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Abstract

Understanding emotional nuances in written
content is crucial for effective communication;
however, the context-dependent nature of lan-
guage poses challenges in precisely discern-
ing emotions in text. This study contributes to
the understanding of how the emotional con-
notations of a word are influenced by the sen-
tence context in which it appears. Leverag-
ing the contextual understanding embedded in
contextualized word representations, we con-
duct an empirical investigation to (i) evaluate
the varying abilities of these representations in
distinguishing the diverse emotional connota-
tions evoked by the same word across different
contexts, (ii) explore potential biases in these
representations toward specific emotions of a
word, and (iii) assess the capability of these
representations in estimating the number of
emotional connotations evoked by a word in
diverse contexts. Our experiments, utilizing
four popular models—BERT, RoBERTa, XL-
Net, and GPT-2—and drawing on the GoEmo-
tions and SemEval 2018 datasets, demonstrate
that these models effectively discern emotional
connotations of words. RoBERTa, in partic-
ular, shows superior performance and greater
resilience against biases. Our further analy-
sis reveals that disambiguating the emotional
connotations of words significantly enhances
emotion identification at the sentence level.

1 Introduction

Understanding the emotional nuances conveyed
by words is crucial for effective communication.
This insight enhances the design of conversational
agents that emulate human empathy, enabling re-
sponses that accurately reflect the emotions con-
veyed by word choice (Raji and de Melo, 2021).
Psycholinguistics leverages this understanding to
identify depression and suicidality, where specific
word usage on social media posts may indicate un-
derlying distress (Aragón et al., 2019). Moreover,

comprehending these emotional subtleties along-
side literal meanings of words can deepen second
language comprehension for non-native speakers
(Dewaele, 2010).

In cognitive linguistics, the concept of
emotional connotation refers to the emotion
attributed to a specific word, transcending its
explicit meaning (Stubbs, 1995). Take, for
instance, the word ‘damn’, which is rated by
humans as anger (Mohammad and Kiritchenko,
2018), likely stemming from its frequent use in
expressions of anger. However, a word may take
on various emotional connotations depending on
the context in which it appears. Consider the word
‘damn’ in the following sentences sourced from the
GoEmotions dataset (Demszky et al., 2020):

S1. Wash your damn hands. [Anger]
S2. Damn [NAME] is KILLING it. [Joy]
S3. I damn near broke down! [Sadness]
S4. Damn, that’s dark here! [Fear]

In S1, the word ‘damn’ expresses anger, while
in S2, it is used in a positive context to convey
joy. Both S3 and S4 exemplify its usage in other
negative contexts.

Research on determining the emotional connota-
tions of lexical items has typically utilized crowd-
sourcing methods, leading to the development of
diverse lexicons of words with predefined emotions
(Hofmann et al., 2020). These lexicons, however,
provide static and generalized ratings for words, re-
gardless of the context in which they are used (De
Bruyne et al., 2022). Additionally, despite attempts
to ensure consistency in word ratings through an-
choring, implicit biases may persist in the rating
process (Semeraro et al., 2023). Efforts to ad-
dress these limitations have mainly focused on dis-
tinguishing the polarity of words (Hellrich et al.,
2019). In a domain-specific corpus (soccer), Braun
et al. (2022) relied on human judgments to measure
the differences between the positivity and negativ-
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ity of words with and without a sentence context.
Moreover, adopting automatic methods as an al-
ternative to manual acquisition has been limited
to extending the lexicon’s word coverage (Sedoc
et al., 2017) or developing domain-specific polarity
lexicons (Hamilton et al., 2016).

Recently, contextualized word representations,
exemplified by BERT (Devlin et al., 2019), have
been frequently evaluated on word relatedness
benchmarks, such as word sense disambiguation
(Wiedemann et al., 2019), which is the task of iden-
tifying the correct sense of a word’s usage from
a fixed inventory of sense identifiers (Hadiwinoto
et al., 2019). Studies on textual emotion analysis
have utilized these representations particularly for
sentence-level emotion classification tasks (Chen
et al., 2023; Fan et al., 2022; Huang et al., 2021;
Alhuzali and Ananiadou, 2023).

What is particularly intriguing about contextu-
alized word representations is their ability to gen-
erate unique embeddings for a word based on its
context (Saravia et al., 2018). Our objective is
to leverage this property of contextualized word
representations to disentangle the emotional conno-
tations of words that evoke various emotions within
different sentence contexts. Let W be the set of
all words, where w ∈ W represents a target word,
which evokes different emotions depending on its
surrounding context. S is the set of all possible
sentences, and N is the set of natural numbers rep-
resenting the position in a sentence where we aim
to analyze the emotional connotation of the word
w. The function f , f(S, i) = e, categorizes the
dominant emotional connotation of w at position
i in sentence S. The signature of this function is
given by f : S × N → E , where E is the set of all
possible emotion categories.

We conduct an empirical investigation to:
(i) Evaluate the varying abilities of contextual

word representations in distinguishing the di-
verse emotional connotations evoked by the
same word across different contexts;

(ii) Explore the existence of potential biases in
these representations toward specific emo-
tional connotations of a word; in this context,
bias refers to the likelihood of models incor-
rectly associating a word linked to emotionk

with emotionj ;
(iii) Assess the capability of these representations

in estimating the number of emotions a word
can evoke in various contexts; and

(iv) Investigate the impact of disambiguating the

emotional connotations of words on the accu-
racy of sentence-level emotion classification.

Focusing on emotional words that evoke various
emotions across diverse contexts, we obtain con-
textualized representations of these words within
emotion-annotated sentences in the GoEmotions
and the SemEval 2018 (Mohammad et al., 2018)
datasets. We then cluster these representations and
assess the alignment degree between the resulting
clusters and the emotions of the words in question.
Our analysis of various models—BERT, RoBERTa,
XLNet, and GPT-2—showcases their capability
to capture the emotional connotations of words.
We find that not all models are equally effective
in discerning these emotional nuances. Our find-
ings also reveal biases towards specific emotions
in these representations, with different models ex-
hibiting biases towards different emotions for a
given word. Moreover, our experiments indicate
that disambiguating the emotional connotations of
a small number of words significantly improves the
accuracy of sentence-level emotion classification.

2 Related work

Textual emotion recognition has typically involved
either the utilization of lexicons—lists of words
with pre-assigned emotions—without the need for
extensive labeled data (Semeraro et al., 2023), or
contextualized word representations, known for
their domain-agnostic adaptability, when sufficient
labeled data is available (Öhman et al., 2020).

Methods that rely on lexicons view texts as word
collections and use word ratings from lexicons for
emotion identification (Ma et al., 2018; Hosseini
and Staab, 2023). However, the static nature of
these word ratings limits a comprehensive under-
standing of emotions, as they disregard contextual
nuances (De Bruyne et al., 2022). For instance,
in a domain-specific corpus (soccer), Braun et al.
(2022) demonstrated that pragmatic and semantic
shifts in context can significantly influence word
polarity in lexicons. To address this limitation,
researchers often explore the identification of nega-
tions, diminishers, and intensifiers (Reitan et al.,
2015; Hutto and Gilbert, 2014), or they develop
domain-specific lexicons (Amir et al., 2015), which
have mainly focused on distinguishing polarity of
words in a specific domain (Hellrich et al., 2019).

Recent methods in textual emotion analysis have
increasingly leveraged contextual word represen-
tations like BERT, particularly for sentence-level
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emotion classification (Alhuzali and Ananiadou,
2023; Li et al., 2021; Mao et al., 2023). These
methods enhance model training by fine-tuning
these embeddings with emotion-labeled datasets.
For instance, Batbaatar et al. (2019) applied these
representations in a Convolutional Neural Network
to discern semantic relationships between words,
and Kassner and Schütze (2020) focused on refin-
ing the understanding of contradictory sentiment
words within these representations for binary senti-
ment classification. Some studies have integrated
emotional lexicons into these representations, en-
abling these models to achieve a more nuanced
understanding of emotional words (Aduragba et al.,
2021; Ke et al., 2020; Wang et al., 2020). For ex-
ample, Sosea and Caragea (2021) proposed a pre-
training objective for BERT, which increases mask-
ing probabilities for emotional words in sentences
using emotion lexicons, while Zhou et al. (2020)
developed a BERT model from scratch using Yelp
and Amazon reviews by increasing the masking
probability for positive and negative words. How-
ever, these approaches exhibit high sensitivity to
both the training corpus and the lexical resources
employed (Shah et al., 2023), which suffer from
ambiguity (Wang et al., 2021). Certain studies,
such as Wang and Zong (2021), focused on se-
mantic role labeling for emotions, modeling the
semantics and interrelatedness of emotion labels by
learning representations for emotion classes from
annotated data. However, these representations do
not generalize to other datasets and label formats
(Campagnano et al., 2022).

Previous studies have primarily utilized contex-
tualized representations for sentence-level emotion
classification tasks. In contextualized word repre-
sentations, each input word is represented as a vec-
tor dependent on the context of its occurrence (Sar-
avia et al., 2018). This approach captures both se-
mantic and syntactic nuances within the surround-
ing context of words, rendering these models par-
ticularly intriguing for investigating the emotional
connotations of words across diverse contexts. This
paper exploits these representations to conduct an
empirical study, aiming to scrutinize their efficacy
in distinguishing different emotional connotations
evoked by the same word in various contexts. To
achieve this, we adopt a clustering-based approach,
wherein the representation vectors of the word, ob-
tained from emotion-annotated sentences, are clus-
tered using a Gaussian Mixture Model. Further,
we evaluate potential biases in different representa-

tion models toward certain emotional connotations
of words and assess whether clustering is a viable
method for predicting the number of emotions a
word can evoke in diverse contexts.

3 Methodology

To investigate the effectiveness of contextualized
word representations in discerning the various emo-
tional connotations of words that evoke different
emotions depending on the sentence context, we
propose a method comprising the following steps:
1. Target Word Identification: Identify a subset of
emotional words within an emotion lexicon that
evoke diverse emotions across different contexts.
2. Sample Sentence Extraction: Retrieve sentences
featuring the target words from emotion-annotated
resources to compile a representative set of in-
stances showcasing the words in diverse contexts.
3. Contextualized Representation Generation: Ob-
tain contextualized representation vectors for the
target words in the set of sample sentences.
4. Word Representation Clustering. Apply cluster-
ing to the contextualized representations using a
Gaussian Mixture Model (GMM) and find a map-
ping between the resulting clusters and the emo-
tions of target words that maximizes the overall
number of accurate matches, with the match rate
serving as the evaluation metric.

The next sections detail the target word identifi-
cation phase, the word representations used in our
study, and the clustering of these representations.

3.1 Target Word Identification

The task of identifying emotional words that can
evoke multiple emotions in different contexts relies
on two foundational assumptions:

Assumption 1: The subset of emotional words
eliciting diverse emotions is significantly smaller
than the set of words maintaining consistent emo-
tional connotations across various contexts (Wang
et al., 2021; Gollapalli et al., 2020).

Assumption 2: The emotional connotation of
a word can be inferred by analyzing its frequency
within a corpus of annotated text. If an emotional
word frequently appears in sentences expressing
a specific emotion, it is reasonable to deduce that
it is commonly employed to convey that emotion
(Liu, 2022; Hosseini, 2017).

To identify words that evoke various emotions
based on context, the inherent emotionality of a
word is a prerequisite for our study. We utilized the
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NRC-Affect lexicon (Mohammad and Kiritchenko,
2018), a well-established resource in emotion anal-
ysis, to extract emotional words from annotated
datasets. This lexicon, annotated manually, com-
prises 4,192 English words and their associations
with four basic emotions (anger, fear, sadness, and
joy) with scores ranging from 0 to 1. It encom-
passes common English terms and terms prevalent
on social media platforms.

The initial step involved extracting words from
the NRC-Affect lexicon that were present in var-
ious emotional classes of the annotated datasets.
We then calculated the proportion of the word’s
frequency in each emotional class to its total fre-
quency across all sentences, as shown in (1):

Proportion(w, e) =
freq(w, e)∑
e freq(w, e)

(1)

Here, freq(w, e) denotes the frequency of candi-
date word w in emotion category e, where e repre-
sents each emotion category in the dataset. Formula
(1) generates values between 0 and 1, with the sum
equal to 1, indicating the normalized frequency of
extracted words in distinct categories, irrespective
of dataset size. For a word w to be considered a
target word, a minimum normalized frequency of
0.2 in each emotion category is required. This crite-
rion reduces noise in the identification process and
strikes a balance between being stringent enough
to filter out less relevant words while remaining
practical for analysis.

We refined the target word selection process fur-
ther by requiring a minimum occurrence in the 25
annotated sentences for each emotion. For exam-
ple, the word ‘crazy’ met this criterion, appearing
in 75 sentences expressing anger and 40 sentences
expressing joy. In contrast, ‘abortion’ did not meet
the criteria, as it appeared in sentences express-
ing various emotions (anger, fear, and sadness) but
lacked the required number of annotated sentences
per emotion. Setting a minimum occurrence cri-
terion ensures the identified words have a robust
presence in the dataset. To ensure a balanced dis-
tribution of sentences across emotions and prevent
bias towards more frequent emotion classes, we
imposed a maximum limit of 100 sentences per
emotion. In line with Assumption 2, we associated
the emotions of the identified target words with the
emotion expressed within sentences.

3.2 Contextual Representation Generation
This section provides an overview of the contex-
tualized word representations used in this paper,
e.g., BERT, RoBERTa, XLNet, and GPT-2. These
models were selected based on their prevalent use
in sentiment analysis and text emotion analysis
(Chen et al., 2023; Fan et al., 2022; Mao et al.,
2023). They embody a broad spectrum of trans-
former architectures, with unique objectives and
pre-training methods. The coverage includes bidi-
rectional models (BERT, RoBERTa, XLNet) and a
unidirectional model (GPT-2), incorporating vari-
ous language modeling approaches such as masked
language modeling and autoregressive language
modeling. Table 1 summarizes their differences
in corpus size, parameters, embedding dimensions,
and layers. We used publicly available pre-trained
versions of these models specified by ‘bert- large-
uncased,’ ‘roberta-large,’ ‘xlnet-base-cased’ and
‘gpt2’ on Hugging Face.
• BERT (Devlin et al., 2019) employs masked lan-
guage modeling and next-sentence prediction to
generate bidirectional text representations, consid-
ering both preceding and succeeding context.
• RoBERTa (Liu et al., 2019), built on BERT’s ar-
chitecture, omits the next-sentence prediction task
and introduces dynamic masking, which generates
unique masking patterns for each sentence during
training rather than using a fixed masked token.
• XLNet (Yang et al., 2019) is an autoregressive
language model that employs permutation-based
training to predict random tokens in both directions,
allowing for bidirectional context capture.
• GPT-2 (Radford et al., 2019) is a unidirectional
autoregressive language model that employs the
Transformer decoder architecture for its genera-
tive pre-training, specializing in predicting the next
word in a sentence by considering preceding words.

Model Params. Corpus Size Tokenization Dims. Layers

BERT 340M 16GB WordPiece

1024 24
RoBERTa 355M 160GB Byte-Pair
XLNet 340M 158GB SentencePiece
GPT-2 345M 40GB Byte-Pair

Table 1: Details of contextualized word representations
used in this study.

3.3 Word Representation Clustering
We utilized the Gaussian Mixture Model (GMM)
from scikit-learn for clustering the generated con-
textualized word vectors, selecting the ‘spherical’
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covariance type, which assumes equal diagonal ele-
ments in a diagonal covariance matrix. The GMM
can adapt to clusters with diverse shapes and sizes
while employing a probabilistic method for clus-
tering (Melnykov and Maitra, 2010). Through an
optimization strategy, we then identified a mapping
between the resulting clusters and the emotions of
the target words that maximize the overall number
of accurate matches. Using the match rate as the
evaluation metric leads to a more refined measure
of clustering quality.

The match rate quantifies the alignment between
the resulting clusters and the emotions of target
words. We determined this rate by constructing
a contingency table with pandas.crosstab (de-
noted as C), where each cell Cij counts the in-
stances in cluster i associated with emotion label
j. Initially, we assigned an emotion label to each
cluster based on the predominant emotion of the
instances within that cluster, following a major-
ity voting principle. Subsequently, we refined this
alignment by employing the Hungarian algorithm
(Kuhn, 1955) to establish an optimal one-to-one
mapping between clusters and target words’ emo-
tions. This optimization seeks a permutation π that
minimizes mismatch costs, thereby maximizing
the alignment between clusters and emotions. The
match rate was then calculated by normalizing the
sum of correctly matched labels, according to the
optimal mapping π, by the total count of instances
n, as follows:

Match Rate =

∑k
i=1Ci,π(i)

n
(2)

Here, k denotes the number of clusters, and π(i)
represents the label matched with cluster i through
the optimal matching.

4 Experiments

In this section, we first investigate the ability of
various contextualized word representations to dis-
tinguish between the different emotional connota-
tions evoked by the same word in different contexts
(Section 4.2). Then, we explore the presence of
emotional biases in these representations (Section
4.3). Finally, we evaluate the accuracy of these rep-
resentations in quantifying the range of emotions
elicited by each word (Section 4.4).

4.1 Datasets
We used the GoEmotions and SemEval 2018
datasets, sourced from Reddit and Twitter, respec-

tively, as emotion-annotated datasets.
• GoEmotions (Demszky et al., 2020) is the
largest manually annotated dataset of 58k English
Reddit comments from popular subreddits. At least
three raters assessed each comment, resulting in
significant inter-rater agreement. Comments range
from 3 to 30 tokens, with a median length of 12
tokens. We utilized the version of the dataset an-
notated for six emotions: joy, anger, fear, sadness,
disgust, and surprise.

• SemEval 2018 (Mohammad et al., 2018) com-
prises 10,983 tweets annotated for 11 emotions:
anger, anticipation, disgust, fear, joy, love, opti-
mism, pessimism, sadness, surprise, and trust. At
least seven raters assessed each tweet, ensuring
reliable annotation with strong inter-rater correla-
tion. The tweets range from 1 to 36 tokens, with a
median length of 16 tokens.

We followed the procedure outlined in Section
3.1 for target word identification. In the GoEmo-
tions dataset, we identified 133 words with an av-
erage of 2.5 distinct emotions, and in the SemEval
dataset, 113 words with an average of 2.3 emotions
per word. For evaluation, we selected 90 and 80
words from the GoEmotions and SemEval datasets,
respectively, as the test set, reserving the remain-
ing words for parameter fine-tuning in the devel-
opment set. The emotional labels for these words
were assigned based on the emotions expressed in
the sentences, including anger, fear, sadness, and
joy. Emotions like surprise, although present in the
datasets, did not meet the criteria outlined in Sec-
tion 3.1 and were thus excluded from our analysis.
We then retrieved example sentences associated
with these words from the datasets, with an aver-
age of 58.37 annotated sentences per emotion in
GoEmotions and 32.17 in SemEval.

4.2 Emotional Connotations Distinction

This section investigates the effectiveness of var-
ious contextualized representations in identifying
varied emotional connotations evoked by a single
word in different contexts. To ensure the robustness
of our experiments, we conducted five clustering
trials with different random seeds and selected the
result with the highest likelihood.

Figure 1 presents a comparative analysis of
macro-average match rates across all words for
individual layers within four representation models
on the development set, using the GoEmotions and
SemEval datasets. This empirical evidence reveals
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Figure 1: Layer-wise comparison of macro-average
match rates across models on the development set for
GoEmotions and SemEval datasets. Blue shading high-
lights the best-performing layers, marked with ⋆.

Model
GoEmotions SemEval 2018

Dev Test Dev Test

BERT 0.694 (22) 0.689 (22) 0.631 (20) 0.623 (20)
RoBERTa 0.718 (20) 0.707 (20) 0.665 (19) 0.656 (19)
XLNet 0.662 (13) 0.639 (13) 0.643 (11) 0.631 (11)
GPT-2 0.618 (17) 0.598 (17) 0.595 (16) 0.587 (16)

Table 2: Macro-average match rates of the highest-
scoring development layers (in brackets) and their cor-
responding test set scores across models. Bold values
represent the top scores for each datasets.

significant variation in layer effectiveness across
different models, indicating that selecting an opti-
mal layer is model-specific. The final layer (Layer
24), typically associated with encoding semantic
knowledge, consistently underperforms across all
models. A hierarchical performance pattern is ob-
served in BERT and RoBERTa models, with higher
match rates in the upper layers. In contrast, the
XLNet and GPT-2 models perform best in layers
closer to the middle rather than in the final layer.

Table 2 presents the macro-average match rates
of the top-performing layers during development
and their corresponding scores on the test set.
Given the diverse contextualization approaches,
objectives, and pre-training strategies of the mod-
els in question, significant variations were noted
in their ability to discern the emotional nuances
conveyed by the same words across different con-
texts. RoBERTa emerged as the leading model in
terms of scores on both datasets, underscoring its
superior ability to differentiate emotional conno-
tations of words and position them into distinct
embedding space regions. Following RoBERTa,
XLNet and BERT—both employing bidirectional
architectures—demonstrated strong performance.
Conversely, GPT-2, which operates on a unidirec-
tional autoregressive language model framework,

recorded the lowest scores on both datasets.

4.3 Bias Analysis
This section investigates the presence of biases to-
ward specific emotional connotations of a word in
contextualized representations, aiming to enhance
our understanding of their behavior in distinguish-
ing different emotions of the same word.

We aim to measure Bias(w, j), related to the
j-th emotion (emotionj), for a word w that evokes
multiple emotions (n). This involves assessing
cij , the count of instances where the correct la-
bel is emotioni but is erroneously identified as
emotionj (i ̸= j). First, we determine the extent
of bias from emotion i to emotion j (biasij) by
normalizing cij , dividing it by the total number
of instances gold-labeled as emotioni, denoted as∑

j cij . We then compute the overall bias towards
a specific emotion, Bias(w, j), as follows:

Bias(w, j) =
1

n− 1

n∑

i=1,i ̸=j

(
cij∑
j cij

)
(3)

The value of Bias(w, j) represents the likelihood
of models incorrectly identifying a word associated
with emotionk as emotionj when k ̸= j (Loureiro
et al., 2021). This value ranges from 0 to 1, where
a value close to 1 indicates a stronger bias towards
emotionj . We calculate the maximum bias value
(max(Bias(w, j)) towards different emotions of
a word, with j ranging across the emotions asso-
ciated with the word (j ∈ [1, n]). Table 3 shows
the average of these maximum bias values across
all words for the four models. Consistent with
the findings in Section 4.2, our analysis indicates
RoBERTa is more robust against biases, maintain-
ing a bias value below 0.3 in both datasets.

Table 4 presents the average Bias(w, j) scores
from equation 3 for different emotions across all
words. This breakdown analysis reveals biases
in word representations toward specific emotions,
with variations observed across different models.
Although models generally exhibit similar behav-
ior, they do not uniformly exhibit identical bias
toward the same emotions. For instance, in the
GoEmotions dataset, RoBERTa is biased toward
Anger, whereas XLNet and GPT-2 lean towards Joy.
Moreover, the models consistently show low biases,
below 0.2, towards Fear and Sadness emotions.

The radar charts in Figure 2 illustrate biases to-
wards different emotions in several representative
cases. For instance, the words ‘Freak’, ‘Damn’, and
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Figure 2: Analysis of bias towards different emotions for a few representative cases.

Dataset BERT RoBERTa XLNet GPT-2

GoEmotions 0.310 0.257 0.331 0.396
SemEval 2018 0.380 0.286 0.349 0.422

Table 3: Average bias values across models for the
GoEmotions and SemEval datasets.

Model Anger Fear Sadness Joy

GoEmotions Dataset

BERT 0.283 0.091 0.186 0.251
RoBERTa 0.267 0.116 0.103 0.233
XLNet 0.241 0.118 0.191 0.281
GPT-2 0.287 0.141 0.149 0.322

SemEval 2018 Dataset

BERT 0.387 0.135 0.118 0.285
RoBERTa 0.297 0.054 0.152 0.276
XLNet 0.353 0.114 0.112 0.275
GPT-2 0.390 0.145 0.148 0.415

Table 4: Breakdown analysis of bias values toward vari-
ous emotions across different models and datasets.

‘Creep’ exhibit a bias towards Anger, and ‘Scream’
is skewed toward Fear, showcasing a preference
for the more prevalent emotions of these words.
This reflects biases present during the models’ pre-
training, meaning they encountered the target word
with the prevalent emotion more frequently than
with other emotions. Thus, they may overlook
the word’s emotional nuance in varied contexts.
For example, these models associated the word
‘damn’ with more negative emotions due to its fre-
quent co-occurrence with words like ‘fuck’ and
‘shit’ during pre-training, potentially missing the
word’s positive connotations in different contexts.
Moreover, different models exhibit varying biases
for the same word; for instance, RoBERTa shows
a bias toward Anger for ‘Freak’, whereas GPT-2
leans towards Joy. Similarly, for the word ‘Crazy’,
BERT, RoBERTa, and GPT-2 tend to misclassify

Anger as Joy, whereas XLNet does the opposite.

4.4 Number of Emotions Estimation

In prior experiments, we analyzed words that evoke
diverse emotions and provided the Gaussian Mix-
ture Model with the number of emotions present
in sample sentences. The current experiment aims
to assess the models’ accuracy in estimating the
number of emotional connotations of words. By
including words that elicit only a single emotion
alongside those evoking multiple emotions, we en-
hance the robustness of our evaluation.

For the implementation of this experiment, we
matched the number of additional words to the
quantity used in Section 4.2. This approach re-
sulted in parameter tuning with 86 and 66 words in
the development set for GoEmotions and SemEval
datasets, respectively. For the test set evaluation,
we utilized 180 words for the GoEmotions and 160
words for the SemEval dataset.

We utilized an adjusted version of the Bayesian
Information Criterion (ABIC) (Schwarz, 1978) as
the criterion for model selection to determine the
optimal number of clusters, which align with the
number of emotions elicited by each word. The
ABIC fine-tunes the model for the best fit to the
data by considering both model complexity and
mitigating overfitting, as specified by the formula:

ABIC = c · p · ln(N)− 2 ln(L̂) (4)

Here, L̂ denotes the maximum likelihood of the
model, N is the sample size, p is the number of
model parameters, and c is a constant to adjust the
penalty term, c · p · ln(N). The penalty term penal-
izes model complexity based on the number of pa-
rameters and discourages excessive increases in the
number of clusters. We increment c from 1 in 0.1
steps until the total number of emotions and the es-
timated number of clusters are as close as possible
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Model GoEmotions SemEval 2018

ρ Accuracy RMSE ρ Accuracy RMSE

BERT 0.513 0.572 1.133 0.231 0.503 1.254
RoBERTa 0.648 0.617 1.002 0.437 0.569 1.142
XLNet 0.359 0.521 1.211 0.327 0.519 1.239
GPT-2 0.189 0.465 1.291 0.151 0.434 1.303

Table 5: Comparison of different models in estimating
the number of emotions using Spearman’s (ρ), accuracy,
and Root Mean Square Error (RMSE).

in the development set. For the GoEmotions and
SemEval datasets, the optimal c values were identi-
fied as 3.6 and 3.2, respectively. In the GMM, each
cluster encompasses a mean, a spherical covariance
matrix, and a mixture weight. The parameter count
for the GMM is given by p = [Nc × (D + 2)]− 1,
where Nc is the number of clusters, and D the data
dimensionality. The term (D + 2) accounts for the
mean and covariance parameters, and subtracting
1 corrects for the constraints, ensuring the sum of
parameters equals 1 for mixture weights (Murphy,
2012; Yamada et al., 2021).

Table 5 presents the performance of various mod-
els on estimating the number of emotions and clus-
ters in both datasets, using accuracy, Spearman’s
rank correlation coefficient (ρ), and root mean
square error (RMSE) metrics. RMSE quantifies the
error magnitude between estimated cluster counts
and the actual emotion counts per word. The find-
ings indicate that RoBERTa surpasses other models
in accurately estimating the number of emotions
for over 60% of the words analyzed. RoBERTa
achieved the lowest RMSE and the highest ρ val-
ues—0.648 and 0.437 for the GoEmotions and Se-
mEval datasets, respectively—suggesting a strong
alignment between the actual number of emotions
and model estimates. Figure 3 in the Appendix A
further illustrates RoBERTa’s performance through
confusion matrices, analyzing its emotion count es-
timates for words with a single emotion and those
with context-dependent multiple emotions.

5 Sentence-level Emotion Classification

This section explores the impact of disambiguat-
ing the emotional connotation of words that evoke
different emotions depending on the context, on
the accuracy of sentence-level emotion detection.
We evaluate sentences containing at least one iden-
tified target word, as those without these words
remain unaffected. Sentences are divided into strat-
ified training (80%) and test (20%) splits based on

emotions through random sampling.
Our initial experiments involve comparing the

original NRC-Affect lexicon and its modified ver-
sions in a before-and-after manner. Here, modified
lexicon refers to the disambiguation of emotional
connotations associated with target words in the
original NRC-Affect lexicon, achieved by utiliz-
ing various contextualized word representations.
The probability values from the Gaussian Mixture
Model indicate the extent to which each instance
of a target word belongs to each of the GMM clus-
ters, which have been mapped to specific emotions.
We computed the average probability for all in-
stances of a target word within an emotion’s cluster
to ascertain its disambiguated ratings. For example,
while the original lexicon associated ‘damn’ exclu-
sively with anger, with a score of 0.7, the modified
lexicon provides a nuanced view of the different
emotional connotations—joy, sadness, and fear, in
addition to anger—that ‘damn’ evokes across vari-
ous contexts in the GoEmotions dataset. Building
on the lexicon-based classifier design outlined in
(De Bruyne et al., 2022), we utilized the informa-
tion from both the original NRC-Affect lexicon and
its modified versions as features in a logistic regres-
sion classifier for emotion prediction, detailed in
Appendix B. Table 6 presents the results using F1-
macro scores, demonstrating substantial improve-
ments with the modified lexicons compared to the
original. This underscores the crucial role of ad-
dressing ambiguous emotional words and consider-
ing context in determining their emotional conno-
tations for accurate emotion classification.

Method GoEmotions SemEval 2018

Original NRC-Affect 0.324 0.361
Modified NRC-Affect using

BERT
RoBERTa
XLNet
GPT-2

0.377 0.396
0.382 0.408
0.372 0.406
0.356 0.390

Table 6: The F1-macro scores for sentence-level emo-
tion classification using lexicons.

Method GoEmotions SemEval 2018

BERT 0.593 0.532
RoBERTa 0.621 0.561
XLNet 0.614 0.543
GPT-2 0.461 0.503

RoBERTa + Original NRC-Affect 0.631 0.569
RoBERTa + Modified NRC-Affect (RoBERTa) 0.636 0.573

Table 7: The F1-macro scores for sentence-level emo-
tion classification using pre-trained models.
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In the second series of experiments, we evalu-
ated the ability of pre-trained transformer mod-
els—BERT, RoBERTa, XLNet, and GPT-2—to
classify emotions in sentences with target words.
We applied a uniform set of hyperparameters across
all models, adhering to the settings recommended
by Demszky et al. (2020): four epochs, a batch
size of 16, and a learning rate 5e-5. As expected,
the results in Table 7 demonstrate that these mod-
els significantly outperformed the lexicon-based
approach, which depended solely on lexicon fea-
tures, with RoBERTa achieving the highest F1-
macro scores across both datasets. Building on
prior research that indicates incorporating lexi-
con information into linguistic models further en-
hances the understanding of emotional nuances
in pre-trained models (Baziotis et al., 2018), we
integrated features derived from the original and
top-performing modified lexicons as auxiliary in-
puts into the highest-performing pre-trained model.
Specifically, we concatenated the auxiliary features
with the output vector from the last hidden layer
of the pre-trained model, appending them to the
sequence embedding since the features aggregate
across the entire text. The concatenated vector was
then fed into the final decision-making layer, and
we adjusted the dimensionality of the final layer
to accommodate the additional inputs. Our find-
ings, detailed in the second set of entries in Table 7,
revealed that including modified lexicon features,
in addition to the models, enhances classification
performance beyond what is achieved with original
lexicon information. Appendix C further discusses
the enhanced ability of RoBERTa, compared to
other models in discerning emotions.

Overall performance. Table 8 compares our
method, using the modified NRC-Affect lexicon
and RoBERTa embeddings, with state-of-the-art
approaches across the entire GoEmotions and Se-
mEval datasets, covering sentences both with and
without identified target words. We compare our re-
sults with various models, such as the TCS model,
which uses dual BiLSTM networks for tweet encod-
ing (Meisheri and Dey, 2018); the DATN model,
which employs a dual attention mechanism within
a transfer learning setup (Yu et al., 2018); the
BERT+DK, that integrates domain knowledge into
BERT (Ying et al., 2019); the Seq2Emo, which
leverages a bi-directional decoder in a sequence-
to-emotion framework without relying on external
data(Huang et al., 2021); and the UCCA-GAT and
Dep-GAT models (Ameer et al., 2023) that inte-

Method F1-macro

SemEval 2018 Dataset

TCS Research (Meisheri and Dey, 2018) 0.530
DATN (Yu et al., 2018) 0.544
BERT-Large + DK (Ying et al., 2019) 0.563
Seq2Emo (Huang et al., 2021) 0.519
UCCA-GAT (Ameer et al., 2023) 0.600 (1)
Dep-GAT (Ameer et al., 2023) 0.578 (3)
RoBERTa + Modified NRC-Affect (RoBERTa) 0.583 (2)

GoEmotions Dataset

BERT (Demszky et al., 2020) 0.640 (2)
UCCA-GAT (Ameer et al., 2023) 0.639 (3)
Dep-GAT (Ameer et al., 2023) 0.611
RoBERTa + Modified NRC-Affect (RoBERTa) 0.653 (1)

Table 8: Comparison of our method using modified
NRC-Affect lexicon and RoBERTa embeddings with
state-of-the-art approaches. Rankings (1), (2), and (3)
denote the top three results.

grate semantic and syntactic information into graph
attention networks via Universal Conceptual Cogni-
tive Annotation and dependency trees, respectively.
Our approach surpasses most competing models,
though it falls slightly behind the UCCA-GAT on
the SemEval dataset. These findings highlight the
efficacy of contextualized representations to disam-
biguate emotional connotations of words and adapt
to varying contexts, thereby enhancing emotion
detection at the sentence level.

6 Conclusion

In this study, we have explored disentangling the
emotional connotations of words within diverse
sentence contexts, leveraging contextualized word
representations. We evaluated these representa-
tions’ ability to differentiate the diverse emotions
of words, identify potential biases in predicting
emotional connotations, and accurately estimate
the multiplicity of words’ emotional connotations.
Our methodology involved clustering based on con-
textualized representations of words that evoke dif-
ferent emotions in various contexts and assessing
the alignment between the generated clusters and
the words’ emotions. Our evaluation of BERT,
RoBERTa, XLNet, and GPT-2 models revealed
that contextualized representations can effectively
disambiguate the emotional connotations of words,
with RoBERTa showing superior performance and
greater resilience against biases. Further analysis
indicated that addressing a small subset of ambigu-
ous emotional words and considering the context in
determining their emotional connotations are cru-
cial for accurately determining sentence emotion.

272



7 Limitations

The empirical results presented in this paper high-
lighted that many commonly used linguistic mod-
els can significantly improve word emotion induc-
tion methods. However, our experiments were con-
ducted exclusively on English-language datasets.
Consequently, the effectiveness of the proposed
method in diverse corpora and multilingual re-
sources remains to be determined. Additionally, we
employed the NRC-Affect lexicon as a resource to
identify target emotional words that evoke different
emotions depending on the context. However, this
lexicon may not encompass all emotional words,
such as emerging slang terms in social media. The
inclusion of a more comprehensive spectrum of
emotional words should be a priority in future re-
search. These investigations will be essential for
evaluating the applicability of our method across
different languages and are expected to advance us
toward the goal of automatically constructing high-
quality emotional lexical resources with broader
linguistic coverage for under-resourced languages
or specific domains.
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A Appendix

The confusion matrices presented in Figure 3 depict
the analysis of how the RoBERTa model estimates
the number of emotions for words with single emo-
tions versus those with context-dependent multi-
ple emotions. The model reliably identifies single-
emotion words across datasets in most cases. How-
ever, it occasionally overestimates the number of
emotions, suggesting 2 or 3 clusters. For words that
elicit 2 or 3 emotions, the model provides reason-
ably accurate estimates but often underestimates
the actual count, indicating a lower number of emo-
tions. As the number of emotions increases to 4,
the reliability of the model’s estimations decreases,
leading to a wider range of possibilities.

B Appendix

We provide more details on the features utilized
in the design of the lexicon-based classifier out-
lined in (De Bruyne et al., 2022). We employed
statistical features of emotional words and a lo-
gistic regression classifier in the learning model
for emotion prediction experiments. We trained
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Figure 3: Confusion matrices for estimating the number
of emotions using the RoBERTa model.

the classifier with the statistical features derived
from both the original NRC-Affect lexicon and
its modified versions. Given a sequence of words
s = (w1, . . . , wk), statistical features quantify the
proportion of a given emotion ei within the sen-
tence s as P (s, ei), calculated by:

P (s, ei) =
1

k

k∑

j=1

ϕei(wj) (5)

where ϕei(wj) represents the emotion score
of the word wj for the emotion ei, derived
from the lexicons. Here, ei belongs to the set
{eanger, efear, esadness, ejoy}.

The logistic regression classifier uses a liblinear
solver with L2 regularization and a regularization
strength of C = 1.0. The choice of L2 regulariza-
tion helps prevent model overfitting by penalizing
the size of the coefficients, with C = 1.0 providing
an optimal balance between regularization intensity
and model complexity based on either empirical
evidence. We deploy separate binary classifiers
for each of the categories and aggregate the predic-
tions afterward by selecting the highest probability,
thereby identifying the most dominant emotion in
the sentence.

C Appendix

This appendix provides a detailed discussion on the
superior performance of RoBERTa over other mod-
els—BERT, XLNet, and GPT-2—on the task of
disambiguating emotional connotations. Notably,
all models in our experiments were trained under
identical conditions, using the same hyperparam-
eters such as batch size, learning rate, and dataset
sizes. This uniform setup ensures that any observed
performance differences are due to architectural or
training method variations. RoBERTa, the most
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Figure 4: The t-SNE projection of BERT, RoBERTa,
XLNet, and GPT-2 representations of the word damn in
sentences expressing various emotions in GoEmotions
dataset.

advanced transformer among the considered mod-
els, possesses the highest number of parameters
(355M) as detailed in Table 1. Its dynamic mask-
ing technique, which alters mask patterns with each
data pass, provides a training advantage over the
static masking used by BERT. Additionally, the
tokenization approach of models significantly im-
pacts their performance. In our evaluation, tok-
enization was consistent with the method used dur-
ing pre-training. RoBERTa employs Byte-Pair En-
coding (BPE), which effectively captures frequent
subword units compared to BERT’s WordPiece or
XLNet’s SentencePiece. BPE constructs its vocab-
ulary by merging frequently occurring character
pairs or combinations, thus improving the capture
of rare or out-of-vocabulary words (Beinborn and
Pinter, 2023).

Additionally, empirical evidence from the layer-
wise comparison of macro-average match rates in
Section 4.2 revealed that the ability to capture emo-
tional connotations varies significantly across lay-
ers of selected models, indicating that optimal layer
selection is model-specific. RoBERTa consistently
excelled in identifying the varying emotional con-
notations of words, particularly in its upper layers,
which are typically associated with semantic knowl-
edge encoding. Figure 4 showcases t-SNE projec-
tions of contextualized representations from the
most effective layer of each model, using the word
‘damn’ in various sentences sourced from the GoE-

motions dataset. These visualizations highlight
the distinctive distribution of RoBERTa’s represen-
tations, further emphasizing its ability to capture
emotion evoked by ‘damn’ in each example.
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