikkim, and Burma has comparatively very little digital content and resources, more particularly in the legal domain. However, the need to translate legal documents is ever-increasing in the context of growing volumes of legal cases and a large population seeking to go abroad for higher education or employment. This underscores the need for developing an English-Nepali Machine Translation for the legal domain. We attempt to address this problem by utilizing a Neural Machine Translation (NMT) System with an encoder-decoder architecture, specifically designed for legal Nepali-English translation. Leveraging a custom-built legal corpus of 125,000 parallel sentences, our system achieves encouraging BLEU scores of 7.98 in (Nepali → English) and 6.63 (English → Nepali) direction
%U https://aclanthology.org/2024.sigul-1.7/
%P 53-58
Markdown (Informal)
[Bidirectional English-Nepali Machine Translation(MT) System for Legal Domain](https://aclanthology.org/2024.sigul-1.7/) (Poudel et al., SIGUL 2024)
ACL