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Abstract
This paper addresses the problem of word sense
induction (WSI) via clustering of word embed-
dings. It starts from the hypothesis that con-
textualized word representations obtained from
pre-trained language models (LMs), while be-
ing a valuable source for WSI, encode more
information than what is necessary for the iden-
tification of word senses and some of this in-
formation affect the performance negatively in
unsupervised settings. We investigate whether
using contextualized representations that are in-
variant to these ‘nuisance features’ can increase
WSI performance. For this purpose, we pro-
pose an adaptation of the adversarial training
framework proposed by Jaiswal et al. (2020)
to erase specific information from the repre-
sentations of LMs, thereby creating feature-
invariant representations. We experiment with
erasing (i) morphological and (ii) syntactic fea-
tures. The results of subsequent clustering for
WSI show that these features indeed act like
noise: Using feature-invariant representations,
compared to using the original representations,
increases clustering-based WSI performance.
Furthermore, we provide an in-depth analysis
of how the information about the syntactic and
morphological features of words relate to and
affect WSI performance.

1 Introduction

Words in their different senses occur in different
contexts. Contextualized word representations ob-
tained from transformer based pre-trained language
models (LMs) such as BERT (Devlin et al., 2019)
are especially suitable for Word Sense Disambigua-
tion (WSD) because they capture the sentential
context of a word and thereby oftentimes allow
to distinguish different senses of a word. They
have indeed been successfully used for WSD in re-
cent work (Hadiwinoto et al., 2019; Loureiro et al.,
2021; Vandenbussche et al., 2021).

∗This work was conducted during the author’s visit to
Université Paris Cité.

However, in both unsupervised WSD, where the
goal is to identify the instances of a specific sense,
and word sense induction (WSI), which allows the
discovery of novel senses, using the LM repre-
sentations alone does not yield satisfactory results
(Pilehvar and Camacho-Collados, 2019; Samih and
Kallmeyer, 2023). In both, similarity of the repre-
sentations plays a crucial role, and this similarity is
determined by many features. Indeed, the contex-
tualized representation of a word usually encodes a
wide range of linguistic information about the word
in its context, such as its syntactic function, its mor-
phological properties, its position, its casing, and
the identity of its neighbouring words (Sajjad et al.,
2022). However, most of the encoded information
that determines the similarity of the representations
is not relevant to word senses (Yavas, 2024). Note
that this is not a problem for supervised WSD, as a
supervised model can learn to ignore those features
that are not discriminative for word senses.

Building on these insights, we focus on WSI
and aim at investigating the relationship between
specific types of information encoded in contextual-
ized representations of LMs and WSI performance.
Concretely, we examine whether erasing certain
information from the representations of LMs can
lead to an increase in performance for a simple
clustering-based WSI system. Our investigation
examines two types of information that have been
observed to affect the word sense clustering perfor-
mance negatively. Yavas (2024) have shown that in
word sense clustering with BERT representations
on SemCor (Miller et al., 1993), word instances
are frequently clustered together based on the simi-
larities between their morphological and syntactic
features (more specifically, syntactic role of the
word) rather than their semantic similarities. For
example, past tense instances of a specific verb, or
all instances of a specific noun occurring as direct
objects, are clustered together.

We adapt the adversarial training framework of
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Jaiswal et al. (2020) in order to train a forget-gate
that erases information from the representations
of LMs, resulting in feature-invariant representa-
tions. We experiment with the BERT model and
create feature-invariant representations for both of
the above-mentioned types of features (morpholog-
ical and syntactic). Finally, we evaluate the perfor-
mance of WSI on SemCor with different feature-
invariant representations, comparing them to the
original word representations obtained from BERT.
Furthermore, we conduct an in-depth analysis of
how the information about the syntactic and mor-
phological features of words relate to and affect
WSI performance.1

Our results show that words’ morphological and
syntactic features indeed act like noise that nega-
tively affects clustering performance and syntax-
and morphology-invariant representations are bet-
ter suited to WSI than the original BERT represen-
tations. Furthermore, a more detailed analysis of
the relation between these information types and
WSI performance shows that even though syntactic
features are more correlated to word senses than
morphological features are, they still affect the WSI
performance negatively overall.

This paper makes several contributions. First,
we propose an adaptation of the framework pro-
posed by Jaiswal et al. (2020) to erase unwanted
information from the representations of LMs. Sec-
ondly, we use this method to generate syntax-
and morphology-invariant representations from
the word representations of the BERT model and
achieve better performance in clustering-based
WSI. Lastly, we provide an in-depth analysis of
how the morphological and syntactic features of
words affect WSI performance.

The paper is structured as follows: We review
related work in Section 2, then we introduce our
framework for creating feature-invariant represen-
tations in Section 3 and report the results of the
creation process. Finally in Section 4, we report
the experiments on WSI with an analysis of the
relation between the information types and WSI
performance.

1We also experimented with positional information. In our
experiments, we successfully removed the positional informa-
tion from the representations, however, these representations
exhibited unexpected behaviour in clustering experiments. As
a result, we decided to exclude this feature type. We intend to
investigate the underlying reasons in the future.

2 Related Work

Word Sense and Information Encoded in Con-
textualized Representations. Contextualized rep-
resentations of pre-trained LMs encode more con-
textual information than what is necessary for the
identification of word senses and this information
can affect the similarity of the representations in
an unwanted way. Sajjad et al. (2022) have shown
that semantic, morphological, and syntactic con-
cepts are encoded in contextualized representations.
These concepts include words’ POS tags, CCG
super-tags, ngrams, casings, WordNet concepts,
and so on. Furthermore, clustering of contextual-
ized word representations reveal these similarities
between the words.

In their detailed qualitative analysis, Yavas
(2024) have shown that word sense clustering with
BERT’s representations on SemCor is heavily and
negatively affected by information encoded in the
representations from the sentence context that is
insignificant to WSD, such as some morphologi-
cal features of the words, their syntactic role, the
presence of some punctuation marks and function
words in the sentence (e.g. ‘not’, ‘then’, etc.). In
the present study, we aim to investigate whether the
effects of some of these features can be controlled
and whether doing so can increase performance in
WSI on the same dataset.

Similar effects have been found in lexical seman-
tic change detection. Laicher et al. (2021) have
observed that BERT representations are influenced
by the orthographic form of words. Consequently,
this affects how the representations are clustered.
They have shown that removal of this bias increases
the clustering performance. In order to do so, they
preprocess the input data by lemmatizing the tar-
get word in each sentence before feeding it to the
model.

Adversarial Training for Invariant Represen-
tation Learning. Invariant representation learn-
ing aims to create representations that do not en-
code certain unwanted features of data, such as
nuisances, biases, or domain-specific features. Nui-
sances are features in the data that have no or little
relevance to the task but influence model perfor-
mance, like facial expressions in face recognition
(Bronstein et al., 2003) or orientation in image
recognition (Khotanzad and Hong, 1990). The cre-
ation of representations invariant to nuisances aims
to increase model performance and robustness.

In this study, we consider morphological and
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Figure 1: Framework for training a forget-gate (FG) to create feature-invariant representations from the representa-
tions of a pre-trained model. The FG is trained as a part of an adversarial model. The LM is only used as a feature
extractor and its parameters are frozen.

syntactic features of words as nuisance features for
WSI because they are not directly related to differ-
ent senses of words but affect performance. We
acknowledge that the syntactic features of words
are, to some extent, relevant to WSI, but while
these features may aid in identifying the senses
of some words, we hypothesize that it introduces
noise overall.

Invariant representation learning is widely used
to create representations that are invariant to nui-
sance features in Computer Vision (Louizos et al.,
2017; Xie et al., 2017; Jaiswal et al., 2018, 2020).
However, in NLP, most applications of this tech-
nique center around learning domain-invariant rep-
resentations (Louizos et al., 2017; Jaiswal et al.,
2018; Peng and Zhang, 2020; Xin et al., 2022) . As
for our knowledge, there has been no attempt to
create contextualized representations invariant to
any linguistic information.

Jaiswal et al. (2020) propose a framework for
learning invariant representations through adversar-
ial training in a Computer Vision context. They
train an encoder (and a decoder) to generate rep-
resentations for a set of inputs. At the same time,
a forget-gate is trained to generate masks meant
to be applied to the representations in order to cre-
ate invariant representations. The forget-gate is
trained as part of an adversarial model, in which a
discriminator predicts the unwanted information
from the masked representation while a predictor
predicts some task-related information. Our frame-
work for learning invariant representations is in-
spired by Jaiswal et al. (2020) while showing clear
differences. We do not train an encoder-decoder
model but, instead, we utilize LMs and create in-
variant representations from their representations.
Furthermore, forgetting is not done by masking but
by transforming the LM representations through a
feed-forward network.

3 Creating Feature-Invariant
Representations via Adversarial
Training

In order to obtain contextualized representations
that are invariant to certain features, we propose
to add a forget-gate on top of a pre-trained LM.
The forget-gate applies a nonlinear transformation
and thereby selectively removes the unwanted in-
formation from the original contextualized repre-
sentations. It is trained as a part of an adversarial
model inspired by Jaiswal et al. (2020). Concretely,
we train two forget-gates to create feature-invariant
representations for syntactic and morphological fea-
tures. We will refer to the respective resulting rep-
resentations as syntax-invariant, and morphology-
invariant representations.

3.1 Framework
Our framework is illustrated in Figure 1. We define
a neural network named forget-gate (FG). This
network is implemented as a feedforward neural
network with two hidden layers with ReLU acti-
vation function. It applies a transformation to the
representations obtained from a pre-trained LM to
create representations that are invariant to specific
information. The input of FG (x) is the repre-
sentation we aim to transform, namely the token
embedding from the pre-trained LM. The output of
FG (x′) is the feature-invariant representation.

Given a sentence s, we first tokenize it with the
LM tokenizer and then pass the tokenized sentence
(t1, ..., ti, ..., tn) to the LM in order to extract the to-
ken embeddings (x1, ...,xi, ...,xn), obtained from
the last layer of the LM (i.e., the LM acts as a
feature extractor). Each of these embeddings con-
stitutes one input data point to the FG. We use the
BERT (base-cased) model.2

2The embeddings are extracted using the Transformers
library (Wolf et al., 2020).
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The forget-gate FG is trained as part of an ad-
versarial model with two auxiliary modules; a dis-
criminator (D) and a predictor (P ). During train-
ing, the representation produced by the forget-gate
(x′

i = FG(xi) for token ti) is given to P and D.
D is tasked with probing for unwanted informa-
tion (some label yi for token ti) in the embedding
x′
i, and P is tasked with recovering the identity of

the token (ti) from x′
i. The adversarial model is

trained on the representations of both masked and
unmasked tokens (i.e., we sometimes substitute the
[MASK] token for ti in the input of the LM).

The training of the adversarial model alternates
between three types of batch, each batch containing
training data for only one of the three subnetworks
of the adversarial model. On the first type of batch,
the parameters of D, on the second type of batch,
the parameters of P , and on the third type of batch,
the parameters of FG are updated. There are two
batches of the first type (for D) for one batch of
the second and one batch of the third type. So,
D is trained more than the rest of the network.
The parameters of FG are updated based on the
combined loss LFG of D and P as indicated in (1).
The loss of D is given as negative since we want
to increase it.3

LFG(x, y, t) = −LD(D(x′), y)
+LP (P (x′), t)

(1)

For each feature type (morphological and syn-
tactic), we train an adversarial model with a unique
discriminator to obtain a feature-specific forget-
gate.4 The discriminators, Dm and Ds, are trained
as classification models and towards labelling to-
kens with POS tags (from the Penn Treebank tagset,
Marcus et al., 1993 — these tags are fine-grained
and provide morphological information such as
number for nouns and tense for verbs) and (incom-
ing) dependency labels respectively; the training
labels are predicted, see Section 3.3. For each fea-
ture type, the corresponding discriminator aims to
probe for this specific feature, while the forget-
gate simultaneously aims to erase it. The details
about the architecture of the different modules of

3In Jaiswal et al. (2020)’s framework, forgetting is not
done by using the opposite of D’s loss on the correct labels,
but by using D’s loss on random labels.

4We target morphological and syntactic information in-
dependently, even though theoretically, they are interrelated.
However, this does not affect the relevance of our method, but
only some linguistic interpretations of the results.

the adversarial model and their loss functions can
be found in Appendix A.

We train the adversarial models for 800 epochs
creating checkpoints every 100th epoch and select
the best checkpoint a posteriori based on the evalu-
ation results (see next section). The details about
the hyperparameters and the training of the adver-
sarial model can be found in Appendix B. As a
result of training the two adversarial models, we
obtain two different forget gates, FGm and FGs.
These forget gates, when applied to a BERT word
embedding, yield the respective feature-invariant
representations.

3.2 Evaluation
In order to evaluate this method, we create repre-
sentations using the trained forget-gates for each
type of information and use these representations
to train two models from scratch: one for word
(i.e., token) prediction and the other for unwanted
information probing. The performance of these
models on the test data tells us whether the feature-
invariant representation creation was successful.

We compare the performances of these models
to a lower and an upper bounds. The upper bound
for a task is defined as the performance of a similar
system trained using the original BERT represen-
tations. The lower bound is defined differently
for the two types of information. For syntactic in-
formation, the probing model is trained using the
non-contextualized word representations used by
BERT as input to its first layer. For morphological
information, the lower bound is given by the most
frequent POS baseline. It is calculated for each
grammatical category (i.e. noun, verb, and so on.)
by predicting the most frequent POS tag for that
category and averaged for all categories.

The probing models for morphological and syn-
tactic features are similar to the respective discrim-
inators in the adversarial models: They share the
same architecture, training and test data. The word
predictors are also similar to the respective predic-
tors in the adversarial models, in regard to their
architecture, training and test data.

We compare the performances of different mod-
els on the test data. We use perplexity as the metric
to evaluate the word predictors and accuracy for
the probing models. We select the best forget-gate
for each feature type aiming at a low probing per-
formance (close to the lower bound): We evaluate
all checkpoints and pick the forget-gate with the
lowest probing scores (if not lower than the lower
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bound). Details about the hyperparameters and the
training of the lower bound and upper models, eval-
uation models (probing and word prediction), and
the selected forget-gates are given in Appendix B.5

3.3 Data

For the training and evaluation of the models, we
use the Brown corpus (Kučera et al., 1967). We
extract the token representations by BERT of each
sentence. These token representations are then used
as the input for the forget-gate. Since words are
tokenized into WordPiece subwords by the BERT
tokenizer, we work with these subwords rather than
entire words.

In cases a word is split in multiple parts, we
only take the first subword into account, i.e. we
only erase information from the first subword a
word and we only use this subword for WSI. We
expect the first subwords to encode more relevant
information for WSI because they are more likely
to align with the stems of the words as opposed to
suffixes (e.g. ‘booklets’ is tokenized into ‘booklet’
and ‘s’ by the model tokenizer).

We assign two labels to each token; one for the
discriminator (or probe) and another for the predic-
tor. The predictor’s label corresponds to the token
ID assigned by the BERT’s tokenizer to the token.
The discriminator’s label varies depending on the
feature type: the label is either the label of the in-
coming syntactic dependency or the POS tag (of
the word associated with the token). We get these
labels automatically using spaCy.6

The dataset for morphological information only
contains tokens of words belonging to grammatical
categories that exhibit inflection in English: nouns,
verbs, adjectives, adverbs, and pronouns. No such
restrictions apply to syntactic information. This
process yields datasets containing 2,341,954 tokens
for syntactic information, and 1,315,988 tokens for
morphological information. All datasets are split
to train, development, and test data with the ratio
80:10:10.

3.4 Results

Both feature-invariant representations achieve good
results in word prediction and probing tasks; the
unwanted information is erased from the represen-
tations while their word prediction capabilities are

5The code for this project is available at: https://gith
ub.com/yavasde/Adversarial-Forgetting-of-Morphos
yntactic-Information.

6https://spacy.io/, model: en_core_web_trf.

Word Prediction Probing
Syntactic Information
Upper Bound 3.0 85.0
Lower Bound - 70.2
Invariant Rep. 4.1 72.1
Morphological Information
Upper Bound 3.0 89.1
Lower Bound - 62.1
Invariant Rep. 7.1 75.9

Table 1: Evaluation results for the feature-invariant rep-
resentations with comparison to the upper and lower
bounds of the tasks. Accuracy is given for probing (in
this context, lower is better) and perplexity is given for
word prediction results (lower is better).

intact. The lower bounds and upper bounds for all
tasks and the evaluation results for feature-invariant
representations can be seen in Table 1.

Erasing morphological information impacts the
performance of word prediction more. This is
expected because the morphological features of
words (for instance grammatical number for nouns)
are strongly correlated with their word forms.

4 Word Sense Induction Performance

Our aim is to investigate whether using feature-
invariant contextualized representations can im-
prove WSI performance. For this purpose, we
compare the performance on WSI of three vari-
ants of the same system, respectively using three
different representations; 1) the original contex-
tualized representations of the BERT model, 2)
syntax-invariant, and 3) morphology-invariant con-
textualized representations, where the latter two
are obtained by applying our trained forget-gates
FGm and FGs to the BERT representations. Fur-
thermore, we provide a detailed analysis of the
relation between the morphological and syntactic
features of words and WSI and how the erasure of
this information affects the WSI performance.

4.1 Data

We evaluate our WSI systems on SemCor. SemCor
is based on a subset of the Brown Corpus and it pro-
vides sentences in which a word, the target word,
is labelled with a WordNet sense (Fellbaum, 1998)
as shown in (1). We focus on nouns and verbs and
exclude other grammatical categories. We further
exclude the words that have only one sense, and
the senses that occur in less than 10 sentences.
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(1) officer:
a. “An officer with a squad of men had

been waiting on the bank.”
(officer.n.01)

b. “And the policy officer has the hounds
of time snapping at his heels.”

(officer.n.02)

One of the advantages of using SemCor for WSI
is that it is a subset of a bigger corpus (Brown
Corpus), that we can use to train the forget-gates.
The forget-gates are then trained on the same kind
of texts that the ones used for WSI, which helps
ensuring the quality of the invariant representations
used during clustering. There is no methodological
problem in doing so as the gold clusters are not
used at any time during the training of the forget-
gates. This approach can be applied to any dataset
by training a forget-gate and performing WSI on
the same data. Note that while the training of the
forget-gates requires feature annotation, this does
not limit the applicability of our approach as we
perform it automatically.

4.2 Method

We cluster instances of words using their repre-
sentations (BERT, syntax-invariant or morphology-
invariant) in the sentences. We tokenize each sen-
tence with the BERT tokenizer and give the tok-
enized sentence to the model to extract the repre-
sentations of the target word from the last layer of
the BERT model. In cases where the words are
tokenized into subwords, we only use the first sub-
word token. We create feature-invariant represen-
tations from the original representations of BERT
for each information type using the information-
specific forget-gate (FGs or FGm). We apply nor-
malization to all embeddings before clustering.

We use the K-Means algorithm for clustering.7

K-Means requires the cluster number as a hyper-
parameter. To determine the optimal number of
clusters for each word, we run the algorithm with
different cluster numbers between 2 and 6 and se-
lect the one with the highest silhouette score.8

We evaluate the clustering performance by com-
paring cluster assignments and the WordNet senses
of word instances and average the result over all

7The algorithms are implemented using the Scikit-learn
library (Pedregosa et al., 2011).

8The silhouette score measures how similar a sample is to
its cluster compared to other clusters. It’s calculated for each
sample and then averaged for the entire dataset.

Overall nouns verbs
BERT 0.210 (8x10-4) 0.251 (1x10-3) 0.174 (1x10-3)

Syn-Inv 0.221 (1x10-3) 0.263 (4x10-4) 0.185 (2x10-3)

Morph-Inv 0.232 (1x10-3) 0.267 (1x10-3) 0.201 (2x10-3)

Table 2: WSI performance with different representation
types. The performance is measured using ARI. Results
are presented for all words in the dataset, as well as for
verbs and nouns individually. The mean results over
5 runs are given with standard deviation in brackets.
The scores that surpass the BERT representations are in
bold.

words. The evaluation metric used is the Adjusted
Rand Index (ARI) (Hubert and Arabie, 1985). ARI
measures the similarity between two clusterings
by counting the pairs that are assigned to the same
or different clusters in both the gold clusters and
predicted clusters. It is adjusted to account for
chance agreement and gives a score between -1
and 1 where 1 indicates perfect agreement between
the two clusterings, while scores below 0 suggest
that the match is worse than random chance. For
the ARI formula and different clustering evaluation
metrics see Appendix C.

We compare the WSI performance with 3 differ-
ent types of representations. We run the clustering
algorithm 5 times for each type of representation
with different random states. We report the mean
of 5 runs. We apply unpaired t-test to determine if
the performance difference is statistically signifi-
cant. We compare the overall performance and the
performance based on grammatical category (verbs
and nouns).

4.3 Results

Results are shown in Table 2. WSI is performed bet-
ter with feature-invariant representations than with
the original BERT representations for both feature
types, with statistically significant differences ob-
served through unpaired t-tests (p-value: 0.0001).
The best results are obtained with morphology-
invariant representations overall. The largest
gain in the performance happens for verbs with
morphology-invariant representations. For a more
detailed evaluation of the clustering performance
using different metrics see Appendix C. Further
analysis of the specific cases and reasons behind
performance increases and decreases are addressed
in the following section.

243



Syntax Morphology
# TL TU Sense BERT Invariant # TL TU Sense BERT Invariant

MI - 9.4 27.8 14.7 26.4 23.1 - 4.7 40.5 9.4 41.8 25.4
Case 1 59 - - - 0.34 0.33 11 - - - 0.66 065
Case 2 34 - - - 0.07 0.10 80 - - - 0.04 0.09
Case 3 53 - - - 0.19 0.18 55 - - - 0.28 0.29

Table 3: Relation between the feature types and the WSI performance. MI scores for the association between
linguistic features and sense or cluster assignments are given. TL and TU refers to the lower and upper threshold for
MI. For each Case, ARI scores for BERT clusters and the clusters formed by the feature-invariant representations
are given. Performance increases are in bold.

4.4 Analysis of the Relation Between the
Information Types and WSI Performance

Our aim is to determine in which cases the erasure
of these information types helps the WSI process.
More specifically, we aim to investigate whether,
for individual words, word senses are distinguish-
able by the word’s morphological and syntactic
features and therefore, whether the existence or the
erasure of the related information helps the WSI
process. Even though the overall WSI performance
improves with feature-invariant representations, it
is possible that for some words, the information
erased is actually useful for sense identification. In
these cases, the information erasure would nega-
tively affect the WSI process.

In order to investigate this, we identify the three
following cases and assess the performance with
the original BERT representations and feature-
invariant representations for each case:

• Case 1: The senses of a word are distinguish-
able by the word’s morphological, or syntac-
tic features. In this case, we expect the per-
formance with invariant representations to be
lower than with the original BERT representa-
tions.

• Case 2: The senses of a word are not dis-
tinguishable by the word’s morphological, or
syntactic features, but clusters of BERT rep-
resentations are distinguishable by these fea-
tures — which then can be assumed to be
noise for clustering-based WSI. In this case,
we expect the performance with invariant rep-
resentations to be higher than with the original
BERT representations.

• Case 3: The senses of a word are not distin-
guishable by the morphological, or syntactic
features of the word, and clusters of BERT
representations are also not distinguishable

by these features. In this case, we expect the
performance with invariant representations to
be the same as with the original BERT repre-
sentations.

4.4.1 Method
We measure the association between the features
of the word instances and their sense or cluster
assignments using Mutual Information (MI).9 We
use this information to automatically categorize
words into the three cases outlined above.

In order to determine the features of the word in-
stances, we use again the POS tags and dependency
labels obtained from spaCy. 10 We refer to them as
linguistic labels. For each word and for each type
of feature we compute three MI scores. Firstly, we
calculate the MI score between the linguistic la-
bels of the instances and their gold WordNet sense
labels (Sense MI). Secondly, we calculate the MI
score between the linguistic labels of the instances
and their cluster labels, considering the clusters
formed by the BERT representations (BERT MI).
Lastly, we assess the MI score between the linguis-
tic labels of the instances and their cluster labels,
considering this time the clusters formed by the
feature-invariant representations (Invariant MI).

We compare the MI scores to lower (TL) and
upper thresholds (TU ). The lower and upper thresh-
old are calculated for each feature type as the first
quartile and third quartile for all MI scores for this
feature. We interpret scores below the lower thresh-
old as indicating no association, and scores above

9The mutual information between two variables X and Y
is defined as follows:

MI(X;Y ) =
∑

x∈X

∑

y∈Y
p(x, y) log

(
p(x, y)

p(x)p(y)

)
(2)

10For some instances of words, the target word is not found
in the sentence due to a lemmatization error. We discard these
words and experiment with 540 words in total (out of 567).
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the upper threshold as indicating an association.
We then automatically categorise word types. Case
1 words have high Sense MI scores, Case 2 words
have low Sense MI and high BERT MI scores, and
finally, Case 3 words have low Sense MI and low
BERT MI scores. We compute the average ARI
score for each word within each case and compare
their performances.

4.4.2 Results
The results of the analysis can be seen in Table 3.
MI scores show that the linguistic labels are more
strongly associated with BERT clusters than with
the sense groups. This suggests that these features
are dominant in the BERT clusters more than nec-
essary. This and the fact that ARI performance is
lowest for the Case 2 words indicate that these fea-
tures introduce noise that affects WSI performance
negatively. With the feature-invariant representa-
tions, this effect is limited to some extent.

Regarding different Cases, the results mostly
align with our expectations. Clustering perfor-
mance with Case 1 words is slightly higher with
original BERT representations. Clustering perfor-
mance with Case 2 words is increased with feature-
invariant representations. However, the increase for
Case 2 words is much higher than the decrease for
Case 1 words, showing that the erasure of syntactic
and morphological information benefits the WSI
performance overall. Finally, with Case 3 words,
there is a slight increase or decrease in performance
depending on the different feature types.

Regarding different feature types, we observe
that the morphological features of words introduce
a lot of noise to WSI performance (Sense MI vs.
BERT MI). Only for 11 words (out of 540), mor-
phological features of words are found to be as-
sociated with different senses (Case 1). For 80
words, these features are found to be associated
with different BERT clusters, even though they are
not relevant to different senses (Case 2), therefore
introducing noise. Similarly, the average BERT
MI score for morphological features surpasses the
upper threshold (TU ) of association, showing that
there is a high level of association between mor-
phological features and BERT clusters. Conversely,
syntactic features of words have more relevance to
word senses. For 59 words, these features show
associations with different senses, and both the
Sense MI score is higher, and the difference be-
tween Sense and BERT MI scores is lower for this
feature type. These differences are also evident

BERT Representations Morphology-Invariant Representations

Figure 2: PCA visualizations of BERT representations
(left) and morphology-invariant representations (right)
of different sense instances of ‘area’. Different data
point colors refer to different senses. Different marker
styles refer to instances with different morphological
features, i.e. grammatical number; circles for singular
nouns, squares for plural nouns.

in the WSI performance. Erasing morphological
information benefits WSI performance more than
erasing syntactic information (Table 2).

Let us illustrate these findings with a few exam-
ples. The noun ‘area’ has 3 senses in the data. WSI
performs worse with BERT representations than
with morphology-invariant representations on this
word (BERT ARI: 0.03, INV ARI: 0.49). With
BERT representations, we observe that two clus-
ters are formed and that they are formed mostly
based on the grammatical number of the instances,
although there is no association between grammat-
ical number and the senses of the word (Sense
MI: 0.0, BERT MI: 57.7, Invariant MI: 4.2). With
morphology-invariant representations, we observe
that this pattern is broken. Grammatical number
does not affect the similarity of the representations
and the instances of each sense are closer to each
other. Singular and plural instances of the third
sense are successfully clustered together. Even
though first and second sense instances form only
one cluster, instances of each sense are closer to
each other and the senses are more separable. See
Figure 2 for the PCA visualization of the differ-
ent representations of ‘area’ instances. For a more
detailed plot see Figure 4 in Appendix D.

Let’s consider a contrasting example. The noun
‘field’ has 4 senses in the data. WSI performs better
with BERT representations than syntax-invariant
representations (BERT ARI: 0.62, INV ARI: 0.26)
and senses are associated with the syntactic fea-
tures of the word (Sense MI: 40.3, BERT MI: 43.7,
Invariant MI: 11.0). The 3rd sense of ‘field’ has
the meaning ‘somewhere (away from a studio or
office or library or laboratory) where practical work
is done or data is collected’ and almost all of its
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BERT Representations Syntax-Invariant Representations

Figure 3: PCA visualizations of BERT representations
(left) and syntax-invariant representations (right) of dif-
ferent sense instances of ‘field’. Different data point
colors refer to different senses. Light blue data points
represent the 3rd sense instances of the noun. Different
marker styles refer to instances with different syntactic
roles; squares for compounds heads, circles for others.

instances are heads of a compound as in example
(2).

(2) a. They will give suggestions that can be
worked up into field procedures.

b. Actually, none of these papers says
much directly about field techniques.

The 3rd sense instances are clustered together
when BERT representations are used. After the
erasure of syntactic information, their representa-
tions are closer to the representations of other sense
instances. As a result, they are clustered with other
sense instances when syntax-invariant representa-
tions are used, resulting in poor performance. See
Figure 3 for the PCA visualization of the differ-
ent representations of ‘field’ instances. For a more
detailed plot see Figure 5 in Appendix D.

5 Conclusion

We adapt the framework proposed by Jaiswal et al.
(2020) in order to erase specific information from
the representations of LMs. With this method, we
create two types of representations from BERT
embeddings: invariant to either (i) morphological
features or (ii) syntactic features. Our results show
that the resulting feature-invariant representations
are more suitable for the WSI task. Furthermore,
we show that even though some syntactic features
provide valuable information for WSI, both types
of features introduce noise that, overall, negatively
impacts the performance of clustering-based WSI.
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A Model Architectures

• Discriminator for Synactic Information: 2-
layer nonlinear neural network for classifica-
tion. ReLU is used as the activation function.
Given a token embedding, it predicts the de-
pendency label of the token. Output dimen-
sion is the number of classes. Cross-entropy
loss is used as the loss function and Adam is
used as the optimizer.

• Discriminator for Morphological Informa-
tion: 2-layer nonlinear neural network for
classification. ReLU is used as the activation
function. Given a token embedding, it pre-
dicts the fine-grained POS tag of the token.
Output dimension is the number of classes
found in the dataset. Cross-entropy loss is
used as the loss function and Adam is used as
the optimizer.

• Predictor: 3-layer linear neural network that
maps the token embedding to the vocabulary
of BERT with size 30522. 2nd layer is for
normalization and drop-out (0.1) is applied
before the output layer. Cross-entropy loss is
used as the loss function and Adam is used as
the optimizer.

• Forget-Gate: 3-layer nonliner neural network
that transforms the input embedding. ReLU is
used as the activation function. Cross-entropy
loss is used as the loss function and Adam is
used as the optimizer.

B Model Training Procedures

Adversarial Models. All adversarial models are
trained with batch size 128 and learning rate 10−6

for the predictor, 10−5 for the discriminator, and
10−4 for the forget gate. All the models are trained
for 800 epochs.

Upper Bounds.

• Probing for syntactic information: 74
epochs, batch size 128, learning rate 10−5.

• Probing for morphological information: 66
epochs, batch size 128, learning rate 10−5.

• Word prediction: 132 epochs, batch size 128,
learning rate 10−6.

Lower Bounds.

• Probing for syntactic information: 9 epochs,
batch size 128, learning rate 10−4.

Feature-Invariant Representations Evaluation.

• Morphology-Invariant Representations:
The word predictor is trained for 30 epochs
with batch size 128, learning rate 10−5. The
probing model is trained for 22 epochs with
batch size 128, learning rate 10−4. The best
forget-gate is obtained from the 400th epoch
of the adversarial model’s training.

• Syntax-Invariant Representations: The
word predictor is trained for 20 epochs with
batch size 128, learning rate 10−5. The prob-
ing model is trained for 37 epochs with batch
size 128, learning rate 10−4. The best forget-
gate is obtained from the 500th epoch of the
adversarial model’s training.

C Clustering Performance Details

We evaluate the clustering performance using met-
rics from 4 different categories based on the cate-
gorization in Amigó et al. (2009) because different
categories have different strengths in measuring
clustering quality; metrics based on set match-
ing (Purity, Inverse Purity (Zhao and Karypis,
2001) and their harmonic mean PIF), metrics
based on entropy (V-Measure (Rosenberg and
Hirschberg, 2007)), metrics based on counting
pairs (Adjusted Rand Index (Hubert and Arabie,
1985)), and BCubed metrics (BCubed Precision,
Recall and F-score (Bagga and Baldwin, 1998)).

C being the set of clusters and L being the true
grouping, Purity and Inverse Purity are calculated
as follows:

Purity =
∑

i

|Ci|
N

max
j

Precision(Ci, Lj) (3)

Inverse Purity =
∑

i

|Li|
N

max
j

Precision(Li, Cj)

(4)
V-measure is calculated based on the homogene-

ity and completeness. Homogeneity measures how
much each cluster contains only data points that are
members of a single class. Completeness measures
how much all data points that are members of a
given class are assigned to the same cluster. It is
calculated as follows:
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ARI V-M PU IPU PIF P-Bcubed R-Bcubed F-Bcubed
BERT 0.210 (0.0008) 0.265 (0.0007) 0.732 (0.0007) 0.658 (0.001) 0.670 (0.001) 0.652 (0.0006) 0.575 (0.0008) 0.580 (0.0004)
Syn-Invariant 0.221 (0.001) 0.274 (0.001) 0.732 (0.0006) 0.682 (0.0009) 0.684 (0.0008) 0.653 (0.0007) 0.599 (0.001) 0.594 (0.0008)
Morph-Invariant 0.232 (0.001) 0.283 (0.0006) 0.736 (0.0004) 0.683 (0.001) 0.688 (0.0007) 0.657 (0.0004) 0.598 (0.0008) 0.597 (0.0005)

Table 4: Clustering evaluation results with different representations with different metrics for all words in the data.
The mean results over 5 runs are given with standard deviation in brackets.

ARI V-M PU IPU PIF P-Bcubed R-Bcubed F-Bcubed
BERT 0.251 (0.001) 0.309 (0.001) 0.769 (0.0007) 0.689 (0.002) 0.707 (0.001) 0.699 (0.0004) 0.607 (0.001) 0.623 (0.0008)
Syn-Invariant 0.263 (0.0004) 0.320 (0.0005) 0.772 (0.0006) 0.682 (0.001) 0.706 (0.001) 0.703 (0.0003) 0.600 (0.001) 0.622 (0.0009)
Morph-Invariant 0.267 (0.001) 0.322 (0.001) 0.772 (0.001) 0.682 (0.001) 0.705 (0.001) 0.704 (0.001) 0.598 (0.001) 0.620 (0.001)

Table 5: Clustering evaluation results with different representations with different metrics for nouns. The mean
results over 5 runs are given with standard deviation in brackets.

ARI V-M PU IPU PIF P-Bcubed R-Bcubed F-Bcubed
BERT 0.174 (0.001) 0.227 (0.001) 0.699 (0.001) 0.632 (0.001) 0.638 (0.0008) 0.611 (0.001) 0.547 (0.0006) 0.542 (0.0001)
Syn-Invariant 0.185 (0.002) 0.233 (0.002) 0.698 (0.001) 0.681 (0.002) 0.665 (0.001) 0.608 (0.001) 0.598 (0.001) 0.570 (0.001)
Morph-Invariant 0.201 (0.002) 0.248 (0.002) 0.705 (0.001) 0.684 (0.002) 0.672 (0.002) 0.616 (0.001) 0.599 (0.002) 0.576 (0.002)

Table 6: Clustering evaluation results with different representations with different metrics for verbs. The mean
results over 5 runs are given with standard deviation in brackets.

V = 2× Homogeneity × Completeness
Homogeneity + Completeness

(5)

Adjusted Rand Index (ARI) adjusts the Rand
Index (RI) to account for chance agreement. RI
calculates the similarity between two clusterings
by considering pairs of samples and determining
whether they are assigned to the same cluster or
different clusters in both clusterings. They are cal-
culated as follows:

RI =
correct similar pairs + correct dissimilar pairs

total number of pairs
(6)

ARI =
max(RI)− Expected_RI

RI − Expected_RI
(7)

Correctness is the relation between e and e′ in
the distribution, where C(e) denotes the cluster and
L(e) true grouping of the item. Correctness means
that both items have the same category and belong
to the same cluster. The overall Precision BCubed
and Recall BCubed are obtained by averaging the
precision and recall scores of all items in the dataset
as follows:

Precision BCubed =
Avge[Avg′e.C(e)=C(e′)[Correctness(e, e′)]]

(8)

Recall BCubed =
Avge[Avg′e.L(e)=L(e′)[Correctness(e, e′)]]

(9)

The detailed evaluation of the clustering perfor-
mance with different metrics for all words can be
seen in Table 4, for nouns in Table 5 and verbs in
Table 6. The mean results over 5 runs are given.

D Clustering Visualizations

The PCA visualizations of the BERT representa-
tions and morphology-invariant representations of
‘area’ instances can be seen in Figure 4. Similarly,
the PCA visualizations of the BERT representa-
tions and syntax-invariant representations of ‘field’
instances can be seen in Figure 5.
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Figure 4: PCA visualizations of BERT representations (top) and morphology-invariant representations (bottom)
of different sense instances of ‘area’. Different data point colors refer to different senses, and different border
colors refer to different clusters. Additionally, different marker styles refer to instances with different morphological
features, i.e. grammatical number; circles for singular nouns, squares for plural nouns.
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Figure 5: PCA visualizations of BERT representations (top) and syntax-invariant representations (bottom) of
different sense instances of ‘field’. Different data point colors refer to different senses, and different border colors
refer to different clusters. Additionally, different marker styles refer to instances with different syntactic roles;
circles for compound heads, stars for prepositional objects, triangles for direct objects, diamonds for subjects,
reversed triangles for passive subjects, and hexagons for attributes.
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