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Abstract

In recent years, pre-trained language models
have demonstrated exceptional performance
across various natural language processing
(NLP) tasks. One fundamental component of
these models is the self-attention mechanism,
which has played a vital role in capturing mean-
ingful relationships between tokens. However,
a question still remains as to whether injecting
lexical features into the self-attention mecha-
nism can further enhance the understanding
and performance of language models. This
paper presents a novel approach for injecting
semantic-polarity knowledge, referred to as
Sentiment Lexical Attention, directly into the
self-attention mechanism of Transformer-based
models. The primary goal is to improve per-
formance on sentiment classification task. Our
approach involves consistently injecting Senti-
ment Lexical Attention derived from the lexi-
con corpus into the attention scores throughout
the training process. We have conducted empir-
ical analysis on our approach using the NSMC,
a benchmark for Korean sentiment classifica-
tion, where it demonstrated substantial perfor-
mance enhancements and secured state-of-the-
art achievements. Furthermore, our approach
demonstrates robustness and effectiveness in
out-of-domain tasks, indicating its potential for
broad applicability. Additionally, we analyze
the impact of Sentiment Lexical Attention on
the view of the CLS token’s attention distri-
bution. Our method offers a fresh perspective
on synergizing lexical features and attention
scores, thereby encouraging further investiga-
tions in the realm of knowledge injection utiliz-
ing the lexical features.

1 Introduction

In recent years, pre-trained language models such
as BERT (Devlin et al., 2018), XLNet (Yang et al.,
2019b), BART (Lewis et al., 2019), and GPT-3
(Brown et al., 2020) have demonstrated remarkable
performance across various downstream tasks in

Figure 1: The Sentiment-Fused Attention, induced by
forming a linear combination of the Sentiment Lexical
Attention and the Original Attention Scores.

NLP. These language models (LMs) are charac-
terized by a vast number of trainable parameters,
which many researchers believe encode valuable
knowledge during the processing of contextualized
token embeddings (Wang et al., 2020; Incitti et al.,
2023). Among these parameters, self-attention
mechanisms play a crucial role and are widely con-
sidered as the foundation of nearly all language
models. Many studies have led to performance im-
provements by attempting to inject knowledge into
self-attention, based on the understanding that it
learns based on relationships between tokens (Hu
et al., 2023; Kaddari and Bouchentouf, 2023; Xie
et al., 2023; Zhao et al., 2024). However, an impor-
tant question remains: Can we leverage the senti-
ment lexical features to enhance the self-attention
mechanism and gain a deeper understanding of the
relationships between semantically meaningful to-
kens?

Many studies have investigated the methods of
knowledge fusion on LMs to enhance performance
in natural language understanding tasks (Sun et al.,
2019; Liu et al., 2020; Wang et al., 2023). Knowl-
edge injection techniques can be applied to any part
of the LMs (Colon-Hernandez et al., 2021; Wei
et al., 2021). Among the many methods, we intro-
duce a method to convert lexical sentiment features
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into a computable matrix (Sentiment Lexical Atten-
tion), which is then induced into a linear combina-
tion with the Self-Attention. We denote this fused
attention mechanism as Sentiment-Fused Attention
(Figure 1). For injecting Sentiment-Fused Atten-
tion well on attention score, we partially follow Xia
et al. (2021)’s way, which proposes a method of
guiding the attention output by injecting similarity
knowledge into the attention score.

In Section 3, we suggest our novel approach of
injection, pointing out Xia et al. (2021)’s injection
methods might have the potential to distort the re-
lationships of tokens. Furthermore, the process
of extracting Sentiment Lexical Features from the
Polarity Score of the Lexicon Corpus and deriv-
ing them into a fusible matrix is elaborately de-
scribed in Section 3. We believe our method of
injection is meticulously formulated to augment
the weights between tokens with similar sentiment
features. In Section 4, we substantiate the effec-
tiveness of our injection method through experi-
ments, simultaneously empirically demonstrating
that it yields stable performance improvements,
unlike Xia et al. (2021)’s approach. To the best
of our knowledge, our results represent the state-
of-the-art on the Naver Sentiment Movie Corpus
(NSMC)1, which is widely regarded as the leading
benchmark for sentiment analysis in the Korean
language. Additionally, experimental observations
reveal the effectiveness of sentiment lexical fea-
tures in out-of-domain tasks. In Section 6, we in-
vestigate the impact of Sentiment-Fused Attention
on attention by statistically examining the attention
dynamics of the CLS token (serving as the classi-
fier) and demonstrate through analysis that it exerts
significant influence.

The main contribution of our work are as fol-
lows:

• We propose the way of inducing Sentiment
Lexical Attention from the semantic-polarity
score, which means that any corpus contain-
ing the polarity information could follow our
work for the enhancement on downstream
tasks.

• We establish a mathematical formula that com-
bines two different attention matrix. The theo-
retical underpinnings and empirical evidence
supporting this approach are demonstrated
through experiments.

1https://github.com/e9t/nsmc

• We achieve a state-of-the-art performance on
NSMC benchmark.

2 Related Work

Previous research has extensively investigated the
injection of knowledge into self-attention based
language models to augment its language represen-
tation prowess (Wang et al., 2023). In this chapter,
we introduce prior research on knowledge graph-
based approaches, which are most commonly uti-
lized for Knowledge Injection, and discuss how
knowledge integration has been approached from
the perspective of Lexical Semantics. Finally, we
justify the validity of our research by introducing
prior studies related to self-attention distributions.

Infusing Knowledge Graph into the Self-
Attention Mechanism Zhang et al. (2019) pio-
neered the development of the ERNIE model, an in-
novative approach that employs knowledge integra-
tion to enhance language representation. Liu et al.
(2020) propose K-BERT with knowledge graphs,
in which triples are injected into the sentences as
domain knowledge. Peters et al. (2019) present
KnowBERT, a model that integrates knowledge
bases (KBs) into the pre-trained BERT model. Xu
et al. (2020) utilize external entity descriptions to
provide contextual information for knowledge un-
derstanding task. Yu et al. (2022) propose JAKET,
the framework to model both the knowledge graph
and language model. Ostendorff et al. (2019) com-
bine text representations with metadata and knowl-
edge graph embeddings to enhance BERT perfor-
mance for document classification tasks.

Lexical Semantics Approach Xia et al. (2021)
induce Word Similarity Matrix based on the sim-
ilarity of lexical pair from the semantics role in
WordNet. They inject Word Similarity Matrix di-
rectly into BERT’s attention. Zhang et al. (2020)
propose SemBERT, which integrates explicit con-
textual semantics from pre-trained semantic role
labeling. Wu et al. (2021) also introduce SIFT,
which incorporate explicit semantic structures into
the training paradigm. Yin et al. (2020) propose
SentiBERT, which incorporates contextualized rep-
resentation with binary constituency parse tree to
capture semantic composition.

Distribution of Self-Attention Several stud-
ies explore the characteristics of self-attention
distribution and their implications for enhanc-
ing transformer-based Pre-trained Language Mod-
els (PLMs). Gong et al. (2019) investigate the
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self-attention distribution within BERT models,
demonstrating that the distribution tends to be fo-
cused around the token’s position and the start-of-
sentence token. They also find striking similari-
ties in the attention distributions across the lower
and upper layers. Kovaleva et al. (2019) propose
that selectively disabling attention in certain heads
can actually enhance the performance of fine-tuned
BERT models. This discovery suggests the po-
tential redundancy and over-complexity in the cur-
rent attention mechanism. Additionally, Shi et al.
(2021) present empirical evidence that the diagonal
elements of the self-attention matrix, representing
the attention of each token to itself, can be removed
without compromising model performance. This
finding further emphasizes the importance of inter-
token attention over self-attention in PLMs.

3 Direct Injection of Sentiment Lexical
Attention into Self-Attention

In this investigation, we enhance the existing
Self-Attention mechanism by embedding Senti-
ment Lexical Attention within its attention matrix,
thereby integrating sentiment-related connections
among tokens. Sentiment Lexical Attention is con-
ceptualized through the quantification of semantic-
polarity similarity among token pairs, established
via the dot product computation of their context po-
larity vectors. This process engenders a semantic-
polarity similarity matrix that meticulously delin-
eates the sentiment linkages inherent in tokens
within a specific input sequence, ensuring a nu-
anced comprehension of these interrelations. No-
tably, a pronounced amplification of polarity sim-
ilarities is observed among tokens sharing analo-
gous sentiment properties, with the similarity val-
ues delineated within a spectrum ranging from 0 to
1.

By leveraging this semantic-polarity similar-
ity as Sentiment Lexical Attention, we could di-
rectly inject this information into attention scores.
This methodology enables us to potentially refine
the attention mechanism by injecting sentiment-
associated values between tokens. Consequently,
this process facilitates the generation of a more
informed representation of the sentiment relation-
ships within sentences.

3.1 Knowledge-Guided Attention Approach
Proposed by Xia et al. (2021)

Xia et al. (2021) proposed a methodology for

directly incorporating knowledge into the self-
attention mechanism by utilizing a Word Similarity
Matrix. Their main objective is to enhance the fo-
cus of BERT on word pairs that demonstrate seman-
tic similarity. To calculate the Attention Weight,
they utilize the Similarity Matrix, which allows
the model to assign higher weights to tokens with
high similarity. The conventional definition of Self
Attention can be described as follows:

Self Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V,

where Q represents the query matrix, K represents
the key matrix, V represents the value matrix, and
dk represents the dimensionality of the key matrix.
Xia (2021)’s Knowledge-Guided Attention calcu-
lates the Hadamard product of the QKT using the
similarity matrix S:

score = QKT ⊙ S

SelfAttention(Q,K, V ) = softmax
(
score√

dk

)
V.

However, the Hadamard product of S and QKT

in the self-attention mechanism can potentially lead
to issues, particularly when negative values are
present in the attention score output. The nature
of the Hadamard product can cause the loss of
significance of certain elements if negative atten-
tion scores exist. This can dampen the importance
of positive similarity values and result in an un-
intentional representation of token relationships.
To address this, non-linear transformations or the
addition of bias terms to the attention scores is nec-
essary to ensure more reliable and stable attention
distributions.

3.2 Sentiment-Fused Attention
We propose a novel concept called Sentiment-
Fused Attention, which presents an advanced for-
mulation for incorporating sentiment knowledge
into the self-attention mechanism. Building upon
the work of Xia et al. (2021), we modify the injec-
tion of knowledge to mitigate the risks associated
with the Hadamard product. Instead of using the
Hadamard product, we employ a summation oper-
ation to combine the Sentiment Lexical Attention
with the attention scores. This alteration effectively
integrates the knowledge without distorting token
relationships. By using summation, we retain the
positive characteristics of the original model while
addressing the issues related to negative attention
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Figure 2: Pictorial Illustration of Sentiment Lexical Attention Induction from Input Variables Using Sentiment
Information Sourced from the Lexicon Dataset

Figure 3: Visualizing the Linear Combination of Sen-
timent Lexical Attention and Original Attention Score
Matrix

scores. This approach ensures a more accurate and
stable representation of token relationships, result-
ing in more reliable attention distributions.

3.2.1 Leveraging Semantic-Polarity Similarity
Score as Sentiment Lexical Attention

To leverage semantic-polarity similarity, we intro-
duce the notion of Total Sentiment, denoted as
λ(x) ∈ R3

(0,1), for each token x in an input sen-
tence. The context polarity λ(x) is defined as a
combination of aspect polarity vectors θAP , aspect-
agnostic polarity vectors θP , and intensity values
θI of words or phrases containing x. We compute
Total Sentiment by Laplace smoothing the aggre-
gate of aspect polarity vectors θAP and taking the
product of aspect-agnostic polarity vectors θP and
intensity values θI . We denote VL,x(⊂ VL) as a set
of words or phrases containing token x, then Total
Sentiment of the token is represented as follows,

λ(x) = LS(
∑

v∈SL

(θP (v)+θI(v)θAP (v))IVL,x
(v))

These modifications allow us to incorporate Sen-

timent Lexical Attention effectively, leading to im-
proved attention mechanisms that provide a more
accurate and stable representation of token relation-
ships.

If there is no word or phrase containing a token
x in SL, we set λ(x) to a neutral sentiment vector,
(13 ,

1
3 ,

1
3). This can be expressed as follows:



LS(

∑
v∈VL,x

λ(v)) if VL,x ̸= ∅,

(13 ,
1
3 ,

1
3) if otherwise.

Additionally, we define the semantic-polarity
similarity σij (represented as σ(xi, xj)) as the prod-
uct of the context polarities λ(xi) and λ(xj) for
tokens xi and xj , respectively (Figure 2).

σij = σ(xi, xj) = λ(xi) · λ(xj)
3.2.2 Injection of Sentiment Lexical Attention

into Attention Scores for
Sentiment-Fused Attention

The formulation of Sentiment-Fused Attention in-
volves a linear combination of Sentiment Lexical
Attention, denoted as σij , and the initial atten-
tion score, represented by QKT

√
dk

. This combina-
tion takes place during the forward propagation of
QKT
√
dk

, prior to its non-linear activation through the
softmax function (Figure 3). The formula for the
attention distribution is as follows:

softmax

(
QKT

√
dk

+ σij

)
· V.

To stabilize the range of σij , we include a scaling
factor,

√
dk, in the denominator. This architectural

design ensures that the distribution of the original
attention score outputs is preserved while mitigat-
ing the impact of Sentiment Lexical Attention.

softmax

(
QKT

√
dk

+
σij√
dk

)
· V
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Throughout the training process, σij consistently
promotes similar tokens to have higher values. To
ensure this consistency, we set σij as a constant,
thereby providing the model with a unidirectional
stream of information. By doing so, σij contin-
ues to provide consistent information about the
relationships among similar tokens to the model.
During the training procedure, σij consistently in-
duces high values for similar tokens, maintaining a
reliable signal throughout the training process.

3.3 CARBD-ko dataset

CARBD-ko (A Korean Contextually Annotated
Review Benchmark) dataset (Jang et al., 2024)
is a comprehensive dataset (SL = {Xi, θi}) that
includes reviews (Xi) paired with corresponding
sets of sentiment factors (θi) for words or phrases
(vj) in the reviews. These sets consist of aspect-
agnostic polarity attribute vectors (θP (vj)), aspect
polarity attribute vectors (θAP (vj)), and associated
intensity information of polarity values (θI(vj)) for
each word or phrase (vj) within the reviews. Both
the aspect-agnostic and aspect polarity vectors are
represented as three-dimensional one-hot vectors,
which correspond to the polarity values of -1, 0,
or 1. For example, a polarity value of 1 is repre-
sented by the vector (1, 0, 0). The set of all words
or phrases having sentiment factors is denoted as
VL. Leveraging the CARBD-ko dataset, our ap-
proach focuses on the extraction of context polarity
vectors.

4 Experiments

4.1 Sentiment Classification Task

Our study focuses on conducting experiments in
the domain of Sentiment Analysis, which pro-
vides a natural application for leveraging pre-
existing knowledge in the field of natural lan-
guage understanding. Sentiment classification
tasks typically involve binary classification, distin-
guishing between positive and negative sentiments.
Transformer-based models have shown high per-
formance on such tasks. In our case, we evalu-
ate the language model’s performance on Senti-
ment Classification using the NSMC (Naver Sen-
timent Movie Corpus) benchmark dataset, which
is widely used in Korean sentiment analysis work.
The dataset consists of 200K reviews, with 150K
reviews for the training set and 50K reviews for
the test set. To assess the broader implications
of our approach, we examine the effectiveness of

Sentiment-Fused Attention in tasks that extend be-
yond sentiment classification.

4.2 Out-of-Domain Tasks

In addition to sentiment classification, we conduct
experiments on diverse out-of-domain downstream
tasks, including KorNLI (Ham et al., 2020), PAWS-
ko (Yang et al., 2019a), Hate Speech Detection
(Moon et al., 2020), and Question-Pair benchmark2.
These tasks are commonly used to evaluate the
overall performance of Korean language models.
By evaluating our approach on these tasks, we aim
to determine the generalizability and applicability
of the Sentiment Lexical Attention and understand
its impact on performance across various out-of-
domain tasks.

4.3 Scaling Factor and Attention Head
Configuration

We design a suite of experiments consisting of four
distinct scenarios on NSMC benchmark. These
scenarios involve different configurations of the
scaling factor

√
dk and the injection scope of the

Sentiment Lexical Attention. The objective is to
quantify the influence of the Sentiment Lexical
Attention on attention mechanisms.

The first setting involves the direct injection of
values from the Sentiment Lexical Attention into
all attention heads across all layers without nor-
malization by

√
dk. The second setting modifies

the approach by normalizing the Sentiment Lexical
Attention values σij with

√
dk to constrain their

range. The third and fourth scenarios exclusively
inject the Sentiment Lexical Attention σij into the
final attention head (Attlast) across all layers. The
fourth scenario further reduces the range of the ex-
ternal knowledge values through the application of√
dk.
Our working hypothesis suggests that if the use

of
√
dk leads to superior results compared to alter-

native approaches, there may be a positive correla-
tion between the efficacy of σij and overall model
performance. On the other hand, if enhanced per-
formance is observed when solely activating the
last attention head, it could indicate that a more
targeted application of σij yields outputs that are
more representative of the context, contributing to
more effective convergence of the model’s objec-
tive loss.

2https://github.com/songys/Question_
pair
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NSMC ko-electra kr-electra kc-electra xlm-roberta-base kr-bert

Baseline 90.63 91.17 91.97 89.49 90.1
Xia et al. (2021) 90.06(-0.57) 91.11(-0.06) 92.10(+0.13) 89.17(-0.32) 89.35(-0.75)∑

Att +
√
dk 91.18(+0.55) 91.73(+0.56) 92.6(+0.63) 90.42(+0.93) 90.19(+0.09)∑

Att 91.32(+0.69) 91.82(+0.65) 92.56(+0.59) 90.47(+0.98) 90.17(+0.07)
Attlast +

√
dk 91.17(+0.54) 91.78(+0.61) 92.56(+0.59) 90.55(+1.06) 90.3(+0.2)

Attlast 91.24(+0.61) 91.82(+0.65) 92.65(+0.68) 90.33(+0.84) 90.23(+0.13)

Table 1: Accuracy of Performance on NSMC dataset

Model µ σ σ2

∑
Att +

√
dk 0.596 0.109 0.33∑

Att 0.552 0.091 0.301
Attlast +

√
dk 0.582 0.071 0.267

Attlast 0.600 0.094 0.306

Table 2: Analysis of Performance Variations via Statis-
tical Configuration

We will employ statistical analysis to identify
the scenarios that yield acceptable performance.
Subsequently, we intend to assess the performance
of these optimized scenarios in other out-of-domain
contexts.

4.4 Models and Hyper-Parameters

To conduct our experiments, we utilize four
prominent Korean Transformer Encoder-based pre-
trained language models (ko-electra (Park, 2020),
kr-electra (Lee and Shin, 2022), kc-electra (Lee,
2021), kr-bert (Lee et al., 2020)), as well as a multi-
lingual model (Conneau et al., 2019). The baseline
performance of each model on the NSMC task is
shown in Table 1, which serves as our initial refer-
ence point for comparison. To further improve the
performance of our models, we engage in hyper-
parameter tuning. This involves adjusting the learn-
ing rate within a range of 1e-5 to 5e-5 and extend-
ing the number of training epochs from 3 to 10. By
employing this rigorous setup, we aim to ensure
that our experimental results accurately capture the
potential benefits of our proposed approach.

4.5 λ(x) Initialization

In our experimental setup, we extract the context
polarity λ(v) from the CARBD-ko dataset to ini-
tialize the context polarity λ(x) for individual to-
kens xi, aligned with the appropriate tokenizer
for each language model. However, in real-world
datasets, it is possible for previously unseen tokens
xi to appear. For such cases, we initialize all λ(xi)
to 1

3 , as described in Section 3.3.1.
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Figure 4: Appearance Rates of Initialized Tokens across
5 Downstream Tasks

When a significant number of tokens are initial-
ized with 1

3 , it becomes challenging to establish
a clear correlation between improved model per-
formance and the use of σij . Figure 4 provides
insights into the appearance rates of tokens that
have been initialized by σij across five different
tasks. As depicted in Figure 4, there are minimal
variations observed between tasks and models, with
most of the rates centered around 50%. Notably,
the results on the NSMC dataset exhibit consistent
stability. This finding underscores the significance
of Sentiment Lexical Attention on attention, em-
phasizing that its impact cannot be disregarded.

5 Result

5.1 NSMC

The evidence in Table 1 emphatically underscores
the advantage of injecting Sentiment Lexical At-
tention during fine-tuning, leading to a consistent
improvement in performance across all four scenar-
ios enumerated in Section 4.3, as compared to the
baseline models and Xia et al. (2021)’s way. An
intriguing observation lies in the fact that Xia et al.
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Downstream
Tasks

ko-electra kr-electra kc-electra xlm-roberta-base kr-bert

KorNLI baseline 82.24 82.51 82.12 79.92 77.13
+injection +83.25(+1.01) 82.48(-0.03) 82.07(-0.05) 80.07(+0.15) 79.3(+2.17)

PAWS baseline 84.45 82.05 76.5 82.95 80.35
+injection 85.35(+0.9) 81.3(-0.75) 76.9(+0.4) 83.1(+0.15) 80.65( +0.3)

Hate-Speech baseline 67.45 73.2 73.67 64.06 66.45
+injection 67.73(+0.28) 73.04(-0.16) 73.46(-0.21) 66.02(+1.96) 66.67(+0.22)

Question-Pair baseline 95.25 95.51 95.12 93.8 94.591
+injection 95.51(+0.26) 95.51(0) 96.04(+0.92) 94.06(+0.26) 94.591(0)

Table 3: Accuracy of Performance Evaluation of Models on Four Out-of-Domain Tasks. We inject σij exclusively
into the last attention head of each layer with scaling factor

√
dk

(2021)’s injection method and our approach yield
entirely distinct outcomes. As previously noted
in Section 3.2, we pointed out the potential for
distortion in the mathematical derivations of Xia
et al. (2021)’s method, and this has manifested in
empirical results (Table 1).

Among the models, the xlm-roberta-base model
illustrates the most substantial performance en-
hancement, whereas the kr-bert model exhibits a
modest performance gain. The remaining three
models demonstrate performance amplifications
exceeding 0.5% across all investigated scenarios.
When considering the magnitude of the NSMC
benchmark’s test dataset (50K), these improve-
ments are of considerable significance, indicating
a potential escalation in the number of correct pre-
dictions varying from an average of 250 to almost
500 sentences.

Notably, the kc-electra model, upon the injection
of Sentiment Lexical Attention into ATTlast with-
out the utilization of

√
dk, achieves an accuracy

metric of 92.65%. To the best of our knowledge,
this represents a state-of-the-art (SoTA) result for
the NSMC benchmark. These findings highlight
the effectiveness of directly injecting sentiment
knowledge into the attention mechanism during
the training phase, leading to improved model per-
formance.

5.2 Other Downstream Task

Table 2 indicates that, on average, the Attlast sce-
nario results in the most significant performance
improvements. The configuration of Attlast+

√
dk

demonstrates the smallest standard deviation and
variance, indicating its stability across a diverse
range of models. Therefore, we adopt the
Attlast+

√
dk configuration to inject knowledge

into out-of-domain tasks.
In Table 3, out of the 20 cases examined, 13 show

an increase in performance, 5 show a decrease,
and 2 maintain their performance. Interestingly,
these performance increases in different domains
occur despite the absence of a direct correlation be-
tween the domain and the σij values established in
our experiments. This suggests that the similarity
between tokens can facilitate a model’s decision-
making processes. However, the lack of consis-
tent performance gains across all models, as seen
in the NSMC benchmark, highlights the need for
task-specific knowledge development. One notable
aspect of our results is the variability and model-
dependency observed in the injection of the senti-
ment knowledge. Performance decreases are ex-
clusively observed in the kr-electra and kc-electra
models, while other models either maintain or im-
prove their performance. It is worth mentioning
that both the kr-electra and kc-electra models con-
sistently exhibit stable performance enhancements
on the NSMC task.

Based on these findings, we conclude that di-
rectly injecting sentiment knowledge into the train-
ing process may lead to varying performance out-
comes depending upon the specific model. If the
knowledge, however, is logically structured and has
a direct causal link with the task, it has the potential
to yield stable performance improvements.

6 Dissecting the Impact of σij on
Attention Dynamics: An In-depth
Analysis Centered on the CLS Token

In this section, we investigate the differences in
standard deviation between the baseline model and
the Attlast +

√
dk model concerning the CLS to-

ken at each layer. Our approach involves the direct
injection of Sentiment Lexical Attention into the
attention scores. We hypothesize that this injection
of knowledge will lead to alterations in the relation-
ship centered on the CLS token, which serves as
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Figure 5: Layer-wise Distributional Differences in Five Baseline Models and the Attlast+
√
dk Models, Centered on

CLS Tokens. The dashed line represents the baseline models, while the solid line corresponds to the Attlast +
√
dk

model.

the representative vector for the subsequent classi-
fier. To test this hypothesis, we conduct an analysis
of the standard deviation of attention scores sur-
rounding the CLS token at each layer, aiming to
understand the impact of σij .

For statistical analysis, we examine the standard
deviation of attention scores between the CLS to-
ken and other tokens in both the baseline model
and the Attlast +

√
dk model. We conduct this

analysis layer-by-layer while processing the 50K
test dataset from the NSMC dataset. By compar-
ing the standard deviation of attention scores, we
aim to understand how the attention patterns of the
CLS token change when Sentiment Lexical Atten-
tion is incorporated into the model. This analysis
provides insights into the impact of knowledge in-
jection on the attention mechanism and its effect on
the relationship between the CLS token and other
tokens.

Figure 5 demonstrates that the deviation between
the baseline models and the Attlast +

√
dk model,

specifically regarding the CLS tokens, primarily
manifests in the alterations in the distribution of
attention scores between the CLS token and other
tokens. The presence of such disparities between
models that differ solely based on the injection of
σij in their training processes strongly suggests
a significant influence of σij on the dispersion of
attention scores. Interestingly, the distribution of at-
tention scores from other tokens towards the CLS
token remains mostly unchanged.

These findings can be attributed to the fact that
the CLS token does not derive its context polarity
λ(x) from λ(v), resulting in minimal differences
in the attention weights towards the CLS token

compared to the baseline models. On the other
hand, tokens other than the CLS token, influenced
by λ(v), consistently induce modifications in the
attention score distribution throughout the training
process, which likely affects the final attention dis-
tribution of the model. Through this analysis, we
propose that these shifts in attention distribution
serve as the primary catalyst for the performance
alterations depicted in Tables 1 and 2.

7 Discussion

In this paper, we have introduced a novel ap-
proach for enhancing the self-attention mechanism
of Transformer-based models through the injec-
tion of Sentiment Lexical Attention, derived from
semantic-polarity scores. Our results demonstrate
significant improvements in sentiment classifica-
tion, particularly in the Korean language context.
However, the applicability and challenges of this
method across different tasks and languages, as
well as its technical novelty, warrant further discus-
sion.

7.1 Applicability to Other Languages

Our approach’s effectiveness in the Korean lan-
guage context opens up intriguing prospects for its
applicability to other languages. Firstly, the fun-
damental principle of leveraging semantic-polarity
scores for Sentiment Lexical Attention is language-
agnostic and can be adapted to any language with
available sentiment lexicons. However, the adapta-
tion process requires careful consideration of lin-
guistic nuances and sentiment expression in tar-
get languages. It involves meticulous curation of
sentiment lexicons that accurately reflect the senti-
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ment polarity in diverse linguistic contexts. Future
work will explore the cross-linguistic applicability
of our method, focusing on curating high-quality
sentiment lexicons and adjusting the model to ac-
count for language-specific sentiment expression
patterns.

7.2 Addressing Tasks Beyond Sentiment
Analysis

The current study focuses on sentiment classifica-
tion, leveraging semantic-polarity scores. While
this is a direct application of Sentiment Lexical
Attention, extending our approach to tasks with-
out a clear relevance to sentiment poses challenges.
To enhance the versatility and scalability of our
approach, we are exploring strategies to general-
ize the concept of lexical feature-based attention.
Future research could investigate domain-specific
knowledge injection, where domain-related lexical
features are derived and injected similarly to sen-
timent features. Additionally, integrating multiple
types of lexical knowledge simultaneously could
lead to a more robust and versatile model applica-
ble across a wider range of tasks.

7.3 Technical Novelty and Contribution

While our approach builds upon existing work by
Xia et al. (2021), it introduces significant innova-
tions that extend beyond their framework. Specifi-
cally, the method of deriving Sentiment Lexical At-
tention from semantic-polarity scores and integrat-
ing it into the self-attention mechanism represents
a novel contribution to the field. Our approach also
presents a comprehensive empirical analysis across
multiple architectures and tasks, establishing the
effectiveness and robustness of our method. The
novelty of our work lies in the specific application
of lexical sentiment knowledge in enhancing the
attention mechanism.

8 Conclusion

In our study, we introduced a new approach to in-
ject sentiment knowledge into the self-attention
mechanism of Transformer-based models. This ap-
proach yielded significant improvements, particu-
larly in Korean sentiment classification benchmark,
where we achieved a new state-of-the-art perfor-
mance. Moreover, the promising results obtained
across various out-of-domain tasks highlighted the
general applicability of our method. Although the
observed performance variations were task- and

model-dependent, they underscored the substantial
potential of incorporating human-derived knowl-
edge into Transformer-based language models. Fur-
thermore, in our examination of the CLS token, we
could ascertain the direct impact of knowledge in-
jection on the layer-wise attention distribution. The
approach presented in this study opens the door
for further exploration of effective techniques for
injecting human knowledge into language models.

Limitations

Despite the promising results obtained in our study,
it is important to acknowledge several limitations
that should be addressed. Firstly, the application
of the Sentiment Lexical Attention in our method
assumes a direct relevance of the semantic-polarity
scores to the specific task being addressed. This as-
sumption limits the versatility and scalability of our
approach, as the selection and application of rele-
vant knowledge may require careful consideration
and may not be readily available for all tasks. Sec-
ondly, the variation in performance observed across
different models indicates that the efficacy of our
approach may not be uniform across all types of
Transformer-based models. It is necessary to con-
duct preliminary tests to assess the compatibility
and effectiveness of our method with a given model
before deploying it in real-world scenarios.

Thirdly, the success of our approach relies heav-
ily on the quality and accuracy of the Sentiment
Lexical Attention being employed. Tasks that re-
quire high-precision or complex human knowledge
can be challenging, as even small inaccuracies in
the knowledge may lead to significant deviations in
performance. Careful attention should be given to
the selection and curation of the Sentiment Lexical
Attention to ensure its reliability and relevance to
the task at hand.

Lastly, while we have made progress in under-
standing how to integrate pre-annotated sentiment
values into Transformer models, there is still much
to explore and understand about the precise influ-
ence of this knowledge on the model’s training and
decision-making processes. Further research and
analysis are needed to gain a comprehensive under-
standing of these dynamics, particularly in complex
real-world applications. Future work could focus
on addressing these limitations by developing more
adaptable knowledge injection mechanisms or con-
ducting a more comprehensive analysis of how sen-
timent information influences model behavior.
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By addressing these limitations, we can fur-
ther enhance the effectiveness and applicability
of integrating Sentiment Lexical Attention into
Transformer-based models, opening up new av-
enues for advancements in NLP and related fields.

Ethics Statement

This research study follows ethical guidelines for
conducting experiments following ACL rules. It
utilizes publicly available datasets and sentiment
lexicons, ensuring user privacy and avoiding any
ethical concerns. The focus is on enhancing lan-
guage models through the injection of the semantic-
polarity scores, without manipulation or decep-
tion. The research does not involve human sub-
jects or human-generated data. The study acknowl-
edges potential biases and takes steps to mitigate
them. Transparency and ethical considerations are
paramount in the research process.
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