@inproceedings{obeidat-etal-2024-ukynlp,
title = "{UKYNLP}@{SMM}4{H}2024: Language Model Methods for Health Entity Tagging and Classification on Social Media (Tasks 4 {\&} 5)",
author = "Obeidat, Motasem and
Ekanayake, Vinu and
Nahian, Md Sultan Al and
Kavuluru, Ramakanth",
editor = "Xu, Dongfang and
Gonzalez-Hernandez, Graciela",
booktitle = "Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.smm4h-1.29",
pages = "124--129",
abstract = "We describe the methods and results of our submission to the 9th Social Media Mining for Health Research and Applications (SMM4H) 2024 shared tasks 4 and 5. Task 4 involved extracting the clinical and social impacts of non-medical substance use and task 5 focused on the binary classification of tweets reporting children{'}s medical disorders. We employed encoder language models and their ensembles, achieving the top score on task 4 and a high score for task 5.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="obeidat-etal-2024-ukynlp">
<titleInfo>
<title>UKYNLP@SMM4H2024: Language Model Methods for Health Entity Tagging and Classification on Social Media (Tasks 4 & 5)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Motasem</namePart>
<namePart type="family">Obeidat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vinu</namePart>
<namePart type="family">Ekanayake</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md</namePart>
<namePart type="given">Sultan</namePart>
<namePart type="given">Al</namePart>
<namePart type="family">Nahian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramakanth</namePart>
<namePart type="family">Kavuluru</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dongfang</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe the methods and results of our submission to the 9th Social Media Mining for Health Research and Applications (SMM4H) 2024 shared tasks 4 and 5. Task 4 involved extracting the clinical and social impacts of non-medical substance use and task 5 focused on the binary classification of tweets reporting children’s medical disorders. We employed encoder language models and their ensembles, achieving the top score on task 4 and a high score for task 5.</abstract>
<identifier type="citekey">obeidat-etal-2024-ukynlp</identifier>
<location>
<url>https://aclanthology.org/2024.smm4h-1.29</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>124</start>
<end>129</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UKYNLP@SMM4H2024: Language Model Methods for Health Entity Tagging and Classification on Social Media (Tasks 4 & 5)
%A Obeidat, Motasem
%A Ekanayake, Vinu
%A Nahian, Md Sultan Al
%A Kavuluru, Ramakanth
%Y Xu, Dongfang
%Y Gonzalez-Hernandez, Graciela
%S Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F obeidat-etal-2024-ukynlp
%X We describe the methods and results of our submission to the 9th Social Media Mining for Health Research and Applications (SMM4H) 2024 shared tasks 4 and 5. Task 4 involved extracting the clinical and social impacts of non-medical substance use and task 5 focused on the binary classification of tweets reporting children’s medical disorders. We employed encoder language models and their ensembles, achieving the top score on task 4 and a high score for task 5.
%U https://aclanthology.org/2024.smm4h-1.29
%P 124-129
Markdown (Informal)
[UKYNLP@SMM4H2024: Language Model Methods for Health Entity Tagging and Classification on Social Media (Tasks 4 & 5)](https://aclanthology.org/2024.smm4h-1.29) (Obeidat et al., SMM4H-WS 2024)
ACL