@inproceedings{fraga-etal-2024-lhs712nv,
title = "{LHS}712{NV} at {\#}{SMM}4{H} 2024 Task 4: Using {BERT} to classify {R}eddit posts on non-medical substance use",
author = "Fraga, Valeria and
Nair, Neha and
Simancek, Dalton and
Vydiswaran, V.G.Vinod",
editor = "Xu, Dongfang and
Gonzalez-Hernandez, Graciela",
booktitle = "Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.smm4h-1.34",
pages = "146--148",
abstract = "This paper summarizes our participation in the Shared Task 4 of {\#}SMM4H 2024. Task 4 was a named entity recognition (NER) task identifying clinical and social impacts of non-medical substance use in English Reddit posts. We employed the Bidirectional Encoder Representations from Transformers (BERT) model to complete this task. Our team achieved an F1-score of 0.892 on a validation set and a relaxed F1-score of 0.191 on the test set.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fraga-etal-2024-lhs712nv">
<titleInfo>
<title>LHS712NV at #SMM4H 2024 Task 4: Using BERT to classify Reddit posts on non-medical substance use</title>
</titleInfo>
<name type="personal">
<namePart type="given">Valeria</namePart>
<namePart type="family">Fraga</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Neha</namePart>
<namePart type="family">Nair</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dalton</namePart>
<namePart type="family">Simancek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">V.G.Vinod</namePart>
<namePart type="family">Vydiswaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dongfang</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper summarizes our participation in the Shared Task 4 of #SMM4H 2024. Task 4 was a named entity recognition (NER) task identifying clinical and social impacts of non-medical substance use in English Reddit posts. We employed the Bidirectional Encoder Representations from Transformers (BERT) model to complete this task. Our team achieved an F1-score of 0.892 on a validation set and a relaxed F1-score of 0.191 on the test set.</abstract>
<identifier type="citekey">fraga-etal-2024-lhs712nv</identifier>
<location>
<url>https://aclanthology.org/2024.smm4h-1.34</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>146</start>
<end>148</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LHS712NV at #SMM4H 2024 Task 4: Using BERT to classify Reddit posts on non-medical substance use
%A Fraga, Valeria
%A Nair, Neha
%A Simancek, Dalton
%A Vydiswaran, V.G.Vinod
%Y Xu, Dongfang
%Y Gonzalez-Hernandez, Graciela
%S Proceedings of The 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F fraga-etal-2024-lhs712nv
%X This paper summarizes our participation in the Shared Task 4 of #SMM4H 2024. Task 4 was a named entity recognition (NER) task identifying clinical and social impacts of non-medical substance use in English Reddit posts. We employed the Bidirectional Encoder Representations from Transformers (BERT) model to complete this task. Our team achieved an F1-score of 0.892 on a validation set and a relaxed F1-score of 0.191 on the test set.
%U https://aclanthology.org/2024.smm4h-1.34
%P 146-148
Markdown (Informal)
[LHS712NV at #SMM4H 2024 Task 4: Using BERT to classify Reddit posts on non-medical substance use](https://aclanthology.org/2024.smm4h-1.34) (Fraga et al., SMM4H-WS 2024)
ACL