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Abstract

Causal language models such as the GPT series
have achieved significant success across vari-
ous domains. However, their application to the
lexical substitution task (LST) remains largely
unexplored due to inherent limitations in autore-
gressive decoding. Our work is motivated by
our observation that existing LST approaches
tend to suffer from a misalignment between the
pre-training objectives of the language models
that they employ, and their subsequent fine-
tuning and application for substitute generation.
We introduce PromptSub, the first system to
use causal language modeling (CLM) for LST.
Through prompt-aware fine-tuning, PromptSub
not only enriches the given context with addi-
tional knowledge, but also leverages the uni-
directional nature of autoregressive decoding.
PromptSub consistently outperforms GeneSis,
the best previously published supervised LST
method. Further analysis demonstrates the po-
tential of PromptSub to further benefit from
increased model capacity, expanded data re-
sources, and retrieval of external knowledge.
By framing LST within the paradigm of CLM,
our approach indicates the versatility of gen-
eral CLM-based systems, such as ChatGPT, in
catering to specialized tasks, including LST.1

1 Introduction

Lexical substitution task (LST) is to identify appro-
priate replacements for a designated target word
in context while maintaining the contextual mean-
ing and coherence of the text (McCarthy, 2002;
McCarthy and Navigli, 2007). For example, given
the sentence “Let me begin again”, an LST system
would be expected to provide words such as start
or commence as substitutes for begin. LST is an
important task due to its numerous applications,
including word sense disambiguation (Hou et al.,
2020), word sense induction (Eyal et al., 2022),

1Our code and data are publicly available on GitHub:
https://github.com/ShiningLab/PromptSub

Encoder-Decoder

The "begin" in the sentence "Let me begin again." can be substituted with "

start, commence, open, ...

Decoder-Only start".

The "{Target}" in the sentence "{Context}" can be substituted with "{Substitute}".

(a) GeneSis

...

...

(b) PromptSub

Let me <t> begin </t> again.

Figure 1: Comparison between (a) GeneSis (Lacerra
et al., 2021b) and (b) our proposed PromptSub.

lexical simplification (Aumiller and Gertz, 2022),
adversarial attacks and defenses (Li et al., 2021), se-
mantic change detection (Card, 2023), and natural
language watermarking (Yang et al., 2022).

Recent prior work on LST leverages pre-trained
language models (PLMs), specifically masked
language models (MLMs) (Lin et al., 2022;
Michalopoulos et al., 2022; Omarov and Kondrak,
2023), of which BERT (Devlin et al., 2019) is a
well-known example. Since MLMs are trained on
the task of predicting likely words in a context
where a single word is masked, they seem to be
a natural fit for LST. However, masking a word
is an information-losing process. As a result, the
predicted substitutes may fit the context well, but
can significantly alter the original meaning of the
sentence.

As an alternative to masked language modeling,
we propose to employ causal language modeling
instead. While MLMs first encode the entire con-
text around the mask and then decode output from
this encoding, causal language models (CLMs) are
trained to predict the next token in a sequence given
only the previous tokens as context (Radford et al.,
2018). This linear processing of text is referred to
as auto-regressive decoding; by eschewing the need
for discrete encoding and decoding phases, these
models can achieve high performance in generative
tasks, without an encoder that increases the number
of parameters. These decoder-only models include
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the well-known GPT series (Brown et al., 2020),
which powers popular language generation tools
such as ChatGPT (OpenAI, 2023). However, prior
methods for applying a pre-trained CLM to LST go
no further than simple prompting (Lee et al., 2021).

In this paper, we present the first method to ef-
ficiently reduce LST to causal language model-
ing: PromptSub, a system based on lexical substi-
tution via prompt-aware fine-tuning. Our approach
bridges the gap between the pre-training of CLMs
and their fine-tuning for LST via the same training
objective (i.e., to predict the next token). By way
of an innovative prompting strategy, PromptSub
empowers a decoder-only CLM to leverage the full
bidirectional context of a given LST instance, and
also seamlessly integrate external knowledge into
an auto-regressive language modeling strategy.

In our experiments, PromptSub consistently sur-
passes the previous best supervised method, Gen-
eSis (Lacerra et al., 2021b), across all datasets,
metrics, and settings. Figure 1 illustrates how
GeneSis and PromptSub employ encoder-decoder
(Sutskever et al., 2014) and decoder-only models
respectively. Our extensive evaluations indicate
that PromptSub either matches or exceeds previ-
ously published methods, establishing a new state
of the art on the most recent LST benchmark,
SWORDS (Lee et al., 2021). Notably, Prompt-
Sub outperforms MLM-based approaches, previ-
ously recognized state-of-the-art, by a large mar-
gin (Yang et al., 2022; Wada et al., 2022). Our
detailed analysis highlights the robustness and ex-
tensibility of PromptSub, showing that it can take
advantage of greater model capacity, leverage a
broad array of resources, and benefit from external
knowledge through retrieval-augmented generation
(RAG; Lewis et al., 2020b).

2 Related Work

Conventional LST techniques predominantly capi-
talize on external knowledge bases (Hassan et al.,
2007; Szarvas et al., 2013a; Hintz and Biemann,
2016) and learned word embeddings to identify
and rank potential substitution candidates based
on predefined metrics (Melamud et al., 2015b,a;
Garí Soler et al., 2019). These methods often de-
pend heavily on external resources like WordNet
(Miller, 1995), with additional processes such as
the manual ranking and rule construction often re-
quired to optimize outcomes. Recognizing these
limitations, recent initiatives have emerged to har-

ness the advantages of PLMs.
Prior work indicates that contextualized repre-

sentations obtained from PLMs can be applied to
LST by incorporating context-based scores (Senevi-
ratne et al., 2022) and decontextualized embed-
dings (Wada et al., 2022). In an effort to aug-
ment PLMs with knowledge derived from lexical
resources, Lin et al. (2022) proposed involving
gloss matching in pre-training. Michalopoulos et al.
(2022) advocate for the incorporation of structured
knowledge from lexical databases.

On the one hand, certain of these approaches
utilize PLMs primarily as feature extractors. Thus,
the complete potential of PLMs remains untapped
due to the disconnect between their pre-training
objectives and subsequent applications. On the
other hand, to align with pre-training, others (Zhou
et al., 2019) estimate the probability distribution of
potential replacements through masked language
modeling (Devlin et al., 2019). This inclination to-
wards MLMs, as opposed to CLMs, has led to the
over-representation of encoder-only PLMs, leav-
ing the application of decoder-only architectures
largely unexplored.

Similarly, while prior work has explored the
ideas of enriching LST inputs with target words
(Arefyev et al., 2020) and semantic knowledge
(Omarov and Kondrak, 2023), how to inject such
knowledge into PLMs remains an open question.
This issue is particularly true within the prevail-
ing trend of unsupervised methods that exclude the
fine-tuning stage.

Supervised approaches to LST, such as those
by Szarvas et al. (2013a,b), were initially lim-
ited by data scarcity until the advent of GeneSis
(Lacerra et al., 2021a,b) and ParaLS (Qiang et al.,
2023). GeneSis adopts a sequence-to-sequence
model, generating substitutes given the context and
marked target word. By concatenating multiple
datasets, fine-tuning a PLM specifically for LST
was made viable, achieving strong results despite
the scarcity of annotated data in the domain. Par-
aLS produces substitutes through a paraphraser,
utilizing a heuristics-based decoding strategy. This
facilitates fine-tuning PLMs on paraphrase data,
which is available in relatively large quantities.

However, in both GeneSis and ParaLS, a dis-
cernible gap persists between the pre-training of
PLMs and their subsequent fine-tuning. Further-
more, they are both rooted in an encoder-decoder
framework (Lewis et al., 2020a), depending on ex-
ternal resources, and require post-processing steps
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At position {Position} in the sentence, "{Context}", the {PoS} "{Context[Position]}", derived from the lemma "{Target}", can be substituted with "{Substitute}".'

Target
begin

PoS
verb

Position
3

Context
Let me begin again.

Substitute::Frequency
start::6, commence::2, open::2, initiate::1, introduce::1, try::1, ...

At position 3 in the sentence, "Let me begin again.", the verb "begin", derived from the lemma "begin", can be substituted with "

start". </s>
commence". </s>
open". </s>
initiate". </s>
introduce". </s>
try". </s>

...

Raw LST Instance Sampling

Causal Language Model

OutputInput

Prompt Template

Figure 2: An illustration of PromptSub. An LST instance is transformed into a description by populating a prompt
with details. A CLM estimates the probability distribution of potential substitutes at the final placeholder.

that involve adjustable heuristics and thresholds.
This raises a pivotal question: does LST have to
be approached in a two-step manner, where substi-
tutions are first generated and then reranked using
manually designed scores? Or, is it possible to
create a single-step, end-to-end, generative solu-
tion, that also sidesteps the need for external re-
sources and manually-crafted heuristics? In pre-
senting PromptSub, we argue for the latter: a first-
of-its-kind single-step approach to generating sub-
stitutions via a decoder-only language model.

3 Methodology

In this section, we formally define LST and CLM,
outline our sampling strategy, and detail our prompt
engineering techniques.

3.1 Definitions
We introduce our theoretical framework that re-
duces LST to CLM, building upon two binary prob-
lems we defined.

Lexical substitution task (LST) involves identi-
fying suitable replacements for target words while
preserving the contextual meaning of the sentence.
Formally, given an input sentence S = wn

1 contain-
ing a target word wx, the objective of LST is to
return a ranked list of m appropriate replacements
for wx, which are selected from a vocabulary V .
For example, consider begin as the target word wx

in the sentence S = “Let me begin again”. If
we are to specify m = 3 substitutes, a reasonable
output would be [“start”, “commence”, “open”].

Causal language modeling (CLM) refers to
prediction of the next word in a sequence given the
preceding words. Formally, given a sequence of
words s = wn

1 of length n, the objective of CLM is

to model the conditional probability distribution of
the next word: p(wn+1 | wn

1 ). CLM is autoregres-
sive: words are predicted one at a time, conditioned
on the context of the previous words. By applying
a decoder-only model repeatedly, CLM can be used
to model the probability of any sequence of words:
p(wn+k

n+1 | wn
1 ).

We define a binary decision problem of lexical
substitution (LexSub) which returns TRUE if two
words are lexical substitutes in a given sentence,
and FALSE otherwise (Hauer and Kondrak, 2023):

LexSub(S,wx, wy) := “the word wx can be re-
placed by the word wy in the sentence S without
altering its meaning”

Similarly, we define a binary decision problem
of word prediction (WP) as:

WP(S,w) := “the word w has the same meaning
as the masked word in the sentence S”

LexSub is thus reducible to WP in a straightfor-
ward way:

LexSub(S,wx, wy) ⇔ WP(S,wx) ∧ WP(S,wy)

In practice, implementations of methods for Lex-
Sub or WP may return a probability value instead
of a Boolean. LST datasets often require a ranked
list of substitutes for each instance. To satisfy this,
given a method for solving WP as we defined, we
can simply rank each word w in the vocabulary by
the probability returned by WP(S,w). To apply
CLM to LST, we constrain the word to be identi-
fied (in WP) or replaced (in LexSub) to appear at
the end of the context. We can thus model LexSub
and WP as autoregressive language modeling tasks
suitable for use with decoder-only models.
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3.2 PromptSub definition

The most direct application of CLM to LST would
entail modeling the probability distribution at the
position of the target word given only the preceding
words, denoted as p(wx | wx−1

1 ), where wx ∈ V .
However, this would omit wn

x+1, the part of the
sentence after wx, which may contain vital infor-
mation. An example can be found in Appendix B.

We therefore propose PromptSub, the first LST
method to give CLMs access to the full context of
an LST instance. PromptSub uses carefully con-
structed prompts which allow a CLM to produce a
substitute based on the full context, including the
target word wx itself.

The following prompt template illustrates how a
CLM can be fine-tuned for LST:

The “wx” in “S” can be
substituted with “y”. </s>

where S is the input sentence, wx the target word,
and y a selected gold substitute. The underlined
part is what the decoder-only model is fine-tuned
to predict. Formally, given an LST instance, we
construct a prompt s by filling in the placehold-
ers in a prompt template with wx and S. This
reconstruction allows us to reframe LST as CLM,
where the objective is to model the probability of:
p(sz+4

z+1 | s1, · · · , {wx}, · · · , {S}, · · · , sz). To en-
sure the generation of appropriate substitutes, we
fix the last five tokens as follows:
• sz: an open quotation mark
• sz+1: a sampled gold substitute y
• sz+2: a close quotation mark
• sz+3: a period
• sz+4: the end of sentence symbol </s>
Using static quotation marks and a period effec-
tively aids in extracting the eventual substitutes
from the generated text. In practice, we notice no
adverse effects on loss or performance, and out-
puts always reliably incorporate these punctuation
marks before the sentence concludes.

We then fine-tune the decoder-only model to
specifically minimize the cross-entropy loss on
sz+1, sz+2, sz+3, and sz+4, where sz+4 is included
for the model to learn the end of inference. We can
then generate a list of potential substitutes ŷ by sam-
pling from the probability distribution at sz+1 ∈ V .
Consider again our LST example from Section 3.1.
We construct the filled prompt as follows:
The “begin” in “let me begin again.” can

be substituted with “start”. </s>

3.3 Sampling strategy

Generating a corpus from an LST dataset for fine-
tuning CLMs is not straightforward, since LST
instances often have multiple substitute options (of-
ten ranked), creating many choices for verbalizing
these instances. We therefore introduce two sam-
pling strategies, described below:

TopSub selects only the top-ranked substitute.
By doing so, we aim to capture the most probable
and relevant substitute for the given context.

FreqSub exploits the frequency information as-
sociated with gold substitutes in LST datasets,
where frequency is determined by the number of
annotations in agreement for each substitute. These
frequencies, gathered during the dataset annotation
process, are often overlooked in previous methods.
Applying a softmax function to these frequencies
creates a probability distribution over the gold sub-
stitutes, reflecting their likelihood of selection. We
then sample one substitute from this distribution,
ensuring the model encounters substitutes in pro-
portion to their data-driven frequencies.

3.4 Prompt engineering

This section outlines the prompt engineering for
corpus construction, grounded in integrating con-
textual information into the templates. From an
informational standpoint, we operate under the as-
sumption that enriching prompts with more rele-
vant information leads to improved outcomes. In-
stead of manual, iterative adjustments, we focus
on demonstrating the impact of prompts by con-
trasting several distinct variants. Examples of each
template, filled with a single shared LST instance,
can be found in Table 1.

BaseP, shown in Figure 1, is the basic prompt
template from Section 3.2. It provides the model
only the target word and its context. It serves as the
foundation for developing more complex prompts.

InfoP seeks to harness the comprehensive in-
formation available in LST data. Traditional ap-
proaches often focus on the target word and its
immediate context, while LST instances often pro-
vide additional details that can be valuable. In
InfoP, as exemplified in Figure 2, we incorporate
three additional attributes of the target word: its
position in the sentence, its part of speech (PoS)
tag, and its lemma form. These additions work as
enriched contextual cues, guiding the model to pro-
duce more appropriate substitutions. It is important
to note that these attributes utilized in InfoP are
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Instance: let me begin again.

BaseP: the “begin” in the sentence “let me begin again.” can be substituted with “start”.

InfoP: at position 3 in the sentence, “let me begin again.”, the verb “begin”, derived from the lemma “begin”, can
be substituted with “start”.

AugP (Train): at position 3 in the sentence, “let me begin again.”, the verb “begin”, derived from the lemma “begin”,
can be substituted with “start”, “commence”, “open”, “bring about”, “carry on”, “initiate”, “introduce”,
“originate”, “restart”, “try”.

AugP (Test): at position 3 in the sentence, “let me begin again.”, the verb “begin”, derived from the lemma “begin”, can
be best substituted with “start”.

ExP (Train): at position 3 in the sentence, “let me begin again.”, the verb “begin”, derived from the lemma “begin”
with synonyms “commence”, “get”, “get down”, “lead off”, “set about”, “set out”, “start”, “start out”,
can be substituted with “start”, “commence”, “open”, “bring about”, “carry on”, “initiate”, “introduce”,
“originate”, “restart”, “try”.

ExP (Test): at position 3 in the sentence, “let me begin again.”, the verb “begin”, derived from the lemma “begin” with
synonyms “commence”, “get”, “get down”, “lead off”, “set about”, “set out”, “start”, “start out”, can be
best substituted with “start”.

Table 1: Comparative overview of prompting strategies for a given LST instance. Notably, AugP and ExP utilize
distinct prompts for training and inference phases. The masked sentence portion, highlighted in blue, is used for
loss calculation during training and autoregressive decoding in testing.

exclusively derived from the LST datasets, without
reliance on external resources. Furthermore, as evi-
denced in Section 5, PromptSub remains flexible,
allowing for the incorporation of external knowl-
edge if needed.

AugP is designed to boost the diversity of the
generated corpus by further augmenting InfoP. In
LST tasks, there is often a need to delineate both
the best or “top-1” substitute, and a list of the top
10 substitutes. We therefore specifically embed the
term “best” into the prompt, where only the top-
ranked gold substitute is presented. To incorporate
multiple possible substitutes, we exclude the word
“best”, instead including the top 10 gold substitutes,
as determined by the weighted sampling strategy,
following the open quotation mark sn. This means
multiple y ∈ y will occupy the sn+1 slot, rather
than just one; substitutes are separated by a comma
followed by a space. During the training phase, the
fine-tuning prompt is drawn randomly from tem-
plates that either include or exclude the term “best”.
For inference, potential substitutes are solely sam-
pled using the “best” prompt, the intuition being
that this will help the model to produce substitutes
that are not only acceptable but optimal. This strat-
egy offers deeper insights into the efficacy of our
approach when melded with advanced prompt tech-
niques, such as prompt augmentation.

4 Experiments

In this section, we describe our empirical compari-
son of PromptSub to the top-performing previously
published LST methods. After brief descriptions
of the benchmark datasets (Section 4.1) and our
experimental setup (Section 4.2), we proceed with
a comparative analysis of PromptSub and Gene-
Sis, two supervised generative approaches (Sec-
tion 4.3). We then extend this experiment to include
more methods and test of the full suite of datasets
(Section 4.4). Unless stated otherwise, we apply
PromptSub with FreqSub sampling and AugP for
corpus generation, as these settings gave the best
performance in our development experiments. Fur-
ther sensitivity analysis will be presented in Sec-
tion 5.

4.1 Datasets

LST datasets are few in number and small in size,
presenting a challenge for supervised approaches.
Thus, we adopt the strategy used by Lacerra et al.
(2021b) of merging multiple LST resources for
fine-tuning and evaluating on the remainder.

LS07 facilitates comparison with GeneSis, as
we can directly compare the results reported by the
authors to those we obtain using PromptSub. We
carefully follow the dataset construction procedure
described in the GeneSis paper.

LS14 includes the CoInCo (Kremer et al., 2014)
training set combined with LST and TWSI (Bie-
mann, 2012), as well as a subset of SWORDS (se-
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Backbone Size Method best best-m oot oot-m P@1

bart-large 406M GeneSis 19.2±0.6 31.1±1.5 45.7±3.7 60.0±4.6 47.9±1.1

GeneSis+WN 20.6±0.8 33.2±1.7 50.0±2.4 65.1±2.4 49.2±1.9

gpt2-medium 345M PromptSub (ours) 21.4±0.2 35.8±0.3 50.5±0.2 66.2±0.4 50.4±0.3

PromptSub+ (ours) 21.5±0.2 35.9±0.4 51.1±0.2 67.0±0.5 50.7±0.3

Table 2: Evaluation results on LS07. For all the metrics, the higher, the better. The best are bolded.

lected to avoid overlap with the CoInCo test set).
The dataset is divided into training (90%) and val-
idation (10%) splits. The CoInCo test set is pro-
vided for testing.

LS21 follows a similar procedure, but with the
SWORDS training set combined with LST and
TWSI. A section of CoInCo is added, again en-
suring no overlap with the SWORDS test set. The
dataset is partitioned into 90% for training and 10%
for validation. The original SWORDS test set is
preserved for evaluation.

4.2 Experimental setup

Per established practices, we evaluate model perfor-
mance on LS07 and LS14 using the metrics from
the SemEval-2007 task (McCarthy and Navigli,
2007). We use best and out-of-ten (oot), along
with their modal variations best-m and oot-m, to
assess the top-1 and top-10 predictions, respec-
tively. These metrics weight the gold substitutes ac-
cording to their selection frequency by annotators.
For the more recent LS21 dataset, we follow the
evaluation protocol developed for the SWORDS
benchmark (Lee et al., 2021). We use the F 10 score,
the harmonic mean of precision and recall, for the
top 10 predictions against both acceptable (F10a)
and conceivable (F10c) gold substitutes. SWORDS
assigns a score to each substitute to indicate its
appropriateness, defining acceptable substitutes as
those with scores above 50%, and conceivable sub-
stitutes as those with scores above 0%. For thor-
oughness, we also report a variety of metrics: top-1
precision (P@1), top-3 precision (P@3), and top-10
recall (R@10). Our results, including standard devia-
tions, are averages from five iterations with random
seeds 0 to 4.

We utilize GPT-2 (Radford et al., 2019) as our
primary CLM. In particular, we use gpt2-medium,
except where otherwise specified. This decision
stems from constraints related to computational
resources and the restrictions on access to more
advanced models like GPT-3 (Brown et al., 2020),
as well as the desire to compare PromptSub to

GeneSis using models with comparable numbers
of parameters.

To evaluate the impact of fine-tuning data size
on PromptSub, after determining the optimal hyper-
parameters, we repeat the fine-tuning process on
the concatenation of the training and validation
sets. We refer to this more fine-tuned variant of
PromptSub as PromptSub+. To reiterate, the only
distinction between PromptSub and PromptSub+
lies in the training data volume.

To optimize GPU memory utilization on the
Nvidia Tesla V100 we use for training, we employ
a batch size of 16 with mixed precision training
and gradient accumulation. For fine-tuning, we
use the AdamW optimizer (Loshchilov and Hutter,
2019) with a learning rate 1e−5 and an ℓ2 gradient
clipping of 1.0, following Pascanu et al. (2013).
To prevent overfitting, we use early stopping with
respect to P@1 on validation for a maximum of 8
epochs (Prechelt, 1998). We set the dropout rate
to 0.2, following Srivastava et al. (2014). During
inference, we use a beam search with a width of
50, in line with prior methods (Zhou et al., 2019;
Lacerra et al., 2021b). All implementations are
executed using PyTorch (Paszke et al., 2019), with
pre-trained models sourced from the HuggingFace
repository (Wolf et al., 2020).

4.3 Experiments on LS07

In evaluating GeneSis, Lacerra et al. (2021b) in-
troduces a set of post-processing steps to the sys-
tem’s output. To ensure a fair comparison, we
apply the same post-processing steps to the output
of PromptSub. We also test its enhanced variant
GeneSis+WN with two extra tricks applied: Fall-
back strategy (FS) ensures at least ten substitutes
are returned by first including previously discarded
substitutes and, if necessary, adding more from the
vocabulary ranked by cosine similarity to the target,
until 10 substitutes are obtained. Vocabulary cut
(VC) limits the model to a specified output vocabu-
lary; it discards any generated substitutes outside
this vocabulary. It is noteworthy that both FS and
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Method best best-m oot oot-m P@1

BalAdd 5.6 11.9 20.0 33.8 11.8
SubstituteVector 8.1 17.4 26.7 46.2 −
BERT 14.5 33.9 45.9 69.9 56.3
GeneSis 13.8 30.4 45.6 72.3 58.8

LexSubCon 11.3 23.8 33.6 54.4 41.3
GR-RoBERTa 13.1 28.8 40.9 66.6 48.8
ParaLS 13.8 29.5 41.7 65.6 50.0
ParaLS* 16.8 35.4 48.3 75.0 57.8

PromptSub (ours) 14.5 33.1 46.2 72.9 57.7
PromptSub+ (ours) 14.9 33.9 47.0 73.9 59.5

Table 3: Evaluation results on LS14. The upper section
presents the complete system outcomes, while the lower
focuses on the generation step. Results for BalAdd
(Melamud et al., 2015b) and SubstituteVector (Melamud
et al., 2015a) are sourced from BERT (Zhou et al., 2019).
LexSubCon (Michalopoulos et al., 2022), GR-RoBERTa
(Lin et al., 2022), ParaLS, and ParaLS* are reported by
Qiang et al. (2023). The best are in bold, with the
second-best underlined.

VC rely on external resources such as WordNet
(Miller, 1995), while PromptSub does not. How-
ever, we still incorporate GeneSis+WN for a thor-
ough comparison.

In Table 2, PromptSub outperforms GeneSis
across all metrics. Using gpt2-medium, a model
with 15% fewer parameters than the bart-large
model used by GeneSis, our PromptSub method
yields better results, attaining for example 21.5
in best and 50.7 in P@1. With both FS and VC
enabled, GeneSis+WN is still outperformed by
PromptSub, even when the former leverages Word-
Net for post-processing. The results support the
hypothesis that PromptSub can benefit from addi-
tional training data, as evidenced by the improve-
ments of PromptSub+ over the standard Prompt-
Sub.

Another salient point is the pronounced stabil-
ity exhibited by PromptSub, evident from the re-
duced variance we observed across random seeds.
For instance, PromptSub shows a variance of 0.2,
markedly less than the 3.7 of Genesis, in terms of
oot. This can be attributed to the fact that Prompt-
Sub generates substitutes through greedy sampling
from a single-step probability distribution, leading
to a more stable and consistent output. In contrast,
GeneSis relies on multiple decoding steps, result-
ing in higher variability across runs.

4.4 Experiments on LS14 and LS21
As detailed in Section 4.3, we follow the same
evaluation procedure as in GeneSis to ensure a fair

Method F10
a F10

c

BERT (Zhou et al., 2019) 17.4 27.5
GeneSis (Lacerra et al., 2021b) 23.3 43.0
GPT-3 (Lee et al., 2021) 22.7 36.3
WordTune (Lee et al., 2021) 23.4 33.2
CALS (Yang et al., 2022) 16.7 28.4
mBERT (Wada et al., 2022) 12.4 22.6
SpanBERT (Wada et al., 2022) 20.9 34.0
MPNet (Wada et al., 2022) 22.0 34.1
XLNet (Wada et al., 2022) 23.3 37.4
ELECTRA (Wada et al., 2022) 23.2 36.7
DeBERTa-V3 (Wada et al., 2022) 24.5 39.9
BART (Wada et al., 2022) 23.5 37.2
ParaLS (Qiang et al., 2023) 23.5 38.6
ParaLS* (Qiang et al., 2023) 24.9 40.1

GPT-3 (Lee et al., 2021) 22.2 34.3
WordTune (Lee et al., 2021) 22.8 32.1
BERT (Wada et al., 2022) 20.7 34.4
BERT-K (Wada et al., 2022) 15.7 24.4
BERT-M (Wada et al., 2022) 10.7 16.5
CILex3 (Seneviratne et al., 2022) 19.9 31.5
ParaLS* (Qiang et al., 2023) 22.8 37.0

PromptSub (ours) 23.2 45.4
PromptSub+ (ours) 24.0 46.4

Table 4: Evaluation results on LS21. The upper section
presents the performance of their complete systems,
while the lower section reports that of the generation
step only. Results of BERT (Zhou et al., 2019), CALS
(Yang et al., 2022), and GPT-3 (Lee et al., 2021) are
borrowed from Wada et al. (2022). That of CILex3
(Seneviratne et al., 2022) is reported by Qiang et al.
(2023). The best are bolded.

comparison. Other competing systems were tested
under different experimental configurations, com-
plicating the comparison. Moreover, existing ap-
proaches typically involve multiple stages, such as
substitute generation and contextualized reranking.
This complicates the isolation and evaluation of the
specific impact of PromptSub, which is a single-
stage end-to-end generative approach, as opposed
to the “pipeline” approaches of the methods we
compare to. To address this, we expand our evalua-
tion scope to include LS14 and LS21, emphasizing
the substitute generation aspect. In Tables 3 and 4,
we compare PromptSub (and PromptSub+) to pre-
viously published methods on LS14 and LS21 re-
spectively. Results reported in the second part of
each table (below the double horizontal line) evalu-
ate performance after the generation stage, with no
post-processing. To further verify the advantages
of our PromptSub, we re-implement GeneSis using
the same configurations, maintaining gpt2-medium
for PromptSub and bart-large for GeneSis.

For results on LS14 (Table 3), PromptSub+
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yields competitive performance, ranking first or
second on all metrics. A standout observation is the
prowess of PromptSub+ in the P@1 metric, where it
achieves the top result by a wide margin. We find
that this disparity between P@1 and other metrics is
attributed to annotator preference induced by the
weighted task metrics of SemEval-2007 (McCarthy
and Navigli, 2007). This thus suggests that certain
methods, such as ParaLS*, may be biased toward
the substitutes preferred by annotators.

Turning to LS21 (Table 4), both PromptSub and
PromptSub+ outperform prior methods, including
GeneSis, setting a new state of the art. Specifi-
cally, PromptSub+ achieves an unprecedented F10c
of 46.4, surpassing the previous best by almost
10. It also achieves the best F10a at 24.0 using
PromptSub+. Notably, despite using gpt2-medium,
PromptSub and PromptSub+ are able to outperform
GPT-3 by a substantial margin, demonstrating the
utility of the knowledge-rich prompting techniques
we built into PromptSub. Based on these results,
we speculate that, with full access to GPT-3 (or
even more powerful models), and additional la-
beled LST data for fine-tuning, PromptSub could
yield even stronger results.

4.5 Error examples

In this section, we discuss the most frequent types
of errors made by our method.

The first such category that we identified in-
volves instances where the substitutes provided by
annotators include phrases rather than single words.
For example, one test instance from LS21 has the
context “That is why I cannot take payment”; the
target word take is annotated with substitutions
including accept and ask for. While accept is a sin-
gle element of the vocabulary, ask for is a phrase
that models trained predominantly to predict single-
word substitutes may not generate.

Besides, we observed some potential omissions
in the datasets. One example involves substituting
the target word voice in the context “How should
I reply? Her voice had grown quiet”. The top
prediction of PromptSub, sound, is not among the
provided substitutes, and so is considered incorrect.
However, the annotations include talk, utterance,
and tongue, which are, arguably, less suitable as
substitutes than sound. This highlights the need for
benchmarks which are more comprehensive, and
which have more consistent criteria for substitutes.

Method Backbone LS14 LS21

best best-m oot oot-m F10
a F10

c

PromptSub
gpt2 13.8 31.7 43.8 68.8 22.1 42.6
gpt2-medium 14.5 33.1 46.2 72.9 23.2 45.4
gpt2-large 14.7 34.5 46.2 72.4 23.8 46.7

PromptSub+
gpt2 14.1 32.4 44.3 69.4 22.8 44.3
gpt2-medium 14.9 33.9 47.0 73.9 24.0 46.4
gpt2-large 15.1 34.9 46.8 72.9 23.8 47.6

Table 5: Analysis results of PromptSub on LS14 and
LS21, showing the impact of varying model capacity.

0 20 40 60 80

0.2
0.4
0.6

P@
1

(a) LS14

0 20 40 60

(b) LS21

Training Epochs

gpt2 gpt2-medium gpt2-large

Figure 3: Learning curve of PromptSub for various
model sizes on LS14 and LS21 validation sets. Vertical
dotted lines indicate the last training epoch before early
stopping.

5 Analysis

We now present a sensitivity analysis of our method.
We measure the impact of various aspects of our ex-
perimental setup, including training size, model ca-
pacity, sampling strategy, prompt engineering, and
external knowledge. We maintain the same experi-
mental setup, modifying one aspect of our methods
to observe the resulting performance change on
LS21. The random seed is held constant at 0.

Training size Regarding training data size, we
have introduced PromptSub+, a variant of Prompt-
Sub, that includes the validation set in its training
data. Across all experiments, PromptSub+ con-
sistently outperforms PromptSub on the test data,
demonstrating its ability to benefit from additional
data. This finding underscores the challenge posed
by limited data resources in most existing LST
benchmarks, which affects the broader application
of PromptSub and other supervised methods (Lac-
erra et al., 2021a,b).

Model capacity We tested three GPT2 model
sizes to measure the impact of model capacity (i.e.
number of parameters). As reported in Table 5,
the results demonstrate the trend of improved per-
formance, across most evaluation metrics, as we
scale from gpt2 to gpt2-medium, then to gpt2-large.
Figure 3 depicts the learning curve in relation to
model capacity, showing a drop in the number of
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Sampling F10
a F10

c P@1 P@3 R@10

TopSub 20.9 39.9 69.4 57.8 40.1
FreqSub 22.0 42.3 71.0 60.7 42.5

Table 6: Analysis results of gpt2 under PromptSub on
LS21, obtained by varying the sampling strategy to fill
in the prompt template with label substitutes.

training epochs before early stopping is triggered.
It also becomes apparent that larger models are
more prone to overfitting the training set. This
trend again reflects the challenge posed by limited
data resources in LST, particularly when deploying
PLMs in scale.

Sampling strategy In Section 3.3, we consid-
ered two different sampling techniques, TopSub
and FreqSub. The results obtained by our method
with each sampling strategy are presented in Ta-
ble 6. We observe a constant improvement from
TopSub to FreqSub, hence its usage in our principal
experiments. These results support that FreqSub
successfully addresses the one-to-many mapping
issue during corpus generation and facilitates the
generation of more accurate and diverse substitutes.

Prompt engineering We next quantify the im-
pact of different prompt templates (Section 3.4) on
PromptSub. Table 7 shows that InfoP generally
outperforms BaseP, validating the value of extra
contextualized cues. AugP outperforms both, align-
ing with our expectations as the information pro-
vided to the language model by AugP is a superset
of what InfoP provides. This comparison effec-
tively serves as an ablation study, showcasing the
significance of incorporating additional knowledge
into prompts. Interestingly, although augmented
prompt templates are not used during inference,
their inclusion in the training phase still leads to
noticeable performance improvements.

External knowledge To validate the efficacy of
incorporating external knowledge in PromptSub,
we introduce a new prompting strategy, ExP, as
a simple form of retrieval-augmented generation
(RAG; Lewis et al., 2020b). Building upon AugP,
ExP utilizes WordNet as an external knowledge
base, retrieving WordNet synsets for the word
to be substituted, and which share the same part
of speech. These synsets are integrated into the
prompt templates as descriptions, following a sim-
ilar approach to that used for other information.
Comparison with AugP in Table 7 reveals the su-

0 20 40 60
1.0

1.5

2.0
(a) Loss

0 20 40 60

0.2
0.4
0.6

(b) P@1

Training Epochs

BaseP InfoP AugP ExP

Figure 4: Training dynamics of gpt2 under PromptSub,
showing the average loss (a) and P@1 (b) across dif-
ferent prompt templates on the validation set of LS21.
Vertical dotted lines mark the early stopping epochs.

Prompt F10
a F10

c P@1 P@3 R@10

BaseP 21.1 37.6 72.7 58.3 38.6
InfoP 20.7 38.4 72.3 59.0 39.5
AugP 22.1 42.2 71.9 62.0 43.6
ExP 22.0 42.3 73.0 62.6 43.4

Table 7: Analysis results of gpt2 under PromptSub on
LS21, obtained by varying the prompt templates.

periority of ExP in P@1 and P@3, indicating that
high-quality substitutes are more likely to be near
the top of the list produced by PromptSub. Training
results in Figure 4 also demonstrate the advantages
of ExP, with lower loss, higher P@1, and earlier con-
vergence. These results indicate the potential ben-
efits of grounding PromptSub on external sources
of knowledge through RAG.

6 Conclusion

We have presented PromptSub, a framework for
recasting LST as CLM, which overcomes the limi-
tations of earlier methods by bridging the gap be-
tween pre-training and fine-tuning. PromptSub is
flexible and extensible: it allows for variations in
the prompt template, facilitating the inclusion of
additional knowledge; further analysis reveals the
potential for further improvement through scaling
up model capacity and data size, applying prompt
engineering, and retrieving external knowledge
via RAG. Our extensive experiments found that
PromptSub consistently outperforms the previous
generative approach, GeneSis, on LS07, and estab-
lishes a new overall state of the art. As the first
attempt to fine-tune decoder-only PLMs for LST,
our work highlights the broader applicability of
PLMs to semantic tasks.

128



Limitations

While PromptSub is a significant step forward in
LST, it is not without its limitations. Firstly, its ef-
fectiveness is limited by the quality and diversity of
its training data, a common challenge in supervised
methods. This is particularly relevant given the
data scarcity in LST, restricting our ability to scale
with data extension. Furthermore, PromptSub has
not been tested with the latest PLMs due to limited
computing resources and closed-source constraints.
The computational demands for fine-tuning large-
scale language models may limit its practicality,
especially in resource-constrained environments.
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A PromptSub vs. T5

Our approach distinguishes itself from T5 (Raffel
et al., 2020) in several key aspects:
Architecture. Unlike the encoder-decoder frame-
work of T5, PromptSub leverages a decoder-only
model to reframe LST as CLM, taking advantage
of its inherent strengths in generating text.
Prompting. T5 utilizes a short prefix to specify
each task. One example is “cola sentence: ” for
the CoLA dataset. In contrast, PromptSub employs
in-context placeholder prompts that not only ver-
balize raw LST data instances but also provide a
descriptive context for CLM.
Method. The text-to-text format has inherent lim-
itations, thus, aside from GeneSis, there has been
no effective method to address LST within this
framework. PromptSub, however, offers a fresh
perspective and demonstrates a new solution.
Task. PromptSub has successfully adapted causal
language models to LST, a domain where, to the
best of our knowledge, T5 has not been demon-
strated to operate.
Performance. Empirical evidence show that
PromptSub outperforms GeneSis, which takes
BART as the backbone. Given that GeneSis uses an
encoder-decoder framework akin to T5, it stands to
reason that PromptSub could extend its advantages
over approaches that merely transition from BART
to T5.

B MLM & CLM

Consider the following example illustrating the di-
rect application of MLM and CLM to LST:

• Sentence: I live in a beautiful house .

• MLM: I live in a [MASK] house .

• CLM: I live in a [MASK] [MASK] [MASK]

The target word (i.e., “beautiful”) is masked for
the model to predict it, potentially leading to a
substitute (e.g., “big”) that fits the context but does
not preserve the original sentence semantics due to
the absence of the target word information.
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