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Abstract

With the aim of improving the state-of-the-art
(SOTA) on a target task, a standard strategy in
Natural Language Processing (NLP) research is
to design a new model, or modify the existing
SOTA, and then benchmark its performance on
the target task. We argue in favor of enriching
this chain of actions by a preliminary error-
guided analysis: First, explore weaknesses by
analyzing the hard cases where the existing
model fails, and then target the improvement
based on those. Interpretable evaluation has re-
ceived little attention for structured prediction
tasks. Therefore we propose the first in-depth
analysis suite for Relation Classification (RC),
and show its effectiveness through a case study.
We propose a set of potentially influential at-
tributes to focus on (e.g., entity distance, sen-
tence length). Then, we bucket our datasets
based on these attributes, and weight the impor-
tance of them through correlations. This allows
us to identify highly challenging scenarios for
the RC model. By exploiting the findings of our
analysis, with a carefully targeted adjustment
to our architecture, we effectively improve the
performance over the baseline by >3 Micro-F1.

1 Introduction

A major trend in NLP research aims at designing
more sophisticated setups and model architectures
in order to improve the state-of-the-art (SOTA) on
a target task. The improvements are usually based
on intuitions that target limitations of the previous
SOTA on the task. The most common procedure
follows the steps of (1) intuition, (2) modeling, (3)
experiments, (4) results, and (5) analysis of the
results. The latter is occasionally enriched with ab-
lation or case studies with the main aim of proving
the validity of the initial intuition and the effec-
tiveness of the proposed methodology. We claim
that conducting a preliminary in-depth analysis can
help find good intuitions, and therefore guide bet-
ter modeling and reducing the probability of nega-

tive experiments, usually not reported in the paper.
Following previous error-guided analysis (Ribeiro
et al., 2020; Fu et al., 2020a; Das et al., 2022), we
argue in favor of changing the standard chain of
actions listed above: First perform an exhaustive
quantitative analysis of the previous SOTA to iden-
tify failure cases and challenging scenarios, and
then effectively target the baseline improvement in
order to tackle those.

We introduce an in-depth performance analy-
sis suite in the context of Relation Classification
(RC). Within the field of Information Extraction
(IE), which broadly aims at extracting structured
knowledge from unstructured text, the goal of RC
aims at classifying the semantic relation between
two named entities. We pick this task because,
despite its popularity, the task is far from being
solved or reaching high performance, especially
when considering realistic challenging setups—e.g.
cross-domain (Bassignana and Plank, 2022), or
document-level (Popovic and Färber, 2022). We
inspect the research approach of some of the most
cited papers in the field from recent years, on top
of which current SOTA are based: Baldini Soares
et al. (2019) introducing the widely adopted en-
tity markers, Zhong and Chen (2021) introducing
the typed entity markers and proposing a pipeline
approach for end-to-end Relation Extraction (RE),
and Ye et al. (2022) at the time of writing hold-
ing the SOTA on three of the most established
datasets in the field. We also inspect the research
approach of papers published in the last year at
major NLP conferences (ACL, NAACL, EMNLP,
AACL, EACL) that propose new SOTA models
for RC, or for the related tasks of end-to-end RE
and few-shot RC (Tan et al., 2022; Liu et al., 2022;
Zhou and Chen, 2022; Wang et al., 2022b; Zhen-
zhen et al., 2022; Guo et al., 2022; Wang et al.,
2022c; Zhang et al., 2022b; Zhang and Lu, 2022;
Tang et al., 2022; Zhang et al., 2022a; Wang et al.,
2022a; Duan et al., 2022; Guo et al., 2023; Wan
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et al., 2023). We find that that the common pro-
cedure consists of the five steps earlier mentioned.
Specifically, we found that in most cases, the intu-
ition (step 1) that is used as a starting point and as
a motivation for the model improvement is based
on generic observations of the model architecture,
instead of on a quantitative analysis which could
lead to more effective targeted improvements.

In this work, we propose a systematic quantita-
tive analysis of a SOTA RC model to detect sets of
challenging instances sharing common characteris-
tics (e.g., entity distance). The goal is to identify
hard-to-handle setups for the SOTA architecture.
Importantly, our approach is easily reproducible
in future setups with different models, and/or on
different datasets. The relevance of performing an
in-depth analysis is supported by a demonstration
of how the acquired information can help to effec-
tively address the weaknesses of the baseline and
design a new SOTA. Our contributions are:1

• We provide a tool for comprehensive quantita-
tive analyses of RC model performance.

• We exploit the proposed analysis for investi-
gating the performance of a SOTA RC archi-
tecture across 36 in- and cross-domain setups.

• Based on the findings of the analysis, we
perform a case study improving the previous
SOTA by over 3 points Micro-F1.

2 Related Work

Analysis of NLP Models In this study, we are
inspired by the recent trend targeting the evaluation
of NLP models. Ribeiro et al. (2020) propose a
task-agnostic methodology for testing general lin-
guistic capabilities of NLP models by generating
ad-hoc test instances; they test their approach over
three tasks: sentiment analysis, Quora question
pair, machine comprehension. Liu et al. (2021a)
presents a software package for diagnosing the
strengths and weaknesses of a single system, al-
lowing for interpretation of relationships between
multiple systems, and examining prediction results.
They go a bit deeper into the task specificity, there-
fore their system currently supports the tasks of
text classification (sentiment, topic, intention), as-
pect sentiment classification, Natural Language In-
ference (NLI), Named Entity Recognition (NER),

1Project repository: https://github.com/mainlp/
RC-analysis

Part-of-Speech (POS) tagging, chunking, Chinese
Word Segmentation (CWS), semantic parsing, sum-
marization, and machine translation. Furthermore,
Fu et al. (2020a) and Fu et al. (2020b) introduce
the concept of interpretable task-specific evaluation.
The first target the comparison of a set of NER sys-
tems. The latter, instead, perform a deep evaluation
of CWS systems proving that despite the excellent
performance achieved on some datasets, there is
no perfect system for CWS. This concept has also
been applied by Fu et al. (2021) for interpreting
the results over a set of sequence tagging setups
(NER, CWS, POS, chunking). Within the field of
Information Extraction, previous work explored
error-driven analysis for the automatic categoriza-
tion of model prediction errors (Das et al., 2022).

Analysis of RC Models Error analysis and in-
depth evaluations of NLP systems are tied to spe-
cific tasks because of the peculiarities of each of
them in terms of linguistic challenges, input type,
and expected output. Relation Classification and
related tasks (e.g., end-to-end RE) have received
little attention in the context of systematic quan-
titative evaluation. Pre-Large Language Models,
Katiyar and Cardie (2016) performed a manual
evaluation of bi-directional LSTMs for the extrac-
tion of opinion entities and relations (“is-from”,
“is-about”) by discussing the model output of a cou-
ple of instances. The same authors (Katiyar and
Cardie, 2017) performed an error analysis, also
based on a manual evaluation, comparing their
model with Miwa and Bansal (2016). More re-
cently, instead, some work has inspected the quality
of RC corpora. Alt et al. (2020) analyze the impact
of potentially noisy crowd-based annotations in the
widely adopted TACRED (Zhang et al., 2017). Lee
et al. (2022) target the specific problem of over-
lapping instances between train and test sets in
two popular RC benchmarks, namely NYT (Riedel
et al., 2010) and WebNLG (Gardent et al., 2017).

Driven by the popularity of the task, and the
contrasting lack of in-depth quantitative evaluation
of RC systems, we fill this gap with an evaluation
analysis suite for RC, and a case study including
36 in- and cross-domain setups.

3 Background

3.1 Cross-domain Relation Classification
Given a sentence and two entity spans within it, the
task of RC aims at classifying the semantic relation
between them into a type from a pre-defined label
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Attribute Description Value Type Computation Level

DISCR. CONT. LOCAL AGGR. ENT. REL. SENT.

entity type⋆ the types of e1 and e2 D D D
relation type the type of r D D D
IV entities in-vocabulary entities: the amount of entities

which appear in the train set (values 0, 1, or 2)
D D D

entity length the sum of the number of tokens in e1 and e2 D D D
entity distance the number of tokens separating e1 from e2 D D D
sentence length the number of tokens in s D D D
entity density the total number of entities in s over the

sentence length (in percentage)
D D D

relation density the total number of semantic relations in s over
the sentence length (in percentage)

D D D
OOV token density the amount of out-of-vocabulary tokens in s

with respect to the train set over the sentence
length (in percentage)

D D D

entity type frequency⋆ the frequencies of the types of e1 and e2 in the
train set

D D D
relation type frequency the frequency of the type of r in the train set D D D

Table 1: Relation Classification Attributes. Description of the 11 RC attributes and categorization in DIS-
CRETE/CONTINUOUS value type, LOCAL/AGGREGATE computation, and ENTITY/RELATION/SENTENCE level. (⋆):
We map the original 36 domain-specific entity types defined by Liu et al. (2021b) into five more generic types
shared across domains, see Appendix B for details.

set. The task is currently far from being solved,
in particular when considering realistic challeng-
ing setups, for example document-level RC (Yao
et al., 2019), or few-shot RC (Han et al., 2018; Gao
et al., 2019). In this study, we consider the cross-
domain setup, where the challenge lies in different
text types and label distributions from train to eval-
uation set. The cross-domain setup is important for
testing the robustness of models aginst data shift.
Despite the research in this direction from previ-
ous years, mainly evaluated on ACE (Doddington
et al., 2004) where the domains are not particu-
larly distinctive (Fu et al., 2017; Pouran Ben Vey-
seh et al., 2019), recent work on more challeng-
ing scenarios show very low performance due to
data sparsity across domains. For example, cross-
dataset (Popovic and Färber, 2022), or evaluated
on the recently published CrossRE dataset (Bassig-
nana and Plank, 2022) which consists of data from
six diverse text domains. In this study, we aim at
improving the CrossRE baseline by systematically
identifying challenging scenarios for the model.

3.2 Experimental Setup

CrossRE (Bassignana and Plank, 2022),2 is a
manually-annotated dataset for cross-domain RC
including 17 relation types spanning over six di-
verse text domains: artificial intelligence (Æ), lit-
erature (_), music (Y), news (\), politics (ÿ),

2Released with a GNU General Public License v3.0.

natural science (
). The dataset was annotated
on top of CrossNER (Liu et al., 2021b), a Named
Entity Recognition (NER) dataset. Appendix A
reports the statistics of CrossRE.

We use the baseline model of the original pa-
per.3 Following the architecture proposed by Bal-
dini Soares et al. (2019), the model by Bassignana
and Plank (2022) augments the sentence with four
entity markers estart1 , eend1 , estart2 , eend2 surround-
ing the two entities. The augmented sentence is
then passed through a pre-trained encoder, and the
classification made by a linear layer over the con-
catenation of the start markers [ŝestart1

, ŝestart2
]. We

run our experiments over five random seeds and
report the average performance. See Appendix C
for reproducibility details.

4 Attribute Guided Analysis

We propose a systematic quantitative analysis of
the performance of the CrossRE baseline model’s
performance across the 36 in- and cross-domain
setups derived from training and testing the model
on the six domains included in CrossRE. The anal-
ysis is performed over the development sets of the
dataset. Inspired by the work of Fu et al. (2020a)
on Named Entity Recognition, we introduce the
first evaluation suite for RC, opening the way to
other similar structured prediction tasks. The anal-
ysis evaluates the performance of the model over

3https://github.com/mainlp/CrossRE
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Figure 1: entity distance Distribution. Distribution of the entity distance values across the six development
sets of CrossRE (Bassignana and Plank, 2022).

instances grouped by common values of potentially
influential attributes (e.g., entity distance, sentence
length). In what follows, we will describe the at-
tributes considered and the bucketing strategy em-
ployed for splitting the evaluation instances based
on the attribute values. Last, we go through the
results of our correlation analysis.

4.1 Attributes
In our analysis, we consider 11 different attributes.
These are characteristics of the RC instances that
could challenge the model and influence its perfor-
mance. Given an RC instance defined by a triplet
(e1, e2, r) where e1 is the head entity, e2 is the
tail entity, and r is the relation type connecting e1
with e2; and given a sentence s expressing the rela-
tion r between e1 and e2, we define the attributes
listed in Table 1. We categorize each of them in the
following three divisions:

• Value Type: If the values of the attribute be-
long to a set of pre-defined values the attribute
is DISCRETE (e.g., the entity type), otherwise
it is CONTINUOUS (e.g., the entity distance).

• Computation: If the attribute is computed by
only considering the current instance it is LO-
CAL, if it is computed over aggregated prop-
erties of the train set, it is AGGREGATE; for
example, the frequency of entity and relation
types refers to the training statistics.

• Level: If the attribute value depends on the
entities it is at ENTITY LEVEL, if it depends on
properties of the entity pair it is at RELATION

LEVEL, last if it is related to characteristics of
the sentence s it is at SENTENCE LEVEL.

As an attribute example, Figure 1 shows the
entity distance distribution, measured as num-

ber of tokens separating e1 from e2. The plot re-
veals some domain-specific peculiarities, e.g., mu-
sic and politics have the longest distances. This
is mostly due to the long lists present in these do-
mains, where the head entity is mentioned at the
beginning and linked to all the elements in the list.
For example, a music genre and a list of musical
artists representing it; or the artifacts (i.e., songs
and albums) of a band. We use the attribute val-
ues in order to group the evaluation instances with
similar characteristics. We discuss the bucketing
strategy in the next section.

4.2 Methodology

Once identified the potential influential attributes
for the task of RC, the next step is splitting the eval-
uation sets depending on the attributes values (i.e.,
bucketing). For the attributes with DISCRETE value
types (see Table 1) the bucketing creates one sub-
set for each attribute values—e.g., one subset for
each entity type for the entity type attribute. For
the attributes with CONTINUOUS value types, in-
stead, we set the number of buckets to four in order
to maintain a reasonable size for each bucket. We
then split the instances by equally distributing them
across subsets—except for the two AGGREGATE

attributes, which by definition are computed over
properties of the train set. Note that the entity
type and entity type frequency have each in-
stance placed into two buckets, one considering the
type of e1 and one considering the type of e2.

We measure the performance of the model over
the subsets, and compute the Spearman’s rank cor-
relation coefficient with respect to the average at-
tribute values of the buckets. Since entity type
and relation type have categorical values, we
cannot compute the correlation coefficient and ana-
lyze these two attributes separately in Section 4.3.1.
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Figure 2: Per-domain Correlation Analysis. Spearman’s rank correlation coefficient of the the 36 considered
setups, averaged over the dev sets.
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avg. correl 0.1 0.0 -0.4 0.3 0.1 0.2 0.0 -0.3 0.9
avg. stdev 22.2 7.1 6.1 6.4 7.0 5.9 9.9 14.6 24.9

Table 2: Overall Results. Average correlation and
average standard deviation of the Micro-F1 scores of
the buckets (within attribute), averaged over the 36 train-
test setups.

4.3 Results

In this section we are going to present the results of
our analysis, first looking at the overall correlation
study, and then at the per-domain results.

Overall Table 2 reports the correlations for the
proposed attributes (Section 4.1) averaged across
all 36 setups. We also report the average stan-
dard deviation across the Micro-F1 scores achieved
within attribute and computed separately for each
train-test setup. The relation type frequency
is by far the most influential attribute: It reports the
highest absolute correlation value, and the highest
standard deviation between buckets including low-
and high-frequent relations types in the train sets.
In the current setups with relatively small training
sets (see CrossRE statistics in Appendix A) the
amount of training instances have an high impact
on the final performance of the model. In addi-
tion, this is also influenced by the cross-domain

setup, with diverse relation label distributions over
the six domains (see Figure 3). The second most
relevant attribute is entity distance, with the
second highest absolute value in correlation and
a 6.1 average standard deviation across buckets
containing entity pairs at different distances. The
entity type frequency presents a weaker corre-
lation, confirming the findings that we will discuss
in Section 4.3.1 about the entity type. All the
other attributes report an absolute correlation value
ranging between 0.2 and 0.0 indicating that within
the overall overview of the considered setups they
have a lower impact on the model’s performance.

Domain Level We visualize the average across
the test domains in Figure 2. As previously noted,
the relation type frequency trend confirms
that the amount of training instances is the most in-
fluential attribute within the current setup. The
entity distance and sentence length also
present a similar trend across all six domains. The
negative correlation of the first indicates that, as
we could intuitively expect, it is more challenging
to identify the semantic relation connecting two
entities which are far apart in the sentence, with
respect to entity pairs separated by only a couple
of tokens. The positive trend within the sentence
length attribute, instead, suggests that entity pairs
belonging to long sentences (i.e., where more con-
text is given) are easier to classify than the ones
from short sentences. The entity density, and
relation density attributes present a general
positive trend in correlation, but with some outliers
(literature and AI). High values in these attributes
refer to sentences with many instances, e.g., lists of
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Figure 3: relation type Analysis. Distribution of the relation types in the train sets of CrossRE (Bassignana and
Plank, 2022) (above), and F1 per label (bottom).

entities which are all linked to an head entity with
a similar structure and (most likely) with the same
relation type. For example, in the music domain,
a list of songs authored by a music artist, or by a
band. We speculate these to be easy patterns to
identify and learn by a deep learning model.

News is often an outlier with respect to the other
domains. When training on this domain the perfor-
mance drops with higher values of entity length
(instead of improving as for most of the other do-
mains), and for entity type frequency is ex-
actly the reverse. The latter is probably due to
the entity type hierarchy adopted, which maps the
domain-specific entity types defined by Liu et al.
(2021b) for the other five domains into the types
included in the news domain. However, it should
be noted that news comes from a different data
source and has ∼4 times fewer relations compared
to the other domains, which makes the results more
unstable (Bassignana and Plank, 2022).

4.3.1 Categorical analysis
For the two categorical attributes it is not possible
to compute the correlation coefficients.

relation type The results in Figure 3 reveal
that some of the types are easier to learn across
all domains than others (i.e. have higher scores,
despite their lower frequency). These can be ex-
plained because they occur in very similar linguis-

tic constructions, like “named”, which often con-
nects an entity to the consecutive acronym in brack-
ets. Or because they mostly occur with the same en-
tity types, like “temporal” with “event” and “physi-
cal” with “location”. On the other hand, some rela-
tion labels have different performances across do-
mains. For example “win-defeat” which in the do-
mains of AI, literature, music, and science mostly
links a person winning an award. In the politics
domain, instead, it refers to more complex scenar-
ios where one out of multiple mentioned political
parties wins the election. Or, in a completely differ-
ent semantic context, a country wins a war against
another country. Unsurprisingly the most difficult
are clearly the infrequent ones, like “cause-effect”.

entity type The results in Figure 4 show that
there is not a strong link between the amount of
training instances and the performance achieved,
confirming the findings from Figure 2. This is
because in the CrossRE guidelines there are no
constraints linking the relation types to specific
entity types. The higher scoring types are mostly
the ones that are implicitly associated with specific
relation types, e.g., “location” with the “physical”
relation type, and “event” with “temporal”. On the
other hand, the most varied category “misc” is the
most challenging (see entity mapping in Table 5).
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Figure 4: entity type Analysis. Distribution of the
entity types in the train sets of CrossRE (Bassignana
and Plank, 2022) (above), and Micro-F1 achieved on
each bucket (bottom).

TEST

TRAIN Æ _ Y \ ÿ 
 avg.

B
A

S
E

L
IN

E

Æ 46.4 32.9 27.5 44.6 36.4 35.3 37.2
_ 28.0 63.1 55.5 34.7 49.0 35.4 44.3
Y 25.3 44.2 70.8 38.8 37.2 29.9 41.0
\ 12.6 15.8 16.4 52.6 33.5 21.6 25.4
ÿ 20.1 34.0 40.6 40.5 55.8 31.2 37.0

 35.9 29.0 30.0 41.4 37.8 38.0 35.3

avg. 36.7

FI
R

S
T-

T
W

O

Æ 45.2 33.2 28.4 40.7 35.8 33.7 36.2
_ 25.7 66.4 64.2 37.8 53.6 35.8 47.3
Y 27.5 48.4 71.6 36.9 42.2 30.6 42.8
\ 14.1 17.0 18.9 43.6 35.5 23.2 25.3
ÿ 18.4 33.4 41.3 43.2 56.6 31.1 37.3

 36.8 28.6 30.2 40.7 36.3 38.6 35.2

avg. 37.4

L
A

S
T-

T
W

O

Æ 45.0 35.1 31.7 41.4 39.7 34.6 37.9
_ 25.1 68.9 68.7 38.6 51.5 34.8 47.9
Y 28.6 57.6 73.2 38.2 39.1 32.4 44.8
\ 9.9 14.4 17.7 33.3 29.8 19.4 20.8
ÿ 15.7 28.7 38.6 42.2 55.6 29.9 35.1

 33.2 31.0 35.8 42.0 41.6 40.9 37.4

avg. 37.3

A
L

L
-F

O
U

R

Æ 46.5 36.2 32.2 48.1 42.0 37.5 40.4
_ 25.8 69.4 68.2 40.1 53.9 35.8 48.9
Y 29.6 59.1 74.6 37.7 46.0 33.6 46.8
\ 12.8 16.3 20.5 41.4 32.9 21.4 24.2
ÿ 19.4 32.9 41.9 43.7 58.3 33.1 38.2

 38.0 31.8 34.2 45.8 44.9 41.3 39.3

avg. 39.6

Table 3: Performance Comparison Across Setups.
Micro-F1 scores achieved with the baseline architecture,
and with the three proposed variants. (bold): Scores
beating the baseline; (underline): Highest scores within
the four setups.

5 Application: Model Improvement

As mentioned in the introduction, our final aim
is to guide better modeling by targeting quantita-
tively measured weaknesses of the model. Here
we present a case study which exploits the findings
of our proposed analysis. From the overall results
in Table 2 we can derive that the most influential
attribute is the relation type frequency, with
a correlation of 0.9 and the highest standard devi-
ation of 24.9. Targeting this factor would mean
obtaining additional training data by manual anno-
tation or via some data augmentation techniques.
Within this case study, we aim to focus on improv-
ing the model architecture. Therefore, here we
target the entity distance attribute, which holds
the second highest absolute correlation (0.4), for
improving the model performance.

5.1 Improved Experimental Setting
The fact that the entity distance (i.e., the num-
ber of tokens separating e1 from e2) has a high
influence on the RC model performance, means
that the tokens between e1 and e2 can somehow
mislead the prediction. In order to target this issue,
we aim at moving the two involved entities closer
to each other. We repeat the entities at the end
of the original sentence representation augmented
with the entity markers. Then, similar to the orig-
inal CrossRE baseline (Section 3.2), we pass the
input through a pre-trained encoder and extract a
representation on which we do the classification of
the relation with a linear layer. We test out three
different representations as illustrated in Figure 5:

• FIRST-TWO concatenation of the representa-
tion of the first two entity markers start, as in
the original baseline setup;

• LAST-TWO concatenation of the representa-
tion of the last two entity markers start, the
ones introduced after the [SEP] token;

• ALL-FOUR concatenation of the representa-
tion of all four entity markers start, the origi-
nal ones and the newly introduced.

In what follows, we show the effectiveness of
moving the entities closer to each other, and com-
pare the three classification strategies described
above. The new model architectures are also in-
cluded in our project repository.4

4https://anonymous.4open.science/r/
RC-analysis-sSEM-3B2A
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ccc
…

cccccc ccc

(d) ALL-FOUR

Figure 5: Proposed Setups. Representation of the baseline architecture (a) and of the three proposed setups (b, c, d)
which include the repetition of e1 and e2 at the end of the sentence.

5.2 New SOTA Results
Table 3 compares the performance of the origi-
nal baseline architecture with our proposed set-
tings. In general, performances are higher with
the repeated entities, except for the news domain,
which achieves the least stable results across all
our analyses. As pointed out by the authors of
the dataset, this is the most challenging domain
because it comes from a different data source and
contains the least amount of instances, making the
scores more unstable with respect to the other do-
mains (Bassignana and Plank, 2022). Furthermore,
ALL-FOUR consistently outperforms FIRST-TWO

and LAST-TWO. The gain of the overall average is
even larger compared to the sum of both individual
gains, suggesting that they provide highly comple-
mentary insights. The obtained improvements are
substantial (> 3 points on average), and come at
negligible costs—e.g., without drastically increas-
ing the training time with pre-training steps. We
perform significance testing in Appendix D.

6 Conclusion

We present a tool for systematic quantitative analy-
sis of the performance of RC models, and conduct

the first in-depth analysis of an RC system, across
36 in- and cross-domain setups. We identify po-
tentially influential attributes, and correlate their
value with model performance. Our findings high-
light the influence of data scarcity of relation types
over the model performance. The second most cor-
related attribute is the distance between the two
entities: The further away, the more challenging it
is to classify the semantic relation between them.

Last, we provide a case study exploiting the find-
ings of the analysis for improving the baseline ar-
chitecture with a simple yet effective method. We
target the entity distance weakness, and by repeat-
ing the entities closer to each other at the end of
the sentence we achieve a new SOTA on CrossRE,
with an average improvement > 3 points Micro-
F1. We provide code for reproducing the proposed
analysis on other RC setups (or related tasks, e.g.,
end-to-end RE). And we also release the code of
the new SOTA architecture.

Our aim is to encourage preliminary quantitative
analysis of models prior to designing new architec-
tures. Future work includes expanding the set of
attributes proposed in this work for RC in order to
comprise other tasks, with different challenges.
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et al. (2021b) and Bassignana and Plank (2022).

Limitations

In this work we report a case study of our proposed
evaluation suite over CrossRE which includes six
datasets covering six text domains. We focused
mainly on the current SOTA model, future work
could consider more models and datasets. The set
of attributes is mostly bound to the RC task, but
other relation-based tasks could employ similar at-
tributes. More aspects could be included in the
analysis in order to inspect specific strengths and
weaknesses of the model, or in order to adapt it to
other related structured prediction tasks. Last, with
respect to the model improvement in Section 5,
we focus on the architecture of the RC model,
but given the high impact of the relation type
frequency attribute, data augmentation techniques
could be explored in order to further improve the
performance of the model.
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A CrossRE Statistics

We report in Table 4 the dataset statistics of
CrossRE (Bassignana and Plank, 2022).

B Entity Type Mapping

The CrossRE dataset adopts the 39 domain-specific
entity types initially proposed by Liu et al. (2021b)
in CrossNER. When dealing with the entity type
and entity type frequency attributes, in order
to perform our cross-domain analysis, we map the
original 39 entity types into five domain-agnostic
meta entity types as illustrated in Table 5.

C Reproducibility

We report in Table 6 the hyperparameter setting of
our RC model (see Section 3.2). All experiments
were ran on an NVIDIA® A100 SXM4 40 GB GPU
and an AMD EPYC™ 7662 64-Core CPU.

D Significance Testing

We compare our setups using the Almost Stochastic
Order test (ASO; Del Barrio et al. (2018); Dror et al.
(2019)) implementation by Ulmer et al. (2022).
The method computes a score (ϵmin) which rep-
resents how far the first is from being significantly
better in respect to the second. The possible sce-
narios are therefore ϵmin = 0.0 (truly stochastic
dominance), and ϵmin < 0.5 (almost stochastic
dominance). Table 7 reports the ASO scores with
a confidence level of α = 0.05 adjusted by using
the Bonferroni correction (Bonferroni, 1936). See
Section 5 for the setup details.

SENTENCES RELATIONS

train dev test tot. train dev test tot.

AI 100 350 431 881 350 1,006 1,127 2,483
literature 100 400 416 916 397 1,539 1,591 3,527

music 100 350 399 849 496 1,861 2,333 4,690
news 164 350 400 914 175 300 396 871

politics 101 350 400 851 502 1,616 1,831 3,949
science 103 351 400 854 355 1,340 1,393 3,088

tot. 668 2,151 2,446 5,265 2,275 7,662 8,671 18,608

Table 4: CrossRE Statistics. Number of sen-
tences and number of relations for each domain of
CrossRE (Bassignana and Plank, 2022).

person location miscellaneous
researcher country field program language
writer task product
musical artist algorithm metrics
politician book literary genre
scientist award poem

organization event magazine music genre
university election song album
band conference musical instrument discipline
political party enzyme chemical element

chemical compound protein
astronomical object theory
academic journal

Table 5: Entity Hierarchy. Mapping of the original 39
domain-specific entity types by Liu et al. (2021b) into
five domain-agnostic meta types.

Parameter Value

Encoder bert-base-cased
Classifier 1-layer FFNN

Loss Cross Entropy
Optimizer Adam optimizer

Learning rate 2e−5

Batch size 32
Seeds 4012, 5096, 8257, 8824, 9908

Table 6: Hyperparameters Setting. Model details for
reproducibility of the experiments.
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BASELINE 1.0 0.8 0.8 0.9

FIRST-TWO 0.0 1.0 0.1 1.0

LAST-TWO 0.0 0.3 1.0 1.0

ALL-FOUR 0.0 0.0 0.0 1.0

Table 7: Significance Testing. ASO scores comparing
the experimental setups described in Section 5. Read as
row → column.
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