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Abstract
Cheap-to-Build Very Large-Language Mod-
els (CtB-LLMs) with affordable training are
emerging as the next big revolution in natural
language processing and understanding. These
CtB-LLMs are democratizing access to train-
able Very Large-Language Models (VLLMs)
and, thus, may represent the building blocks of
many NLP systems solving downstream tasks.
Hence, a little or a large bias in CtB-LLMs may
cause significant harm. In this paper, we per-
formed a large investigation of the bias of three
families of CtB-LLMs, and we showed that
debiasing techniques are effective and usable.
Indeed, according to current tests, the LLaMA
and the OPT families have an important bias
in gender, race, religion, and profession. In
contrast to the analysis for other LLMs, we dis-
covered that bias depends not on the number
of parameters but on the perplexity. Finally,
the debiasing of OPT using LoRA reduces bias
up to 4.12 points in the normalized stereotype
score.

1 Introduction

Very Large Language Models (VLLMs) like Chat-
GPT have become a standard building block in
Artificial Intelligence applications since they can
be adapted to various downstream tasks (OpenAI,
2023; Touvron et al., 2023b). Transformer-based
language models, which have disrupted classical
NLP pipeline, have grown in size and capabili-
ties in recent years. The pre-training step from
large text corpora, with different language mod-
eling strategies, appeared to be the key to getting
remarkable results on various tasks both before
(Ranaldi et al., 2023c) and after fine-tuning on
smaller datasets (Ranaldi et al., 2023a). VLLMs
that represent the new version of transformer-based
models are based on corpora and are not so far from
their forerunners. While the performance is unmis-
takable, the resources needed are prohibitive for
non-company research (Ranaldi and Freitas, 2024).

*These authors contributed equally to this work

Recently, Touvron et al. (2023a) proposed a
Large Language Model Meta AI (LLaMA). This
solution aims to democratize training and do-
main adaptation of VLLM by opening the door
to Cheap-to-Build Very Large-Language models
(CtB-LLMs). LLaMA was made available in dif-
ferent sizes to provide smaller, high-performance
models that allow all researchers to use these mod-
els. The LLaMA’s success seems to be the trade-off
between lowering parameters and enriching pre-
training corpora compared to other VLLMs (see
Table 2).

However, the considerable increase in pre-
training corpora makes it challenging to assess
the characteristics and check the reliability of
these data. Therefore, learned representations may
inherit the biases and stereotypical associations
present in the large text corpora in the language
and, thus, in the pre-training corpora taken from
the web (Liang et al., 2021; Onorati et al., 2023).
Bias is the presence of systematic prejudices in
models (Mastromattei et al., 2022), that tendency
to generate responses that reflect the biases present
in the data it was trained on, potentially leading
to skewed or unfair outputs that perpetuate stereo-
types and inequalities. Although the spread of the
phenomenon is widely recognized, the causes that
emphasize this phenomenon remain largely unex-
plored. It has been observed that as the size of a
model increases, its linguistic modeling capabili-
ties and biases increase (Nadeem et al., 2021). On
the other hand, distilled versions of target models
tend to show more bias (Silva et al., 2021; Tal et al.,
2022). These mixed results demonstrate that bias
does not depend on the number of parameters but,
more likely, on the data on which they were trained.

In this paper, we performed a deep investigation
of the bias of three families of CtB-LLMs, and
we showed that debiasing techniques are effective
and usable. By investigating the analogies between
model size growth concerning pre-training param-
eters or corpora and bias memorization. Thus, we
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Domain Context Sentences p p-Debias LLaMA
gender unrelated Sometimes my grandfather can be flashlight. 0.04 0.00281
gender stereotype Sometimes my grandfather can be sexist. 0.013 0.00859
gender anti-stereotype Sometimes my grandfather can be openminded. 0.012 0.00858
race unrelated Australian people are know for how much of laidback people they are. 0.015 0.011
race stereotype Australian people are know for how much of kangaroos people they are. 0.013 0.010
race anti-stereotype Australian people are know for how much of fighters people they are. 0.014 0.012

Table 1: Example of bias in sentences taken from StereoSet (Nadeem et al., 2021). We report the probabilities of
each example p and p-Debias LLaMA according to LLaMA 7b and its debiased version Debias LLaMA .

hypothesize that the CtB-LLMs performance de-
pends on the quality of the training data and that,
between different models, there are no significant
differences in terms of bias. Finally, we also study
the effect of fine-tuning with anti-stereotypical sen-
tences by proposing a lightweight approach to build
fairer models. By testing the 7-billion-parameter
LLaMA model and Open Pre-trained Transformer
Language Models (OPT) (Zhang et al., 2022), we
show that although the model shows less biased be-
havior after fine-tuning, the method also achieves
a reasonable overall performance of the language
model. Therefore, our approach produces fairer lan-
guage models using limited resources and achieves
sustainable performance on downstream bench-
mark tasks.

The major contributions of this paper are:

• a first comprehensive analysis of the bias for
three families of affordable, Cheap-to-Build
Large-Language Models (CtB-LLMs);

• establishing the anti-correlation between per-
plexity and bias in CtB-LLMs;

• demonstrating that simple de-biasing tech-
niques can be positively used to reduce bias
in these three classes of CtB-LLMs while not
reducing performance on downstream tasks;

2 Background and related work

Bias problems in Machine Learning are the
Achilles heel of many applications, including rec-
ommendation systems (Schnabel et al., 2016), fa-
cial recognition (Wang and Deng, 2019), and
speech recognition (Koenecke et al., 2020). One
of the main sources of bias comes from training
datasets, as noted by Shankar et al. (2017) Ima-
geNet and the Open Images dataset disproportion-
ately represented people from North America and
Europe. To mitigate biased behaviors in Machine
Learning models, researchers have proposed meth-
ods targeting different tasks and domains, such as

classification (Roh et al., 2021), adversarial learn-
ing (Xu et al., 2018) and regression (Agarwal et al.,
2019).

On the other side of the coin, traditional static
word embedding models are no exception to this
trend. Bolukbasi et al. (2016) and Caliskan et al.
(2017) showed that word2vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014) contain stereo-
typed associations found in classic human psychol-
ogy studies (Greenwald et al., 1998). These works
measured word-level bias using cosine similarity
between embedding vectors, as in Bolukbasi et al.
(2016) and Word Embedding Association Tests
(WEAT) (Caliskan et al., 2017).

Later, May et al. (2019) extended WEAT to the
Sentence Encoder Association Test (SEAT) and re-
vealed harmful stereotypes in Pre-trained Language
Models and their contextual word embeddings such
as GPT-2 (Radford et al.), ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2019). Sheng et al.
(2019) defined and measured a concept of regard
and sentiment for GPT-2 output. Finally, Nadeem
et al. (2021) proposed StereoSet to measure the
bias on gender, race, profession, and religion do-
mains. These benchmarks help quantify the extent
of bias present in language models.

Due to the extent of this phenomenon, different
analyses have been performed to try to understand
its causes and mitigate its presence. Conflicting
results were observed in the attempt to understand
how the same training strategies and data affect
different models. A positive correlation has been
observed between model size and bias presence in
(Nadeem et al., 2021), studying GPT-2, BERT, and
RoBERTa. The same was also noticed on the larger
versions of DeBERTa, RoBERTa, and T5 while in-
vestigating their performances on Winogender (Tal
et al., 2022). However, Silva et al. (2021) showed
that bias is often much stronger on the distilled
version of BERT and RoBERTa, DistilBERT, and
DistilRoBERTa. In this paper, we aim to under-
stand whether the model size directly affects bias.
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To mitigate the bias in models, Bolukbasi et al.
(2016) proposed a mechanism to de-emphasize the
gender direction projected by words that are sup-
posed to be neutral, maintaining the same distance
between non-gender words and gender word pairs.
Later, Zhao et al. (2018) reserved some dimen-
sions of embedding vectors for specific informa-
tion content, such as gender information, where
gender-neutral words were made orthogonal to the
direction of gender. Peng et al. (2020), using GPT-
2, proposed a weighty reward mechanism to reduce
the frequency of non-normative output. Multiple
debiasing modules have been used to mitigate bi-
ases in the BERT model, training those modules
to make the model representation for classifica-
tion tasks invariant to protected attributes (such as
gender) (Kumar et al., 2023); in some cases, those
debiasing effects can also be controlled at inference
time (Masoudian et al., 2024). Zhao et al. (2019)
used data augmentation to replace gendered words
with their opposites in the original training corpus
and have a new model on the union of both corpora.
Finally, Joniak and Aizawa (2022) used movement
pruning, weight freezing, and a debiasing technique
based on a projection of gender-related words along
(Kaneko and Bollegala, 2021).

In this paper, we propose a comprehensive anal-
ysis of the stereotypes present in three Large Lan-
guage Models: Large Language Model Meta AI
(LLaMA) (Touvron et al., 2023a), Open Pre-trained
Transformer Language Models (OPT) (Zhang et al.,
2022) and BLOOM (BigScience-Workshop et al.,
2023). We chose these open models because of the
trade-off between the number of parameters, which
is accessible to our resources, and the size of the
pre-training corpora (see Table 2). Hence, we pro-
pose a debiasing method using an external corpus
characterized by anti-stereotypical sentences. We
stem from the observation that not all model pa-
rameters need to be updated to perform debiasing
(Gira et al., 2022; Joniak and Aizawa, 2022) and
that perturbation mitigated biases in smaller models
(Zhao et al., 2019; Qian et al., 2022). Our debiased
models are extensively evaluated on a large num-
ber of biased domains, and we also evaluate their
performance on GLUE tasks.

3 Method and Data

This section briefly describes the datasets and met-
rics used (Section 3.1) and our debiasing technique
and fine-tuning data (Section 3.2).

3.1 Evaluation Datasets

An ideal language model excels at language mod-
eling while not exhibiting stereotypical biases. To
determine the success of both goals, we evaluate a
given model’s stereotypical bias and language mod-
eling abilities. For evaluating the bias of the lan-
guage models, we used StereoSet (Nadeem et al.,
2021) described in Section 3.1.1. To assess that
the language models are not significantly losing
performance after debiasing, we used the GLUE
benchmark (Wang et al., 2018) described in Section
3.1.2

3.1.1 StereoSet

StereoSet (Nadeem et al., 2021) is a benchmark
used to assess the presence of bias in four domains:
gender, profession, race, and religion. It is com-
posed of triples of correlated English sentences.
The triples of sentences are organized around a
target term. Each triple then consists of a stereotyp-
ical, an anti-stereotypical, or an unrelated, neutral
context for the target term. For example, grand-
father is associated respectively with sexist, open-
minded, and flashlight whereas Australian people
are associated respectively with kangaroos, fight-
ers, and laidback. Then, simple and similar sen-
tences are built around target terms and context
words to reduce the impact of the sentence struc-
ture in the computed probability (see Table 1).

Ideally, tests in StereoSet aim to observe whether
or not the analyzed language model leans toward
stereotypical contexts. Language models are tested
by observing which contexts they prefer for each
target among stereotyped and anti-stereotyped con-
texts: they are biased if they systematically choose
the stereotyped context.

StereoSet defines two classes of tests: intra-
sentence (8,498 triples) and inter-sentence (16,995
triples). In our experiments (Section 4.1), we
tested LLaMA, OPT, and BLOOM models with
the intra-sentence test excluding the inter-sentence
test since, in order to perform the Next Sentence
Prediction, the models should be fine-tuned, possi-
bly introducing biases also in this phase. Indeed,
in the inter-sentence test, language models are first
fed a context sentence and asked to perform the
Next Sentence Prediction over the stereotyped, anti-
stereotyped, and neutral attribute sentence.

The StereoSet intra-sentence test used in our
study is based on four measures: the Stereotype
Score (ss), the Normalized Stereotype Score (nss),
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Model parameters pre-training
size

BERT (Devlin et al., 2019) 110b, 324b ∼ 16GB
GPT-2 (Radford et al.) 117m, 345m ∼ 80GB
GPT-3 (Brown et al., 2020) 125b, 234b ∼ 570GB
OPT (Zhang et al., 2022) 0.12b, 17b, 66b ∼ 0.85TB
BLOOM (BigScience-Workshop et al., 2023) 560m, 1b7, 3b, 7b ∼ 0.80TB
LLaMA (Touvron et al., 2023a) 7b, 13b, 33b, 65b ∼ 1TB

Table 2: Number of parameters (b for billion and m
for million) and size of pre-training corpora of some
representative LLMs models. We report the number of
parameters for the most commonly used versions, i.e.,
medium and large, except for LLaMA.

the Language Modelling Score (lms), and the Ide-
alized CAT Score (icat).

Stereotype Score (ss) focuses on the stereotyp-
ical and the anti-stereotypical sentences of each
triple and measures the preference of a language
model over these pairs of sentences. Comparing
the probability of the stereotypical and the anti-
stereotypical sentences, it is defined as the percent-
age of times the stereotypical sentence is assigned
a higher probability than the anti-stereotypical sen-
tence. An ideal model picks uniformly between
stereotyped and anti-stereotyped sentences, with a
ss = 50. Because understanding the Stereotype
Score can be challenging, we introduced the Nor-
malized Stereotype Score (nss), which is defined
as follows:

nss =
min(ss, 100− ss)

0.50

Hence, nss is a measure that stays between 0 and
100 where 100 is the non-biased or non-anti-biased
value. For comparison purposes, we report both ss
and nss.

The Language Modeling Score (lms) assesses
the ability of a model to rank a meaningful associa-
tion over a meaningless one when presented with
a target term, a contextual framework, and two po-
tential associations. The meaningful association
can either correspond to the stereotype or the anti-
stereotype option. In this case, a perfect model has
lms = 100.

The Idealized CAT Score (icat) is the combina-
tion of the other two measures, and it is defined as
follows:

icat = lms ∗ nss/100
An ideal model, unbiased and with high language
modeling abilities, has a icat = 100.

3.1.2 GLUE
The GLUE benchmark (Wang et al., 2018) is
largely used to assess the capabilities of NLP mod-

els mainly based on large language models. Us-
ing NLP tasks in combination with debiasing tech-
niques is extremely important as it has been previ-
ously noted that debiasing methods tend to degrade
model performance in downstream tasks (Joniak
and Aizawa, 2022). We use GLUE to demonstrate
that the debiasing technique we introduce does not
negatively affect downstream performance.

Hence, we choose a subset of GLUE tasks and
show how the proposed model, Debias LLaMA
(see Table 4), performs well but at the same time
has higher fairness. The selected tasks cover three
classes of problems: Natural Language Inference,
Similarity&Paraphrase, and Single Sentence. For
Natural Language Inference, we used Multigenre
NLI (MNLI) (Williams et al., 2018), Question NLI
(QNLI) (Wang et al., 2018), Recognizing Textual
Entailment (RTE) (Bentivogli et al., 2009), and
Winograd NLI (WNLI) (Levesque et al., 2012).
For Similarity&Paraphrase, we used the Microsoft
Research Paraphrase Corpus (MRPC) (Dolan and
Brockett, 2005), the Semantic Textual Similarity
Benchmark (STS-B) (Cer et al., 2017), and Quora
Question Pairs (QQP) (Sharma et al., 2019); senti-
ment classification - Stanford Sentiment Treebank
(SST-2) (Socher et al., 2013). Finally, for Single
Sentence, we used the corpus of linguistic accept-
ability (CoLA) (Warstadt et al., 2019).

3.2 Debiasing via efficient Domain Adaption
and Perturbation

The cheap-to-build families of LLMs – LLaMA,
OPT, and BLOOM – allow debiasing. The debias-
ing procedure is performed via domain adaptation
and causal language modeling, such as finetuning,
to speed up all the processes.

We also froze a large number of parameters and
trained only the attention matrices of the exam-
ined models. While a similar approach of freezing
weights has been performed (Gira et al., 2022),
to the best of our knowledge, it is the first time
that the debiasing is performed via domain adap-
tion on these LLMs with the perturbed dataset de-
scribed in the following. Moreover, while Gira et al.
(2022) focuses on debiasing GPT-2 with different
techniques, we adopt a single, flexible approach to
many different models. Since it has been observed
that the attention matrices are, in fact, low-rank
matrices on a large number of models, we train
each model using LoRA (Hu et al., 2021) on the
attention matrices at each layer.
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Bias is prevalent in written texts, as models
often mirror the content they are exposed to.
Thus, we have contemplated introducing counter-
stereotypical sentences to mitigate this bias. We
opted for LoRA primarily due to its adapter-based
approach, as it appeared to be the most viable so-
lution given the large models at hand, addressing
the memory constraints efficiently. The resulting
training procedure is easier since we do not memo-
rize the gradient for each weight, scalable because
it requires fewer training data than training from
scratch, and the resulting adapter weights are more
accessible to share instead of a large model ob-
tained by standard fine-tuning. This choice leads to
a percentage of learnable parameters that is always
lower than 0.5%. Despite its simplicity, this tech-
nique allows us to obtain models that are less biased
(Section 4.2) and to maintain them with compara-
ble performances on language understanding tasks
(Section 4.3).

To perform the debiasing procedure, we relied
on the perturbed sentences of the PANDA dataset
(Qian et al., 2022). PANDA consists of 98k pairs
of sentences. Each one is composed of an origi-
nal sentence and a human-annotated one, with the
latter being a rewriting of the former by chang-
ing the demographic references in the text. For
example, “women like shopping” is perturbated
in “men like shopping”. The resulting sentence
is, hence, anti-stereotypical. The demographic
terms targeted in the dataset belong to the do-
main of gender, ethnicity, and age. Qian et al.
(2022) used this human-annotated dataset to re-
train RoBERTa entirely. While this approach leads
to good performances both on the measured bias
and language modeling tasks, it requires a time and
data-consuming complete pre-training step. For
these reasons, we performed instead the domain
adaptation with LoRA (Hu et al., 2021) applied
only to attention matrices of LLaMA, OPT, and
BLOOM. The proposed debiasing technique will
be public and available to all.

4 Experiments

In this section, we first analyze the presence of bias
in pre-trained LLMs. We use StereoSet to assess
the presence of bias (Section 4.1). Furthermore,
in Section 4.2, we focus on the analysis of the
models after we apply the debiasing technique pre-
viously described, and we assess it causes no harm
to the language modeling performance abilities of

the model considered, testing on downstream tasks
(Section 4.3). Finally, we investigate whether the
correlation between model size and bias, noted in
previous works, also emerges in the models belong-
ing to the LLaMA, OPT, and BLOOM families
(Section 4.4).

4.1 Bias in Pre-trained models

In the following analysis, we investigate the pres-
ence of bias in LLMs. In particular, we focused
on LLaMA, OPT, and BLOOM pre-trained mod-
els. Our choices are justified by the characteristics
of the models and the hardware resources avail-
able (see Table 2). In this section, we also aim to
understand whether the model size has a positive
correlation with the bias. If the answer is negative,
we can find another measure of the model’s com-
plexity that can give us a better explanation. We
observe that when the bias is higher, the perplexity
of the models tends to be higher.

Using the StereoSet benchmark, bias seems to
affect all models across both LLaMA, OPT, and
BLOOM families, despite the number of parame-
ters of each model (as can be observed in Table 3,
columns plain). All models achieve a lms higher
than 0.9, meaning they exclude the meaningless op-
tion a large percentage of the time. Yet, they are far
from the ideal score of 0.5 for ss, which can be ob-
served in all different domains, and, consequently,
the nss is far from 100.

Considering all the domains together, BLOOM
seems fairer (less biased) than LLaMA and OPT.
BLOOM consistently outperforms both models for
any configuration of the number of parameters. The
model’s size does not affect the fairness of LLaMA
even if it remains unsatisfactory since nss is around
68. BLOOM and OPT instead decrease their fair-
ness when augmenting the model size. In fact, their
best nss are obtained with 560m and 350m pa-
rameters for BLOOM and OPT, respectively. The
fairness of BLOOM 560m is definitely interesting
as its nss is around 83, and its icat is 73.72 com-
pared with 63.17 and 68.28 of LLaMA and OPT,
respectively.

It is not a surprise that BLOOM is fairer than the
other two models. Indeed, this family of models
has been trained over a polished and controlled cor-
pus (BigScience-Workshop et al., 2023). More than
100 workshop participants have contributed to the
dataset curation phase. These participants selected
sources trying to minimize the effect of specific
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plain debiased
domain model lms ss nss icat perplexity lms ss nss icat perplexity

all

LLaMA 7b 91.98 65.66 68.68 63.17 152.56 91.16 65.1 69.80 63.63 244.41
LLaMA 13b 91.96 65.82 68.36 62.87 154.33 - - - - -
LLaMA 30b 91.93 65.97 68.06 62.57 152.25 - - - - -
OPT 350m 91.72 62.78 74.44 68.28 333.77 91.76 61.9 76.2 69.92 352.39
OPT 1.3b 93.29 66.03 67.94 63.38 278.89 92.96 64.58 70.84 65.85 315.62
OPT 2.7b 93.26 66.75 66.5 62.03 266.25 93.04 64.26 71.48 66.5 305.36
OPT 6.7b 93.61 66.83 66.34 62.11 264.1 93.41 64.5 71. 66.33 308.72
BLOOM 560m 89.26 58.71 82.58 73.72 684.54 90.01 58.92 82.16 73.95 574.38
BLOOM 1b1 90.23 60.04 79.92 72.11 666.84 90.42 60.38 79.24 71.65 542.42
BLOOM 1b7 91.09 60.28 79.44 72.35 622.18 91.1 61.08 77.84 70.9 476.41
BLOOM 3b 91.65 61.4 77.2 70.75 397.91 91.63 62.01 75.98 69.61 338.8
BLOOM 7b1 92.03 62.79 74.42 68.48 412.72 91.89 62.23 75.54 69.42 428.9

gender

LLaMA 7b 92.64 69.3 61.4 56.89 141.34 91.91 68.62 62.76 57.69 241.6
LLaMA 13b 92.74 69.59 60.82 56.4 140.65 - - - - -
LLaMA 30b 92.69 68.71 62.58 58 141.49 - - - - -
OPT 350m 92.74 66.86 66.28 61.46 286.38 91.96 65.98 68.04 62.56 266.74
OPT 1.3b 94.05 70.18 59.64 56.1 237.49 92.98 69.3 61.4 57.09 239.34
OPT 2.7b 93.52 69.59 60.82 56.88 237.8 92.54 68.13 63.74 58.99 238.88
OPT 6.7b 94.05 69.1 61.8 58.12 231.7 93.03 68.62 6276 58.39 245.33
BLOOM 560m 90.69 63.74 72.52 65.76 546.51 91.47 63.65 72.70 66.51 422.03
BLOOM 1b1 91.86 65.79 68.42 62.85 562.54 91.76 65.5 69.00 63.32 396.52
BLOOM 1b7 91.86 65.4 69.2 63.57 549.21 92.01 65.98 68.04 62.59 381.49
BLOOM 3b 92.11 67.74 64.52 59.43 336.33 92.25 68.32 63.36 58.44 275.92
BLOOM 7b1 92.25 67.64 64.72 59.7 380.93 93.37 65.89 68.22 63.7 382.03

profession

LLaMA 7b 91.3 63.31 73.38 67 132.84 90.38 62.62 74.76 67.56 218.53
LLaMA 13b 91.57 63.5 73.00 66.85 136.13 - - - - -
LLaMA 30b 91.33 64.06 71.88 65.65 131.49 - - - - -
OPT 350m 91.26 62.81 74.38 67.87 330.95 91.38 63.12 73.76 67.4 352.08
OPT 1.3b 92.36 64.74 70.52 65.13 300.4 92.8 64.56 70.88 65.78 341.09
OPT 2.7b 92.24 65.37 69.26 63.89 283.76 92.44 64.93 70.14 64.84 331.77
OPT 6.7b 92.77 65.18 69.64 64.6 286.29 93.08 64.4 71.2 66.27 328.16
BLOOM 560m 88.82 59.38 81.24 72.16 567.71 89.76 58.67 82.66 74.2 477.65
BLOOM 1b1 90.04 59.85 80.30 72.3 588.91 90.06 60.16 79.68 71.75 423.06
BLOOM 1b7 90.82 60.79 78.42 71.23 568.4 90.73 59.6 80.8 73.31 422.9
BLOOM 3b 91.4 61.22 77.56 70.88 357.58 91.12 60.88 78.24 71.29 291.64
BLOOM 7b1 91.72 62.19 75.62 69.36 344.08 91.88 61.97 76.06 69.88 340.47

race

LLaMA 7b 92.27 67.01 65.98 60.87 172.2 91.44 66.63 66.74 61.02 268.52
LLaMA 13b 91.94 67.12 65.76 60.47 173.21 - - - - -
LLaMA 30b 92.05 67.29 65.42 60.21 172.6 - - - - -
OPT 350m 91.72 61.71 76.58 70.25 346.09 91.9 59.73 80.54 74.02 370.71
OPT 1.3b 93.78 66.02 67.96 63.73 269.25 93 63.56 72.88 67.78 308.5
OPT 2.7b 93.91 66.99 66.02 62 255.92 93.54 62.44 75.12 70.26 296.64
OPT 6.7b 94.08 67.37 65.26 61.4 252.31 93.72 63.28 73.44 68.82 306.01
BLOOM 560m 89.07 56.91 86.18 76.76 817.62 89.69 58 84. 75.34 696.01
BLOOM 1b1 89.79 58.89 82.22 73.83 761.3 90.19 59.27 81.46 73.47 679.47
BLOOM 1b7 91.1 58.99 82.02 74.72 680.7 91.09 61.25 77.5 70.59 543.18
BLOOM 3b 91.63 60.31 79.38 72.74 446.44 91.76 61.55 76.9 70.56 394.36
BLOOM 7b1 92.01 62.29 75.42 69.4 473.47 91.44 61.86 76.28 69.75 505.53

religion

LLaMA 7b 93.1 61.04 77.92 72.54 144.57 92.94 59.82 80.36 74.7 216.62
LLaMA 13b 93.56 61.04 77.92 72.9 148.39 - - - - -
LLaMA 30b 93.87 60.12 79.76 74.86 144.69 - - - - -
OPT 350m 93.1 62.58 74.84 69.68 361.86 93.1 63.19 73.62 68.54 403.71
OPT 1.3b 94.02 65.64 68.72 64.6 313.98 93.87 62.27 75.46 70.83 391.13
OPT 2.7b 94.63 68.4 63.20 59.8 308.21 94.48 67.48 65.04 61.44 360.07
OPT 6.7b 94.79 69.33 61.34 58.15 290.05 94.17 67.18 65.64 61.82 349.51
BLOOM 560m 91.41 57.98 84.04 76.83 660.96 91.72 57.67 84.66 77.65 536.44
BLOOM 1b1 92.18 57.67 84.66 78.04 620.79 92.64 59.82 80.36 74.45 520.65
BLOOM 1b7 91.1 54.91 90.18 82.16 674.18 92.02 58.28 83.44 76.78 495.14
BLOOM 3b 92.79 56.44 87.12 80.84 402.36 93.25 58.9 82.2 76.66 329.56
BLOOM 7b1 94.48 59.51 80.98 76.51 454.26 92.79 57.67 84.66 78.56 520.91

Table 3: StereoSet scores in each domain. The proposed debiasing method reduces bias across all the different
domains.

biases and revised the procedures for automatically
filtering corpora.

All families of models show a bias higher than
the mean for the gender domain, are on par with
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Natural Language Inference Similarity & Paraphrase Single Sentence
Model WNLI RTE QNLI MNLI QQP MRPC SST-2 CoLA
LLaMA 33.8 76.53 62.43 55.63 68.41 68.37 82.45 66.15
LLaMA-Debias 32.98 75.95 62.54 58.43 67.95 69.45 82.22 69.23

OPT-350m 52.47 66.42 50.23 81.16 54.44 86.44 50.91 52.43
OPT-Debias-350m 54.43 66.96 51.12 86.55 55.35 86.97 51.16 54.06
OPT-1b3 54.56 68.33 52.44 85.19 54.83 87.96 52.78 54.67
OPT-Debias-1b3 54.79 68.98 53.06 87.16 55.83 88.05 53.21 54.97
OPT-2b7 55.27 69.12 52.98 85.78 55.93 88.14 54.07 55.22
OPT-Debias-2b7 55.98 70.16 53.24 86.15 56.18 88.64 55.71 55.69
OPT-6b7 57.38 70.11 54.41 87.13 57.23 89.32 56.27 56.72
OPT-Debias-6b7 57.13 69.97 54.92 86.97 57.78 90.17 57.03 56.94

BLOOM-560m 52.23 54.43 80.03 38.55 53.32 82.57 83.21 36.27
BLOOM-Debias-560m 39.41 51.44 78.91 39.77 51.43 80.16 82.83 34.22
BLOOM-1b7 52.82 59.20 81.01 39.86 56.42 85.81 85.21 46.55
BLOOM-Debias-1b7 46.77 58.19 80.21 37.16 54.71 84.91 80.55 43.30
BLOOM-3b 54.37 62.64 82.39 40.11 57.14 85.97 86.04 46.93
BLOOM-Debias-3b 49.83 57.93 80.16 37.89 55.49 82.19 82.31 45.05
BLOOM-7b 55.16 65.19 84.13 42.23 60.46 87.18 86.94 51.16
BLOOM-Debias-7b 54.26 63.98 83.52 40.28 59.67 85.33 85.37 50.81

Table 4: Performance on the GLUE tasks. For MRPC and QQP, we report F1. For STS-B, we report Pearson and
Spearman correlation. For CoLA, we report Matthews correlation. For all other tasks, we report accuracy. Results
are the median of 5 seeded runs. We have reported the settings and metrics proposed in (Wang et al., 2018).

the mean for the profession domain, and are fairer
for the race and religion domains. Gender and pro-
fession seem to be less balanced in the pre-training
phase. The extremely poor result in the gender do-
main suggests that this bias is cast into texts. Even
BLOOM has a performance drop of 10 points with
respect to its mean for the nss value (72.52 for
gender vs. 82.52 for all). The corpus curation was
ineffective for this domain but extremely effective
for the two most divisive domains, that is, race and
religion. BLOOM 1.7b has the impressive result of
nss = 90.18 for religion paired with icat = 82.16.
Hence, religion has been particularly curated in its
training dataset.

4.2 Debiasing results

Given the results of the previous section, data cura-
tion seems to be the best cure for bias in CtB-LLMs.
Yet, this strategy is not always possible, as train-
ing CtB-LLMs from scratch may be prohibitive.
Debiasing may be the other solution.

When the fairness is low, debiasing plays a major
role in reducing the bias of CtB-LLMs (see Table
3). For the family OPT, the decrease in bias on the
overall corpus is neat, even if not impressive. The
average nss value increases by 4.12 points, and
the average icat by 3.66 points. This decrease in
bias is mainly due to the decrease in the domain of
race where the increase of nss reaches 7.26 points
on average, and the increase in icat is on average
of 6.44 points. In the case of gender and profes-

sion, the bias is not greatly reduced. Apparently,
the PANDA corpus is not extremely powerful for
reducing bias in these two important categories.

Debiasing has no effect on BLOOM, which is
already fairer than the other two families of models.
Moreover, debiasing does not help the OPT and
the LLaMA family to reduce these models’ bias
to the BLOOM levels. This seems to suggest that
investing in carefully selecting corpora is better
than debiasing techniques. However, results on
downstream tasks shed another light on this last
statement (see Section 4.3).

4.3 Performance on downstream tasks
Finally, we tested the families of CtB-LLMs and
their debiased counterparts on downstream tasks.
In fact, it has been noted that debiasing LLMs
may affect the quality of their representations and,
consequently, a degradation of the performances.
Hence, the aim of this section is twofold:

• to understand whether or not performances of
CtB-LLMs degrade after debiasing;

• to determine the relationship between bias and
performance on final downstream tasks.

We then tested the proposed models on many down-
stream tasks commonly used for benchmarking,
that is, GLUE (Wang et al., 2019). What we expect
from these further experiments is that the capabili-
ties of the language model will be maintained by
the fine-tuning proposed in Section 4.2.
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(a) (b)

Figure 1: Model bias (ss) against model size (1a) and perplexity (1b). All measures have been standardized across
the two different families of models. Our experiments suggest a lack of correlation between model size and bias
(1a). A negative correlation can be observed (1b) across the different domains between perplexity and ss score
while it is not possible to establish its statistical significance due to the limited number of models.

Debiasing does not introduce a drop in perfor-
mance on downstream tasks for LLaMA and for
OPT (see Table 4). In these two families, debiasing
plays an important role as it is really reducing the
bias. Nevertheless, it does not significantly reduce
performance in any GLUE downstream tasks. For
specific cases, debiasing increases performance in
the final downstream task for LLaMA and OPT.

However, fairness and performance are not cor-
related. Indeed, OPT performs better with larger
models (see Table 4). Yet, larger models have a
stronger bias (see Table 3). Performance is directly
correlated with the size of the OPT model. More-
over, BLOOM, the fairer CtB-LLM, performs very
poorly on many tasks compared with the OPT and
LLaMA.

4.4 On language modeling abilities and bias

Since all models are biased, we aim to investigate
why models belonging to the same family perform
differently. First, we notice the absence of correla-
tion between model size and bias presence (Figure
1a). Hence, we investigate a property usually re-
lated to model size, such as the perplexity of a
model. The perplexity is related to model confu-
sion, and large models generally have higher lan-
guage modeling performances and lower perplexity.
Figure 1b shows strong, negative correlations be-
tween average perplexity and ss in LLaMA and

OPT families on the StereoSet benchmark. Despite
the trend appearing to be clear, due to the still lim-
ited number of models analyzed, it is impossible to
assess the statistical significance of the results. This
observed correlation requires further exploration.

5 Conclusions

The outbreak of Large Language Models (LLMs)
based has shocked traditional NLP pipelines. These
models achieve remarkable performance but are
not accessible to everyone, given the prohibitive
number of parameters they work on. Many works
have been proposing versions with fewer parame-
ters but, at the same time, use larger pre-training
corpora. These Cheap-to-Build LLMs (CtB-LLMs)
may soon become the de-facto standard for build-
ing downstream tasks. Controlling their bias is then
a compelling need.

In this paper, we proposed an extensive analysis
of CtB-LLMs, and we showed that debiasing is a
viable solution for mitigating the bias of these mod-
els. However, we have mixed findings. Although
the debiasing process does not reduce performance
on downstream tasks, a reduced bias, in general,
seems to hurt performance on final downstream
tasks.

In the future, we will continue exploring ways
to reduce bias in CtB-LLMs by ensuring their eth-
ical and unbiased use in various applications. By
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addressing the problems, we can spread the full
potential of these models and harness their power
for society’s progress.

Limitations & Future Works

We outline some limitations and possible directions
for future research in mitigating bias in Large Lan-
guage Models (LLMs):

• Our approach could be better, as we have
found compromises between performance and
correctness. Thus, we have obtained refined
LLMs with a certain amount of attenuated
bias, which should not be considered a guar-
antee for safety in the real world. Therefore,
it is necessary to integrate explainable mech-
anisms (Zanzotto et al., 2020; Ranaldi and
Zanzotto, 2020) that facilitate interpretation
in order to deliver the use and evaluation of
these models clearer in different real-world
contexts as deeply investigated by Ranaldi
and Pucci (2023b).

• One of the risks associated with our stereotype
identification technique is the potential failure
to recognize stereotypes, ultimately hindering
effective debiasing. Conversely, an overly ag-
gressive approach to debiasing may create an
excessively anti-stereotypical model, inadver-
tently introducing bias.

• Languages different from English should
be further explored. In particular, our de-
biasing technique should be applied in a
cross-lingual scenario, since those models are
mainly trained on English resources but still
able to perform tasks proficiently on other lan-
guages in cross-lingual scenarios (Ranaldi and
Pucci, 2023a) and build comparable represen-
tations for more similar languages (Ruzzetti
et al., 2023).

• Our approach is linked to carefully crafted
stereotype bias definitions. These definitions
largely reflect only a perception of bias that
may not be generalized to other cultures, re-
gions, and periods. Bias may also embrace
social, moral, and ethical dimensions essential
for future work.

• Finally, the last point that partially repre-
sents a limitation is related to our resources
(NVIDIA RTX A6000 with 48 GB of VRAM),

which did not allow us to test larger LLMs and
run more than once. Future work will also
address this by proposing optimization mech-
anisms based on the data structure (Ranaldi
et al., 2023b).

These points will be the cornerstone of our future
developments and help us better show the underly-
ing problems and possible mitigation strategies.
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