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Abstract
Paraphrase identification (PI) and natural lan-
guage inference (NLI) are two important tasks
in natural language processing. Despite their
distinct objectives, an underlying connection
exists, which has been notably under-explored
in empirical investigations. We formalize the
relationship between these semantic tasks and
introduce a method for solving PI using an NLI
system, including the adaptation of PI datasets
for fine-tuning NLI models. Through extensive
evaluations on six PI benchmarks, across both
zero-shot and fine-tuned settings, we show-
case the efficacy of NLI models for PI through
our proposed reduction. Remarkably, our fine-
tuning procedure enables NLI models to out-
perform dedicated PI models on PI datasets. In
addition, our findings provide insights into the
limitations of current PI benchmarks.1

1 Introduction

Semantic relationships have been the subject of
extensive research, and play pivotal roles in natural
language processing (Burdick et al., 2022; Hauer
and Kondrak, 2023; Pàmies et al., 2023; Peng et al.,
2023a; Wahle et al., 2023), including the study and
evaluation of the reasoning capabilities of language
models (Liu et al., 2019; Yang et al., 2019). Two
important tasks that depend on semantic relations
between sentences are paraphrase identification (PI;
Bai et al., 2023; Peng et al., 2023b) and natural
language inference (NLI; Williams et al., 2018;
Nie et al., 2020; Williams et al., 2022). PI is the
task of deciding whether two sentences are in the
paraphrase relation, that is, whether they convey
the same meaning (Bhagat and Hovy, 2013). NLI
involves three labels that describe the relationship
between two sentences: entailment, contradiction,
and neutral (MacCartney, 2009).

Our focus is specifically on detecting textual en-
tailment, as indicated by the first of these categories

1We make our code and data publicly available on GitHub:
https://github.com/ShiningLab/PI2NLI
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Figure 1: Four sentence-level relations in terms of sym-
metry and contextuality. Arrows indicate interdepen-
dence between the relations (Section 2).

(Bos and Markert, 2005; Dagan et al., 2005; Po-
liak, 2020), or, more generally, textual inference
(Manning, 2006), which is the relation between
sentences where one can be inferred from the other
in a given context. Take the example from SNLI
(Bowman et al., 2015); while the premise “this man
is surfing” does not always entail the hypothesis “a
man is on water”, the broader context may make
it clear that the word surfing refers to an aquatic
activity rather than website browsing, and so the
latter sentence can be inferred from the former.

Prior work has hypothesized that paraphrasing
corresponds to bidirectional textual entailment; see,
for example, the surveys of Androutsopoulos and
Malakasiotis (2010) and Madnani and Dorr (2010).
However, to the best of our knowledge, the only
work that empirically investigates the connection
between these two tasks is Seethamol and Manju
(2017). They incorporate a blend of modules, in-
cluding word sense disambiguation for sentence
similarity and a Markov logic network for proba-
bilistic inference, which complicates the analysis
of the interplay between paraphrases and entail-
ment. Moreover, their approach aligns more with
traditional PI methods than with our approach, and
lacks any theoretical formalization.

In this work, we formalize prior informal obser-
vations on the relationship between textual entail-
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ment and paraphrasing into a coherent theoretical
framework (Figure 1). We formally define four
semantic relations and classify them according to
two criteria: symmetry and contextuality. This
formalization implies a practical reduction of PI
to NLI, which we empirically validate by employ-
ing two widely used pre-trained transformer-based
language models, RoBERTa and XLNet. We intro-
duce a dataset adaptation process for fine-tuning
an NLI model for PI, and test our implementation
on six PI benchmarks. Our results indicate that in
the fine-tuned setting, our PI to NLI reduction can
actually yield better performance compared to the
direct application of a PI system. This provides
strong support for the utility of our reduction, and
the theoretical model upon which it is based.

2 Methodology

In this section, we present our theoretical frame-
work linking four semantic relations. We also intro-
duce a novel method for fine-tuning an NLI model
for PI, proposing a dataset adaptation procedure
that converts PI datasets to labeled NLI instances.

2.1 Equivalence and Paraphrasing
We define the semantic equivalence relation (SEQ)
as follows:

SEQ(S1, S2) := “the sentences S1 and S2 con-
vey the same meaning”

The paraphrase relation (PR) between sentences
is related to semantic equivalence; specifically,
SEQ implies PR. Our definition of PR is contex-
tual, so that it also admits semantic equivalence
in a broader context, which may include common
sense and world knowledge.

PR(C, S1, S2) := “the sentences S1 and S2 con-
vey the same meaning given the context C”

Bhagat and Hovy (2013) refer to this type of
paraphrases as quasi-paraphrases; for example:

• S1: We must work hard to win this election.

• S2: The Democrats must work hard to win
this election.

We postulate the following relationship between
the semantic equivalence and paraphrase relations:

SEQ(S1, S2) ⇔ ∀C : PR(C, S1, S2)

2.2 Entailment and Inference
Textual entailment (TE) is a directional relation
between sentences which holds if the truth of one

sentence follows from another sentence (Dagan and
Glickman, 2004):

TE(S1, S2) := “the sentence S2 can be inferred
from the sentence S1”

The proposition that T entails H is denoted as
T |= H . The entailment relation is not symmetric:
T |= H does not imply H |= T .

Following prior work, we assume that sentences
are semantically equivalent if and only if each en-
tails the other:

SEQ(S1, S2) ⇔ TE(S1, S2) ∧ TE(S2, S1)

Finally, we define textual inference (TI) as a con-
textual generalization of textual entailment which
takes into account the broad context of the state-
ments, which may include common sense and
world knowledge (Manning, 2006):

TI(C, S1, S2) := “the sentence S2 can be in-
ferred from the sentence S1 given the context C”

Intuitively, TI(C, S1, S2) expresses the follow-
ing inference property: (C + S1) |= S2.

Analogous to the relationship between SEQ and
PR, we postulate the following relationship be-
tween TE and TI:

TE(S1, S2) ⇔ ∀C : TI(C, S1, S2)

The following proposition establishes a connec-
tion between PR and TI:

Proposition 1 Given context C, sentences S1 and
S2 are paraphrases if and only if they can be mutu-
ally inferred from each other.

PR(C, S1, S2) ⇔ TI(C, S1, S2) ∧ TI(C, S2, S1)

Thus, the paraphrase relation can be viewed as
the conjunction of the inference relation in both
directions.

2.3 Dataset Adaptation
Building on our theoretical formalization, we posit
that the task of PI, which depends on detecting the
PR relation, can be reduced to NLI, specifically the
detection of the TI relation. To implement and test
our PI to NLI reduction – henceforth PI2NLI – we
present a novel fine-tuning procedure that allows an
NLI model to be fine-tuned for solving PI instances.
Our goal is to mitigate biases stemming from the
transfer learning and any domain-specific dispari-
ties or other properties of the data that may degrade
performance on PI datasets. Our dataset adaptation
procedure transforms PI datasets to be compatible
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with NLI systems so as to facilitate fine-tuning on
adapted PI data.

We convert each positive PI instance into two
distinct positive NLI instances, one in each direc-
tion, indicating mutual TI between two paraphrases,
as postulated in Proposition 1. Conversely, since
determining in which direction TI fails to hold in a
negative PI instance is not straightforward, we gen-
erate a negative NLI instance in a random direction.
While this heuristic is not theoretically justified, we
found that it works well in practice.

3 Experiments

The experiments in this section are aimed at validat-
ing the proposed theoretical framework. Additional
data specifics and training details can be found in
Appendices B and C.

3.1 Models

We implement and test our reduction with each of
two freely available transformer-based (Vaswani
et al., 2017) language models, RoBERTa (Liu et al.,
2019) and XLNet (Yang et al., 2019). Specific
model names have been provided in the footnotes.
We choose them because of their low hardware
requirements, and their status as well-known and
well-studied models (Peng et al., 2022). The pri-
mary distinction between them lies in their design:
RoBERTa is an autoencoding-based model, while
XLNet is an autoregressive model. Note that the
prior works we will mainly compare to are as re-
cent as 2022, thus we gain no advantage from our
choice of models.

In our implementation, we apply the NLI classi-
fication head because pre-trained NLI models are
readily available (Nie et al., 2020). We consider the
relation labeled as “entailment” in the NLI datasets
as TI rather than TE because the positive instances
typically require broader contextual knowledge, as
exemplified by the “surfing” instance in Section 1.
Since NLI models are not typically trained on para-
phrase data (PI being an entirely separate task from
NLI), this maintains a sound experimental setup.

Since recognizing TI is a binary task (outputs
are positive or negative), while NLI is a ternary
task (outputs are entailment, neutral, or contradic-
tion), we require a means of converting labeled TI
instances to NLI instances (so that we can fine-tune
NLI models), and NLI outputs to TI outputs (so that
we can evaluate them). We map positive TI labels
to “entailment” NLI labels and negative TI labels

Data #Train. #Valid. #Test Test Pos.%

PIT 11,530 4,142 838 20.88
QQP 384,290 10,000 10,000 50.00
MSRP 3,668 408 1,725 66.49
PAWS QQP 11,988 8,000 677 28.21
PAWS Wiki 49,401 8,000 8,000 44.20
PARADE 7,550 1,275 1,357 47.90

Table 1: Statistics of all six benchmarks, including the
positive rate of the test set (Test Pos.%).

to “neutral” or “contradiction” labels at random.
We map “entailment” NLI output to a positive TI
classification, and “neutral” or “contradiction” to
a negative TI classification. Further details and
discussion can be found in Appendix A.

For the zero-shot application of PI2NLI,
pi2nlizero, we employ two trained NLI models:
RoBERTanli

2 and XLNetnli
3. For the fine-tuned

version, pi2nli, these models undergo fine-tuning
on the NLI dataset derived from the corresponding
PI dataset through dataset adaptation (Section 2.3).
This yields a TI (or, more accurately, NLI) model
adapted for PI following our PI2NLI reduction.

3.2 Setup

Data We test our reduction on six PI benchmarks:
PIT (Xu et al., 2015), QQP (Iyer et al., 2017),
MSRP (Dolan and Brockett, 2005), PAWS QQP
(Zhang et al., 2019), PAWS Wiki (Zhang et al.,
2019), and PARADE (He et al., 2020). We follow
the data processing established by prior work (He
et al., 2020; Peng et al., 2022). Detailed specifica-
tions of each dataset are provided in Table 1.

Baselines We adopt baselines from previous stud-
ies, citing each source for reference. Beyond
referencing prior work, we set new benchmarks
pi by training dedicated PI models using the
same language models as pi2nli, alongside vanilla
RoBERTa and XLNet.4 Furthermore, we ensure
that all classification heads are initialized from
scratch. This facilitates a controlled comparison to
isolate the distinct contributions of the PI2NLI re-
duction from the language models used. We metic-
ulously follow the experimental setups and data
preprocessing detailed in the referenced works, par-
ticularly aligning with the protocol established by
Peng et al. (2022) for hyperparameter tuning.

2roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
3xlnet-large-cased-snli_mnli_fever_anli_R1_R2_R3-nli
4roberta-large, xlnet-large-cased
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Backbone Method PIT QQP MSRP PAWS QQP PAWS Wiki PARADE

− Random 27.18 50.31 56.47 35.01 46.94 51.22

BERTbase

Reimers and Gurevych (2019) 52.03±1.44 90.78±0.09 81.67±0.46 66.01±0.45 81.57±0.53 −
Peng et al. (2021) 59.11±0.93 90.41±0.09 81.70±0.17 66.22±0.75 81.14±0.81 −
Peng et al. (2022) 59.19±1.85 90.74±0.06 83.42±0.23 68.85±0.73 82.60±0.18 −

BERTlarge He et al. (2020) 74.60 87.70 89.30 − 93.30 70.90

RoBERTabase
Reimers and Gurevych (2019) 52.67±2.75 90.79±0.09 81.69±0.53 67.35±0.97 81.42±0.93 −
Peng et al. (2022) 59.50±2.74 90.76±0.03 83.22±0.46 69.68±0.72 82.87±0.35 −

RoBERTalarge pi (Liu et al., 2019) 81.20±0.89 91.66±0.22 91.17±0.15 88.92±1.09 94.05±0.22 71.10±7.18

XLNetlarge pi (Yang et al., 2019) 56.39±32.39 73.19±40.92 87.51±4.36 89.83±1.24 74.91±41.88 59.02±32.82

RoBERTanli

pi (Nie et al., 2020) 79.64±1.72 91.62±0.28 91.48±0.68 90.06±1.81 93.89±0.22 74.65±0.64

pi2nlizero (ours) 10.70 53.03 35.92 61.36 71.40 27.00
pi2nli (ours) 83.64±1.44 92.27±0.14 92.38±0.30 88.67±1.84 93.87±0.18 75.04±0.85

XLNetnli

pi (Nie et al., 2020) 78.80±0.82 91.27±0.30 91.00±0.63 89.68±0.38 93.66±0.24 73.97±0.21

pi2nlizero (ours) 18.46 60.28 50.38 56.00 69.97 33.74
pi2nli (ours) 82.07±1.31 91.95±0.20 91.41±0.40 87.55±1.26 93.90±0.35 74.24±0.75

Table 2: F1 scores (%) of PI2NLI in zero-shot (pi2nlizero) and fine-tuned (pi2nli) settings, compared with the
Random and pi baselines we implemented, as well as prior methods cited. Scores highlighted in bold signify the
best performance with a p-value < 0.005, denoting high statistical significance.

Metrics To address the inherent class imbalance
in most datasets and follow prior work (Peng et al.,
2022), we use the F1 score as our primary evalua-
tion metric. We run each method on each dataset
five times, using each integer from 0 to 4 as a ran-
dom seed, and report the average F1 score.

3.3 Results
We present our results in Table 2.

Zero-shot The zero-shot performance of PI2NLI
is erratic, with highly variable F1 scores across
datasets. Indeed, pi2nlizero outperforms the ran-
dom baseline on only half of the datasets. Our
analysis reveals that this is not indicative of a flaw
in our PI2NLI reduction but rather due to inherent
flaws in the PI benchmarks. Specifically, the an-
notations in these datasets do not strictly conform
to the criteria imposed by our hypothesis. Table 3
highlights instances where paraphrasing-induced
information loss disrupts mutual TI, leading to dis-
crepancies between the original PI labels (YPI) and
the outputs (ŶPI) derived from the PI2NLI hypoth-
esis. In essence, our results suggest that PI2NLI
is able to identify and rectify inconsistencies in
PI benchmarks. Such inconsistencies also sug-
gest that context information essentially represents
the dataset-specific distribution in practice: a para-
phrase identified in one dataset might not necessar-
ily be considered a valid paraphrase in the other.
Taken together, these findings strongly suggests the
need for a dataset adaptation procedure, to prepare
the model for the unique properties of each dataset.

Fine-tuning Contrariwise, the fine-tuned version
of our PI2NLI reduction yields consistently high F1
scores, outperforming the reported results obtained
by prior work on all six datasets. In particular,
the F1 score of the RoBERTalarge-based PI2NLI
implementation increases from 10.70 to 83.64 on
the PIT dataset. Notably, our top performances
of 92.27 on QQP and 75.04 on PARADE also sur-
pass the 89.6 (Peng et al., 2023b) and 74.06 (Bai
et al., 2023) reported by the latest work respec-
tively. This demonstrates that our dataset adapta-
tion procedure successfully empowers NLI models
to adapt to the peculiarities of various PI datasets
and to yield state-of-the-art results. Moreover, our
experiments show that PI2NLI consistently outper-
forms dedicated PI models using the same underly-
ing language models on four of six datasets. This
controlled experiment therefore confirms that the
performance gains achieved can be attributed to
our PI2NLI reduction, rather than other factors like
the differing model capacities.

Pre-training Another critical observation is that
pre-training5 on additional NLI data leads to better
and more stable fine-tuned performance on PI tasks.
This observation is especially evident when tran-
sitioning pi from XLNetlarge to XLNetnli. While
it is a common belief that pre-training on addi-
tional tasks (e.g., NLI) could inherently improve
performance on one certain task (e.g., PI), this is

5We regard “pre-training” as any foundational training
conducted prior to our task-specific fine-tuning in this work.
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Input S1 |= S2 S2 |= S1 ŶPI YPI

S1: The district also sent letters yesterday informing parents of the situation .
T T T T

S2: Parents received letters informing them of the possible contamination yesterday .

S1: Two kids from Michigan are in today ’s third round .
F F F F

S2: Both will compete in today ’s third round , which is all oral examination .

S1: Pacific Northwest has more than 800 employees , and Wells Fargo has 2,400 in Washington .
T F F T

S2: It has 800 employees , compared with Wells Fargo ’s 2,400 .

S1: Six Democrats are vying to succeed Jacques and have qualified for the Feb. 3 primary ballot .
F T F T

S2: Six Democrats and two Republicans are running for her seat and have qualified for the Feb. 3 primary ballot .

Table 3: Four PI instances that differ in the detected entailment direction. Although all eight individual TI outputs
are arguably correct, the last two instances are counted as false negatives.

PIT QQP MSRP PAWS QQP PAWS Wiki PARADE0
30
60
90

(a) PI2NLI Zero-shot

PIT QQP MSRP PAWS QQP PAWS Wiki PARADE0
30
60
90

(b) PI2NLI Fine-tuned

Positive Accuracy Negative Accuracy

Figure 2: The results of (a) pi2nlizero and (b) pi2nli
using RoBERTanli in Table 2, separated into positive
and negative accuracy.

not always a given. Several factors could poten-
tially lead to a negative impact after such additional
pre-training. These include domain mismatches,
biases inherent in the pre-training data, and the phe-
nomenon of catastrophic forgetting (McCloskey
and Cohen, 1989). Following NLI pre-training, the
improved performance of PI serves as a positive
indicator. They support our hypothesis of a closely
related and synergistic relationship between PI and
NLI. This synergy is not automatic but is indica-
tive of the effective transfer of relevant skills and
knowledge from NLI to PI tasks.

Boundary In Figure 2, we split the results into
positive and negative accuracy. In (a), pi2nlizero
tends to have relatively higher negative accuracy,
leading to a lower likelihood of classifying sen-
tences as paraphrases. In (b), both positive and
negative accuracy of pi2nli increase and become
more balanced. This supports our earlier findings
that, in order to perform better in the PI task, NLI
models can correct their decision boundaries after
fine-tuning. We view this adjustment as the process
of how models learn the context inherent in each
PI dataset.

PAWS Our error analysis reveals that the results
of pi2nli on PAWS QQP and PAWS Wiki are due to
the presence of adversarial examples (Zhang et al.,
2019). This becomes particularly evident when
comparing the QQP results with those of PAWS
QQP, as both derive from the same source. These
PAWS datasets are augmented with paraphrase ad-
versaries to offer refined versions of the original
datasets, presenting a challenge for models to pre-
dict the correct outcomes. Applying PI2NLI re-
quires an NLI model to predict the TI relation in
each direction. Therefore, the impact of the para-
phrase adversaries becomes more apparent due to
error accumulation from making two predictions.

4 Conclusion

We have presented a novel theoretical and empir-
ical study of the relationship between two impor-
tant semantic tasks, PI and NLI, a topic that has
remained largely unexplored. Our experiments pro-
vide strong evidence that our innovative PI2NLI
reduction, combined with fine-tuning on the NLI
data facilitated by our dataset adaptation procedure,
yields substantial F1 improvements on the PI task,
outperforming dedicated PI models on benchmark
PI datasets. The variable outcomes observed when
applying PI2NLI in a zero-shot setting also offer
insights into the existing limitations of the current
PI datasets. In addition to advancing the state of
the art, our findings offer valuable insights into the
relation between PI and NLI, and set the stage for
further investigation.

Limitations

While our work has made significant strides in un-
derstanding the four semantic relations, it is not
without its limitations.

Firstly, our zero-shot results suggest mismatches
between our theoretical proposition and existing
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PI benchmarks. These benchmarks may not ade-
quately capture the bidirectional inference relation
integral to genuine paraphrase identification.

Secondly, our study focuses on the application of
NLI models in solving PI tasks through the PI2NLI
reduction, but there are still avenues left to explore.
For instance, augmenting the PI dataset with an
NLI one could potentially yield new insights.

Finally, our study has been NLI-centric so far, al-
lowing us to delve deeply into the potential of NLI
models in PI tasks. However, there is an opportu-
nity for future research to explore the relationship
from a PI-centric perspective. This could include
investigating the capability of PI models in solving
NLI tasks. A more balanced exploration would
provide a more comprehensive understanding of
the four semantic relations.
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A Dataset Adaptation

The alignment of PI data with NLI data starts with
converting PI data to NLI format, as outlined in
Section 2.3. While converting positive PI instances
to positive NLI instances is straightforward, that
for negative NLI instances is not. A negative PI in-
stance is transformed into a negative NLI instance
in one direction. When fine-tuning the NLI model,
both “contradiction” and “neutral” are used to rep-
resent these negative NLI instances. In this context,
a FALSE label is randomly assigned as either “con-
tradiction” or “neutral” in NLI. This is justified in
the context of our work because both labels can
align with a negative TI relation.

Determining the precise TI direction and corre-
sponding NLI class without additional resources
or explicit human judgment presents a significant
challenge. Hence, we adopted random sampling
as a practical solution in our research. However,
we recognize that further refining this aspect, such
as using a pre-trained NLI model for more gran-
ular annotation of negative NLI instances, could
enhance the performance of PI2NLI. We believe
this represents a promising direction for future re-
search.

B Training

The AdamW optimizer (Loshchilov and Hutter,
2019) is employed with an initial learning rate of
1e-5 and a batch size of 32. We tune the learn-
ing rate within the range of [1e-5, 2e-5, 5e-5] and
choose the batch size to optimize the GPU mem-
ory utilization on a single Nvidia Tesla V100. To
prevent overfitting, we adopt early stopping on
the F1 score of validation for 6 epochs (Prechelt,
1998). All implementations are executed using Py-
Torch (Paszke et al., 2019), with pre-trained models
sourced from the HuggingFace repository (Wolf
et al., 2020).

In our implementation, we transitioned from a
standard PI pipeline consistent with established
practices in existing literature (Peng et al., 2022).
to our PI2NLI. This strategic shift was executed
with an emphasis on ensuring fairness and com-
parability across tests. Thus, our setup may even
slightly favor the PI baselines. While more precise
tuning of training configurations might enhance
the performance of PI2NLI, our primary focus has
been on validating our hypothesis. Our future work
will explore optimizing these configurations to fur-
ther improve performance.

C Data

The Paraphrase and Semantic Similarity in Twitter
(PIT) dataset is sourced from Twitter’s trending
service and annotated using Amazon Mechanical
Turk (Xu et al., 2015). The labels range from 0 to
5. We follow the suggested binary data processing
where labels 4 and 5 indicate a paraphrase, and
labels 0 through 2 do not.6

The Quora Question Pairs (QQP) dataset orig-
inates from the question-and-answer platform
Quora, consisting of question pairs annotated for
potential duplicity (Iyer et al., 2017). The dataset
labels are binary, indicating whether question pairs
are duplicates (TRUE) or not (FALSE).7

The Microsoft Research Paraphrase Corpus
(MSRP) is derived from sentence pairs generated
by clustering news articles using heuristic extrac-
tion and an SVM classifier, with human annota-
tions provided (Dolan and Brockett, 2005). For
this study, we adhere to the GLUE benchmark stan-
dards for processing and splitting the data (Wang
et al., 2018).8

The PARAphrase identification based on Do-
main knowledgE (PARADE) dataset is tailored for
PI in computer science, requiring in-depth domain
knowledge (He et al., 2020). It challenges models
to identify paraphrases that, despite minimal lexical
and syntactic overlap, are semantically equivalent
due to the specialized context of computer science.
The dataset offers annotations in both four-class
and binary formats, provided by annotators with
domain expertise.9 In this work, we use binary
labels to maintain consistency with prior studies.

The Paraphrase Adversaries from Word Scram-
bling (PAWS) benchmark, including PAWS QQP
and PAWS Wiki, is proposed to test models to dis-
cern semantic relationships despite superficial lexi-
cal similarities (Zhang et al., 2019). These datasets
utilize word scrambling and back-translation to
create adversarial examples that, while sharing
high lexical overlap, differ significantly in mean-
ing. PAWS QQP draws questions from the QQP
corpus and PAWS Wiki is based on sentences from
Wikipedia.10 Labels are provided in binary for-
mat, and we follow the standard data processing
protocols as originally released.11

6https://github.com/cocoxu/SemEval-PIT2015
7https://huggingface.co/datasets/quora
8https://huggingface.co/datasets/nyu-mll/glue
9https://github.com/heyunh2015/PARADE_dataset

10https://dumps.wikimedia.org/
11https://github.com/google-research-datasets/paws
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