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Abstract

It is well acknowledged that incorporating ex-
plicit knowledge graphs (KGs) can benefit ques-
tion answering. Existing approaches typically
follow a grounding-reasoning pipeline in which
entity nodes are first grounded for the query
(question and candidate answers), and then a
reasoning module reasons over the matched
multi-hop subgraph for answer prediction. Al-
though the pipeline largely alleviates the is-
sue of extracting essential information from
giant KGs, efficiency is still an open challenge
when scaling up hops in grounding the sub-
graphs. In this paper, we target at finding se-
mantically related entity nodes in the subgraph
to improve the efficiency of graph reasoning
with KG. We propose a grounding-pruning-
reasoning pipeline to prune noisy nodes, re-
markably reducing the computation cost and
memory usage while also obtaining decent sub-
graph representation. In detail, the pruning
module first scores concept nodes based on the
dependency distance between matched spans
and then prunes the nodes according to score
ranks. To facilitate the evaluation of pruned
subgraphs, we also propose a graph attention
network (GAT) based module to reason with
the subgraph data. Experimental results on
CommonsenseQA and OpenBookQA demon-
strate the effectiveness of our method.

1 Introduction

Question answering requires related background
knowledge. A line of research resorts to combining
pre-trained language models (LMs) and knowledge
graphs (KG) to utilize both the implicit knowledge
in LMs and explicit knowledge in structured KGs
(Schlichtkrull et al., 2018; Lin et al., 2019; Feng
et al., 2020; Yasunaga et al., 2021).

The researches towards utilizing knowledge
from KGs typically follow a grounding-and-
reasoning pipeline, namely schema graph ground-
ing and schema graph reasoning (Lin et al., 2019).

The fox walked from the city into the forest, what was it 
looking for?
A.  pretty flowers    B. hen house        C. natural habitat        
D.  storybook          E. dense forest 
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Figure 1: An example of a query and grounded knowl-
edge graph for two candidate answers. The external KG
nodes are more diverse around the answer concepts than
question concepts.

In the grounding module, multi-hop neighbors of
matched concept nodes in the query from KG form
a subgraph. Recent works focus on improving rea-
soning ability by enhancing the representation of
multi-hop nodes in grounded subgraphs with graph
neural networks (GNNs) (Feng et al., 2020; Ya-
sunaga et al., 2021) or interaction between repre-
sentations of query context and subgraphs (Zhang
et al., 2022b; Sun et al., 2022). While pre-trained
LMs are powerful at extracting plain text features
for the query context, the quality of subgraph fea-
ture extracted from GNNs is still prone to noisy
nodes in grounded subgraphs. Specifically, there
are two challenges in fusing KGs with GNNs. First,
the computation and memory cost would increase
with the hops increase. Second, the noisy nodes in-
duced with increasing hops deteriorate the quality
of the subgraph feature, and further decrease the
performance of the reasoning module.
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In this paper, we tackle the problems brought by
noisy nodes with a grounding-pruning-reasoning
pipeline framework, PipeNet. Previous researches
show that the improvement of graph-based reason-
ing systems is minor, though with the number of
grounded hops increasing, many more new nodes
are induced (Santoro et al., 2017; Wang et al.,
2019a; Feng et al., 2020). As shown in Figure
1, many of them are the same for different candi-
date answers, especially near the question concepts.
Diverse nodes are mainly brought in due to the dif-
ference in answer concepts. This diversity is crit-
ical to the subgraph representation learning with
GNNs.

Our pruning module prunes noisy nodes before
the reasoning module, reducing the computation
cost and memory usage while keeping the diversity
of subgraphs in the meantime. Specifically, we pro-
pose a dependency structure based pruning method
to prune the nodes with dependency parsing (DP)
tools. The DP-pruning strategy is inspired by rela-
tion extraction in automatic ontology building, in
which the dependency tree is applied to find pos-
sible relations between concepts according to the
distance on the tree (Fellbaum and Miller, 1998;
Sombatsrisomboon et al., 2003; Ciaramita et al.,
2005; Kang et al., 2015). Similarly, we assume
the dependency tree provides reasonable linguistic
links between grounded concepts in a natural lan-
guage context. We further convert the dependency
distances between grounded concepts into concept
node scores and propagate the node scores onto
the grounded multi-hop subgraph to prune external
noisy nodes.

To facilitate the evaluation of pruned subgraph,
we also propose a simplified version of GAT
(Veličković et al., 2018) for graph representation
learning. We redesign the message passing mecha-
nism in (Yasunaga et al., 2021). Our contributions
are as follows:

• We propose a grounding-pruning-reasoning
pipeline PipeNet for question answering with
KG, in which a DP-pruning module improves
efficiency by pruning the noisy nodes.

• We propose a simplified GAT module for fus-
ing KG with GNNs. The module simplifies
the message flow while achieving comparable
or higher performance in the meantime;

Experiments on two standard benchmarks, Com-
monsenseQA (Talmor et al., 2019) and Open-

bookQA (Mihaylov et al., 2018), demonstrate the
effectiveness of our proposed method. The code is
open-sourced1.

2 Related Work

2.1 QA with LM+KG

With the development of benchmarking question
answering, more and more hard question answering
datasets are developed, which require background
knowledge to solve (Mihaylov et al., 2018; Talmor
et al., 2019, 2021). Pretrained LMs and KGs are
commonly used knowledge sources, research typi-
cally adopts an LM+KG framework as to acquire
relevent knowledge for commonsense QA (Feng
et al., 2020; Yasunaga et al., 2021; Zhang et al.,
2022b; Su et al., 2022; Park et al., 2023; Huang
et al., 2023; Ye et al., 2023; Wang et al., 2023;
Taunk et al., 2023; Zhao et al., 2023; Dong et al.,
2023; Mazumder and Liu; Kang et al., 2024; Zhao
et al., 2024)

Schlichtkrull et al. (2018) first adopts RGCN
to model relational data in KG, which specifically
models the node representation as the aggregation
from neighboring nodes. GconAttn (Wang et al.,
2019a) adds inter-attention between the concepts in
premise and hypothesis to find the best-aligned con-
cepts between the respective graphs. KagNet (Lin
et al., 2019) further proposes an LSTM-based path
encoder to model knowledge paths in the schema
graph on top of GCNs. RN (Santoro et al., 2017)
uses MLPs to encode the one-hop paths and pool-
ing over the path embedding to get the schema
graph representation. MHGRN (Feng et al., 2020)
stresses modeling multi-hop paths and utilized an
attention mechanism to weigh the importance of
multi-hop paths. QAGNN (Yasunaga et al., 2021)
adopts GAT for type and relation-aware messages
to update the node representations. GreaseLM
(Zhang et al., 2022b) further improves the knowl-
edge fusion quality between context and subgraph
representation by adding an information fusion
module.

Unlike these works, we focus on effectively find-
ing informative subgraph nodes from the raw out-
put of the grounding module. We adopt a pruning
module to find such nodes, which benefits the sub-
graph representation learning from GNNs.

1https://github.com/HKUST-KnowComp/
PipeNet
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Figure 2: The overall framework of grounding-pruning-reasoning pipeline PipeNet. Concept nodes are first grounded
in the KG to form a subgraph Gsub related to question and answer context s. A pruning module prunes noisy nodes
according to node score before the reasoning module. The final answer score is calculated based on the context
representation zLM and subgraph representation zGNN .

2.2 Efficient Computation for GNN

Though the application of GNN has become popu-
lar in many graph-based scenarios, it is still chal-
lenging to apply GNN to large-scale graphs with
massive numbers of nodes and edges (Hamilton
et al., 2017; Yu et al., 2022; Zhang et al., 2022a) due
to expensive computation cost and high memory
usage. Categories of research towards tackling this
problem are mainly sampling-based (Chen et al.,
2018; Zeng et al., 2019; Chiang et al., 2019; Zeng
et al., 2021; Fey et al., 2021) and precomputing-
based (Wu et al., 2019; Rossi et al., 2020; Liu and
Ji, 2022).

Previous pruning method JointLK (Sun et al.,
2022) dynamically prunes noisy nodes during train-
ing, which still takes the raw output of the ground-
ing module as inputs and does not decrease memory
or computation cost. GSC (Wang et al., 2022) re-
duces parameters in the GNN layer by separately
viewing the reasoning process as counting, which
reduces model size while ignoring the semantic
interaction between context and subgraph. Unlike
them, we focus on extracting informative subgraph
nodes of much smaller size from the grounded sub-
graph in a precomputing stage.

3 Methodology

Our grounding-pruning-reasoning framework,
PipeNet, consists of three stages: subgraph
grounding, subgraph pruning, and reasoning. The
overall framework is shown in Figure 2.

3.1 Problem Formulation

Given a context query q and a set of candidate
answers {a1, a2, ..., ak}, the task is to choose the
most plausible answer from the set. Related back-
ground knowledge can be retrieved from a relevant
KG G = (V, E) given the query and answer set. V
represents the set of entity nodes and E represents
the set of relational edges in the KG.

Following the definition in Yasunaga et al.
(2021), specifically for a question q and a candidate
answer a, we define the grounded concept nodes
from G as Vq and Va respectively. The question
and each answer are further composed as a QA
context s. External concept nodes from G during
the multi-hop expansion are defined as Ve. The
grounded nodes and edges between them form the
grounded subgraph Gsub.

As we aim to explore the impacts of the external
nodes on the learning efficiency of GNNs with KG,
we define the one-hop and two-hop settings as:
One-hop. The grounded subgraph consists of en-
tity nodes from Vq and Va, and the linked edges
between the nodes.
Two-hop. The grounded subgraph consists of en-
tity nodes from Vq, Va and Ve, and the linked edges
between the nodes. Ve is the set of one-hop neigh-
bors from Vq and Va.

3.2 DP-pruning

Our DP-pruning strategy on grounded subgraphs
is based on dependency links between matched
spans in the QA context s. Dependency analysis
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Figure 3: Dependency tree of a QA context example.
Words in bold are matched spans of concepts in Con-
ceptNet.

helps find relations between terms using depen-
dency information present in parsing trees. Ex-
plicit syntax-aware knowledge has shown effective
usages in downstream tasks, such as machine trans-
lation (Bastings et al., 2017; Marcheggiani et al.,
2018), information extraction (Sahu et al., 2019),
and semantic role labeling (Zhang et al., 2020).

DP tree and span distance. We adopt the
widely used open-source tool stanza2 for depen-
dency analysis on the QA context. The dependency
parsing (DP) tree T is then converted into an undi-
rected graph G. On the graph, we can calculate the
shortest path lengths as the span distance between
span words. An example is shown in Figure 3. We
align the results of concept matching and depen-
dency parsing on the word level. If the matched
span covers more than one word, the distance is cal-
culated as the minimum distance of covered words
to other spans.

Span distance to node score. As we focus on
refining the matched subgraph Gsub, we calculate
the node score of matched concepts in q and a
based on the corresponding span distance. For
each concept cq in Vq, the node score is:

Dq[cq] = −
∑|Va|

i=1 Dist(cq, ca)

|Va|
, (1)

where Dist is the corresponding span distance of
matched concepts. For each concept ca in Va, the
node score is calculated in the same way.

Propogate node score. Our algorithm aims to

2https://stanfordnlp.github.io/stanza/corenlp_client.html

Algorithm 1 Grounding and Pruning

Require: q, a
Require: Hop n
Require: KG G
Require: Prune rate p
Vq,Va, s← q, a,G
T ← s
G← T
Dq,Da ← G
i← 1,Vt ← Vq

⋃Va,Dt ← Dq
⋃Da

while i ≤ n do
Ve ← Neighbor(Vt)
De ← Avg(Dt)
Vt ← Vt

⋃Ve
Dt ← Dt

⋃De

end while
threshold← Dt, p
for v ∈ Vt \ {Vq,Va} do

if Dt[v] ≤ threshold then
Delete v

end if
end for
return Vt

prune the external nodes Ve in the subgraph for
two-hop or above because noisy nodes are mainly
induced with the hops growing. The pseudo-code
for pruning the external nodes is listed in Algorithm
1. In initialization, grounded concept sets Vt =
Vq

⋃Va, and score set for grounded concept sets
Dt = Dq

⋃Da. External nodes having neighbors
in the grounded concept sets are added to expand
the grounded subgraph Gsub. The node score of
external nodes is assigned as the average of their
neighbor node scores during expansion. Until the
expansion hops end, the nodes except Vq and Va are
pruned according to their score ranks. The nodes
with smaller node scores are pruned.

Our algorithm propagates the dependency struc-
ture information from QA context s onto the re-
trieved static subgraph Gsub. We keep concept
nodes with higher scores because they generally
have closer distances to the concept nodes in Va,
which increases the diversity of pruned subgraph.
Finally, the (|Vt| − |Vq| − |Va|) ∗ p will be pruned
with pruning rate p.

3.3 Reasoning

We design a reasoning module fusing the QA con-
text feature and subgraph feature. The dimension
of subgraph feature generated from L-layer GNN
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Model Time Space

G is a dense graph

L-h KagNet O(|R|L|V|L+1L) O(|R|L|V|L+1L ·D)
L-h MHGRN O(|R|2|V|2L) O(|R||V|L ·D)
L-l QAGNN O(|V|2L) O(|R||V|L ·D)
L-l GreaseLM O(|V|2L) O(|R||V|L ·D)
L-l JointLK O(|V|2L) O(|R||V|L ·D)
L-l GSC O(|V|L) O(|R||V|L)
L-l PipeNet O(( |V|

k
)2L) O(|R| |V|

k
L ·D)

G is a sparse graph with maximum node degree ∆ ≪ |V|
L-h KagNet O(|R|L|V|L∆L) O(|R|L||V|L∆L ·D)
L-h MHGRN O(|R|2|V|L∆) O(|R||V|L ·D)
L-l QAGNN O(|V|L∆) O(|R||V|L ·D)
L-l GreaseLM O(|V|L∆) O(|R||V|L ·D)
L-l JointLK O(|V|L∆) O(|R||V|L ·D)
L-l GSC O(|V|L) O(|R||V|L)
L-l PipeNet O( |V|

k
L∆) O(|R| |V|

k
L ·D)

Table 1: L-h means L-hop and L-l means L-layer. G is
a graph with relation set R. k is the reduction rate in
the PipeNet pruning stage.

is D. Theoretically, the efficiency analysis in time
and space for the GNN is shown in Table 1. Note
the definition of reduction rate k in the table is
slightly different from the pruning rate p:

1

k
= 1− (|Vt| − |Vq| − |Va|)

|Vt|
∗ p. (2)

For the QA context feature, the input is QA con-
text s. A pre-trained language model first encodes
the context into the vector representation z as:

zLM = fenc(s), (3)

where z is the hidden state of [CLS] token in the
last hidden layer.

Following (Yasunaga et al., 2021), the QA
context is induced as an additional node to the
grounded subgraph Gsub and assigned to connect
the nodes in Vq and Va. The representation of this
additional context node in the subgraph is initial-
ized as zLM .

For the subgraph feature, the embeddings of en-
tity nodes in the subgraph are initialized as D-dim
vectors. Similar to (Yasunaga et al., 2021; Sun
et al., 2022; Zhang et al., 2022b), a standard GNN
structure is applied to learn entity node representa-
tions via iterative message passing between neigh-
bors on the subgraph. Specifically, in the (l + 1)-
layer, the hidden state of the node on the subgraph
is updated by:

h
(l+1)
t = fn(

∑

s∈Nt
⋃{t}

αstmst), (4)

where Nt represents the neighborhood of target
node t and mst ∈ RD denotes the message from
each neighbor node s to t. fn : RD → RD is a
2-layer multilayer perceptron (MLP) function.

Specifically, for the message on the edge, we
encode the connected node types and the edge type
into embedding forms. As shown in (Wang et al.,
2022), these two types of information in the sub-
graph are important.

rst = f([est, us, ut]), (5)

where us, ut are one-hot vectors of node type and
est is one-hot vector of edge type. f is a 2-layer
MLP converting the concatenated feature into a D
dimension edge representation. The message on
the relational edges propagated from source node s
to target node t is:

mst = fm(hl
s, rst), (6)

where fm : R2D → RD is a linear transformation.
We adopt an attention-based message passing

module based on GAT (Veličković et al., 2018).
Different from (Yasunaga et al., 2021), the attention
is calculated based on the node types and relation
type. First, the query and key vectors are computed
as:

qs = fq(h
l
s), (7)

kt = fk(h
l
t, rst), (8)

where fq : RD → RD and fk : R2D → RD are
linear transformations. Finally, the attention weight
αst:

αst =
exp(γst)∑

t∈Ns
exp(γst)

, γst =
qTs kt√

D
. (9)

At the final layer of the GNN network, we get
the representation of the additional context node
and pooled representation of KG nodes in the
subgraph as zGNN and g.

Answer Prediction. Given question q and a candi-
date answer a, the plausibility score p(a|q):

p(a|q) ∝ exp(MLP (zLM , zGNN , g)), (10)

where an MLP layer encodes the context feature
and graph feature into the final score. The answer
among candidate answers with the highest plausi-
bility score is the predicted answer.
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4 Experiments

Our experiments are conducted on two stan-
dard question answering benchmarks, Common-
senseQA (CSQA) and OpenBookQA (OBQA). We
also introduce details of baselines and implementa-
tions in this section.

4.1 Datasets
CommonsenseQA. CommonsenseQA (Talmor
et al., 2019) is a 5-way multiple choice QA
task that requires reasoning with commonsense
knowledge, containing 12,102 questions which
are created with entities from ConceptNet (Speer
et al., 2017). Following (Lin et al., 2019), we
conducts experiments on the in-house (IH) data
split (8,500/1,221/1,241 for IHtrain/IHdev/IHtest
respectively).

OpenBookQA. OpenBookQA (Mihaylov et al.,
2018) is a 4-way multiple choice QA task,
containing 5,957 questions (4,957/500/500 for
train/dev/test respectively). It is an elementary sci-
ence question together with an open book of sci-
ence facts. Answering OpenBookQA requires com-
monsense knowledge beyond the provided facts.

4.2 Baselines
We use baselines for two experiments: baselines
for the PipeNet framework with our designed rea-
soning module, and baselines for the DP-pruning.

4.2.1 Framework
We compare with other grounding-reasoning-based
frameworks: (1) Relation Network (RN) (Santoro
et al., 2017), (2) RGCN (Schlichtkrull et al., 2018),
(3) GconAttn (Wang et al., 2019b), (4) KagNet (Lin
et al., 2019), (5) MHGRN (Feng et al., 2020), (6)
QA-GNN (Yasunaga et al., 2021), (7) GreaseLM
(Zhang et al., 2022b).

4.2.2 Pruning
JointLK (Sun et al., 2022). JointLK automati-
cally selects relevant nodes from noisy KGs by
designing a dense bidirectional attention module
to attend to the question tokens and KG nodes.
A dynamic pruning module recursively prunes
irrelevant KG nodes based on the attention weights.

GSC (Wang et al., 2022). GSC designs a simple
graph neural model which regards the reasoning
over knowledge graph as a counting process. It
reduces the hidden dimension of GNN layers and

Methods IHdev-Acc.(%) IHtest-Acc.(%)

RoBERTa-Large 73.07 (±0.45) 68.69 (±0.56)

Framework
RGCN 72.69 (±0.19) 68.41 (±0.66)
GconAttn 72.61 (±0.39) 68.59 (±0.96)
KagNet 73.47 (±0.22) 69.01 (±0.76)
RN 74.57 (±0.91) 69.08 (±0.21)
MHGRN 74.45 (±0.10) 71.11 (±0.81)
QA-GNN 76.54 (±0.21) 73.41 (±0.92)
GreaseLM 78.5 (±0.5) 74.2 (±0.4)
PipeNet 78.95 (±0.55) 74.49 (±0.26)

Pruning
JointLK 77.88 (±0.25) 74.43 (±0.83)
GSC 79.11 (±0.22) 74.48 (±0.41)
PipeNet(DP) 78.13 (±0.13) 74.75 (±0.47)

Table 2: Results on the CSQA in-house split dataset.
The mean and standard deviation value of three runs on
the in-house Dev (IHdev) and Test (IHtest) datasets are
reported. Pruning rate p is 90% in PipeNet(DP).

results in a reasoning module with a much smaller
size.

For the experiments on the framework, we use
the grounded two-hop knowledge subgraph. For
the experiments on pruning, we conduct experi-
ments on PipeNet with a DP-pruning strategy over
two-hop subgraphs.

4.3 Implementation Details
For all the experiments on PipeNet, we set the
dimension (D = 200) and the number of layers
(L = 5) in the reasoning module. The parameters
of the reasoning module (LM+GNN) are optimized
by RAdam (Liu et al., 2019a) by cross-entropy loss.
The learning rate for the LM encoder is set as 1e-
5. For the decoder with GNN, the learning rate
is 1e-3. For both benchmarks, we use ConceptNet
(Speer et al., 2017) as the knowledge graph. For the
pruning experiments on PipeNet, the DP-pruning
strategy prunes the nodes by the ranks of node
scores. Specifically, the threshold value is deter-
mined by the score of top (1− p) percent ranked
node is Vt \ {Vq,Va}. In each experiment, we use
two RTX 3090 GPUs, and the average running time
is about 4 hours on CSQA and 24 hours on OBQA.

5 Results

In this section, we first present of main results of
PipeNet as well as PipeNet with DP pruning strat-
egy on standard benchmarks. Then we analyze the
time and memory efficiency improvement brought
by DP-pruning strategy. Finally, we conduct an
ablation study over pruning strategy.
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Methods RoBERTa-large AristoRoBERTa

w/o KG 64.80 (±2.37) 78.40 (±1.64)

Framework
+RGCN 62.45 (±1.57) 74.60 (±2.53)
+GconAtten 64.75 (±1.48) 71.80 (±1.21)
+RN 65.20 (±1.18) 75.35 (±1.39)
+MHGRN 66.85 (±1.19) 80.6
+QAGNN 67.80 (±2.75) 82.77 (±1.56)
+GreaseLM - 84.8
+PipeNet 69.33 (±1.60) 87.33 (±0.19)

Pruning
+JointLK 70.34 (±0.75) 84.92 (±1.07)
+GSC 70.33 (±0.81) 86.67 (±0.46)
+PipeNet(DP) 69.60 (±0.47) 87.80 (±0.43)

Table 3: Test accuracy comparison on OBQA. Methods
with AristoRoBERTa (Clark et al., 2020) use the textual
evidence as an additional input to the QA context. Prun-
ing rate p is 90% in PipeNet(DP).

5.1 Accuracy of PipeNet and DP-pruning

The results on CSQA and OBQA are shown in Ta-
ble 2 and 3 separately. From the results on both
benchmarks, we can find PipeNet is an effective
framework for combining the context feature learn-
ing and subgraph feature learning. Besides node
type and edge type features, QAGNN (Yasunaga
et al., 2021) also employs node embedding and
relevance-score as external features. GreaseLM
(Zhang et al., 2022b) stresses the modality interac-
tion between context feature and subgraph feature.
Unlike them, we adopt a simplified message flow
for subgraph feature and merge the two kinds of
features with an MLP layer. The final performance
is comparable with previous methods on CSQA and
better on OBQA. This is because that node embed-
ding and relevance score gradually loses benefits to
the reasoning module with training continuing as
analyzed in GSC (Wang et al., 2022). Decreasing
redundant subgraph features and modality interac-
tion at the same time makes the reasoning module
focus more on the subgraph learning, which further
benefits the reasoning performance.

DP-pruning strategy can further improve the sub-
graph representation learning based on the PipeNet
framework. Since the best answer is chosen from
multiple candidate choices, DP-pruning strategy
can help maintain the uniqueness of grounded sub-
graphs by pruning nodes which are far from the
concept nodes in candidate answers. Comparing
results of PipeNet and PipeNet with DP-pruning,
DP-pruning can help PipeNet achieve better perfor-
mances on both benchmarks under most circum-
stances, with a high pruning rate as 90%.

Methods Test

RoBERTa (Liu et al., 2019b) 72.1
AristoRoBERTa (Clark et al., 2020) 77.8
AristoRoBERTa + MHGRN (Feng et al., 2020) 80.6
ALBERT (Lan et al., 2020) + KB 81.0

AristoRoBERTa + QA-GNN (Yasunaga et al., 2021) 82.8
T5 (Raffel et al., 2020) 83.2
AristoRoBERTa + GreaseLM (Zhang et al., 2022b) 84.8
AristoRoBERTa + JointLK (Sun et al., 2022) 85.6
UnifiedQA (Khashabi et al., 2020) 87.2
AristoRoBERTa + GSC (Wang et al., 2022) 87.4
GenMC (Huang et al., 2022) 89.8

AristoRoBERTa + PipeNet(DP) 88.2

Table 4: Test accuracy comparison on OBQA leader-
board. The parameter size is about 3B for T5, and
11B for UnifiedQA and GenMC. The parameter size of
PipeNet is about 358M.

DP-pruning strategy also has strengths over other
pruning methods like JointLK and GSC. Compared
to JointLK, PipeNet significantly reduces memory
and computation costs during training as shown
in Table 1. Moreover, on the OBQA benchmark
where additional factual texts are induced to the
QA context (with AristoRoBERTa (Clark et al.,
2020)3), our PipeNet outperforms GSC by 1.13%
on the accuracy score. AristoRoBERTa applies sev-
eral methods to encode science-related knowledge
into RoBERTa. PipeNet captures the semantic fea-
ture interaction between context and subgraph with
an MLP layer while GSC separately models the
subgraph representation as a counting process.

Furthermore, we also compare the performance
of PipeNet with other methods on the OBQA test
leaderboard, and the result is listed in Table 4.
Compared to the pre-trained LM T5 (Raffel et al.,
2020), PipeNet achieves 5% higher accuracy with
much fewer parameters. It indicates that the knowl-
edge in external KG is complementary to the im-
plicit knowledge in LMs. Compared to UnifiedQA
(Khashabi et al., 2020) which injects the com-
monsense knowledge from multiple QA sources
into pre-trained LMs, PipeNet achieves 1% perfor-
mance gain. It shows that knowledge graph is still
an important and useful knowledge source for QA.
The recent method GenMC outperforms PipeNet
by inducing clues for generation based on T5-large.
It may be worth exploring how to employ the clues
to guide the subgraph selection for better represen-
tation.

3https://huggingface.co/LIAMF-USP/aristo-roberta
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Figure 4: Distribution of grounded nodes and edges
with pruning rate on external nodes from one-hop to
two-hop on CSQA training dataset.

p(%) k M (G) ↑(%) t(s) ↑(%) IHtest (%)

0 1.0 5.02 - 1.16 - 74.38

10 1.1 4.95 1 1.02 13 74.21
20 1.2 4.92 2 1.01 13 74.29
30 1.3 4.75 5 0.96 17 74.29
40 1.4 4.67 7 0.87 25 74.21
50 1.6 4.57 9 0.83 28 74.13
60 2.0 4.49 11 0.78 33 74.70
70 2.4 4.22 16 0.75 35 74.85
80 3.2 3.83 24 0.72 38 74.70
90 4.8 3.51 30 0.67 42 74.86

Table 5: Results on CSQA in-house split with PipeNet.
GPU memory usage and time efficiency improvement
are shown for pruning rate p on two-hop subgraph for
GNN during training. The training batch size is 64.

5.2 Efficiency of PipeNet and DP-pruning

In this section, we conduct empirical studies to
analyze the time and memory cost of our method.
Besides, a corresponding theoretical analysis of
the efficiency is presented in Section 3.3. Specifi-
cally, we implemented GAT using the tool Pytorch
Geometric (Fey and Lenssen, 2019). Figure 4 illus-
trates that the average number of edges is linearly
decreased with the number of nodes pruned.

Our method has demonstrated better time and
memory efficiency. The result of running cost and
performance on CSQA is presented in Table 5. The
reduction rate k is calculated based on the number
of nodes and edges in Figure 4. M is the GPU mem-
ory usage (max allocation memory) of GAT module
and t is average batch time of the module during
training. With pruning rate p growing, k is growing
non-linearly, as well as memory usage M and time
t efficiency. The memory and time efficiency ex-
hibit different growing trends. Memory efficiency
becomes evident when p is greater than 60 and time
efficiency becomes evident when p is greater than
40%. Performance improvement becomes evident

h-
hop

Prune
method

Prune
rate

IHtest-Acc(%)

One - 0 73.27 (±0.93)
Two - 0 74.49 (±0.26)

Two Random 90% 73.51 (±0.61)
Two DP 90% 74.75 (±0.47)

Table 6: Results on CSQA in-house split with PipeNet.

when p is greater than 60%. Specifically, when
p=90%, the memory and time efficiency achieve
30% and 42% improvement separately.

We also present the performance of CSQA test
split with the pruning rate changes. It turns out that
the pruning strategy leads to small variance in the
performance change. Generally, larger p leads to
better performances. The performance improve-
ment keeps steady when p is greater than 60%.
p=90% achieves the best efficiency by only increas-
ing the number of nodes from 12 to 23 and the
number of edges from 190 to 377 for each QA con-
text, and also better than original two-hop subgraph.
Overall, the performance demonstrates that the DP-
pruning strategy can find informative nodes ben-
efiting the subgraph representation learning with
a great reduction in the memory and computation
cost.

5.3 Ablation Study
We conduct experiments on pruning strategy over
CSQA as the ablation study. For a fair comparison,
we design a random pruning strategy with the same
pruning rate of 90% to DP-pruning. The pruning is
also applied to the additional KG nodes Ve except
for one-hop KG nodes.

The result is shown in Table 6. PipeNet with
one-hop is the result of the grounded subgraph
constructed by the matched concepts in question
and answers. As shown in Figure 4, pruning rate
90% brings in almost same quantity of edges and
nodes to one-hop subgraphs, while much less than
original two-hop subgraph.

Random sampling can also bring performance
gain because the induced nodes are relevant to the
QA context. However, the gain is not as much
as the DP-pruning method. This shows that find-
ing semantically related nodes can benefit more in
subgraph representation learning.

6 Conclusion

In this work, we propose PipeNet, a grounding-
pruning-reasoning pipeline for question answering
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with knowledge graph. The pruning strategy uti-
lizes the dependency structure of query context
to prune noisy entity nodes in the grounded sub-
graph, benefiting the subgraph representation learn-
ing with GNNs. We further design a GAT-based
module for the subgraph representation learning
with simplified message flow. Experiment results
on two standard benchmarks demonstrate the effec-
tiveness of semantic dependency of concept items
benefits the subgraph representation learning.
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Method CSQA(IHdev) OBQA(test)

w/o KG 73.07 78.40

GPT3.5-turbo 72.29 83.20
PipeNet(DP) 78.13 87.80

Table 7: Accuracy comparison between GPT3.5-turbo
and PipeNet(DP) on CSQA(IHdev) and OBQA(test)

A Appendix

A.1 Comparison with LLM
Large language models such as GPT3 (Brown et al.,
2020) and ChatGPT have recently received inter-
est and achieved remarkable success over various
question-answering tasks. We further adopt a 3-
shot in-context learning (Dong et al., 2022) to
prompt GPT3.5-turbo and present the results in
Table 7. For OBQA, we add additional textual evi-
dence in the prompt template for a fair comparison.
It shows that GPT3.5-turbo achieves decent per-
formances on both of the benchmarks, with com-
parable or better performances to the supervised
fintuning method without KG (w/o KG). Nerverthe-
less, PipeNet(DP) outperforms GPT3.5-turbo by a
large margin though though with a much smaller
language model Roberta-large. This demonstrates
that knowledge graph is still a meaningful knowl-
edge source for question-answering tasks and our
pruning method benefits such QA tasks with knowl-
edge graph.
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