@inproceedings{hecht-etal-2024-pcic,
title = "{PCIC} at {SMM}4{H} 2024: Enhancing {R}eddit Post Classification on Social Anxiety Using Transformer Models and Advanced Loss Functions",
author = "Hecht, Leon and
Pozos, Victor and
Gomez Adorno, Helena and
Fuentes-Pineda, Gibran and
Sierra, Gerardo and
Bel-Enguix, Gemma",
editor = "Xu, Dongfang and
Gonzalez-Hernandez, Graciela",
booktitle = "Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.smm4h-1.14",
pages = "63--66",
abstract = "We present our approach to solving the task of identifying the effect of outdoor activities on social anxiety based on reddit posts. We employed state-of-the-art transformer models enhanced with a combination of advanced loss functions. Data augmentation techniques were also used to address class imbalance within the training set. Our method achieved a macro-averaged F1-score of 0.655 on the test data, surpassing the workshop{'}s mean F1-Score of 0.519. These findings suggest that integrating weighted loss functions improves the performance of transformer models in classifying unbalanced text data, while data augmentation can improve the model{'}s ability to generalize.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hecht-etal-2024-pcic">
<titleInfo>
<title>PCIC at SMM4H 2024: Enhancing Reddit Post Classification on Social Anxiety Using Transformer Models and Advanced Loss Functions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Hecht</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Victor</namePart>
<namePart type="family">Pozos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez Adorno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gibran</namePart>
<namePart type="family">Fuentes-Pineda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerardo</namePart>
<namePart type="family">Sierra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gemma</namePart>
<namePart type="family">Bel-Enguix</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dongfang</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present our approach to solving the task of identifying the effect of outdoor activities on social anxiety based on reddit posts. We employed state-of-the-art transformer models enhanced with a combination of advanced loss functions. Data augmentation techniques were also used to address class imbalance within the training set. Our method achieved a macro-averaged F1-score of 0.655 on the test data, surpassing the workshop’s mean F1-Score of 0.519. These findings suggest that integrating weighted loss functions improves the performance of transformer models in classifying unbalanced text data, while data augmentation can improve the model’s ability to generalize.</abstract>
<identifier type="citekey">hecht-etal-2024-pcic</identifier>
<location>
<url>https://aclanthology.org/2024.smm4h-1.14</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>63</start>
<end>66</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PCIC at SMM4H 2024: Enhancing Reddit Post Classification on Social Anxiety Using Transformer Models and Advanced Loss Functions
%A Hecht, Leon
%A Pozos, Victor
%A Gomez Adorno, Helena
%A Fuentes-Pineda, Gibran
%A Sierra, Gerardo
%A Bel-Enguix, Gemma
%Y Xu, Dongfang
%Y Gonzalez-Hernandez, Graciela
%S Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F hecht-etal-2024-pcic
%X We present our approach to solving the task of identifying the effect of outdoor activities on social anxiety based on reddit posts. We employed state-of-the-art transformer models enhanced with a combination of advanced loss functions. Data augmentation techniques were also used to address class imbalance within the training set. Our method achieved a macro-averaged F1-score of 0.655 on the test data, surpassing the workshop’s mean F1-Score of 0.519. These findings suggest that integrating weighted loss functions improves the performance of transformer models in classifying unbalanced text data, while data augmentation can improve the model’s ability to generalize.
%U https://aclanthology.org/2024.smm4h-1.14
%P 63-66
Markdown (Informal)
[PCIC at SMM4H 2024: Enhancing Reddit Post Classification on Social Anxiety Using Transformer Models and Advanced Loss Functions](https://aclanthology.org/2024.smm4h-1.14) (Hecht et al., SMM4H-WS 2024)
ACL