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Abstract

In this study, we investigate soundness of cur-
rent Abstract Meaning Representation (AMR)
similarity metrics in terms of equivalence and
inequivalence. Specifically, AMR guidelines
provide several equivalence and inequivalence
conditions to reflect the meaning aspect of the
semantics. Thus, it is important to examine
an AMR metric’s soundness, i.e., whether the
metric correctly reflects the guidelines. How-
ever, the existing metrics have less investigated
their soundness. In this work, we propose
a new experimental method using simulated
data and a series of statistical tests to verify
the metric’s soundness. Our experimental
result revealed that all existing metrics such as
SMATCH, SEMBLEU, S2MATCH, SMATCH++,
WWLKθ, WWLKe2n, and SEMA did not
fully meet the AMR guidelines in terms of
equivalence and inequivalence aspects. Also, to
alleviate this soundness problem, we propose a
revised metric called SMATCH♯, which adopts
simple graph standardization technique that can
improve the soundness of an existing metric.

1 Introduction

In this paper, we propose a new experimental
method to evaluate soundness of Abstract Meaning
Representation (AMR) similarity metrics and try to
address the soundness of AMR similarity metrics
by proposing a revised metric, SMATCH♯. AMR
is a widely used formalism that expresses the
semantic aspect of natural language sentences.
The formalism is based on neo-Davidsonian se-
mantics (Banarescu et al., 2013; Davidson, 1967;
Higginbotham, 1985; Parsons, 1990). Therefore,
when comparing two AMR graphs, a metric needs
to yield results that adhere to such theoretical
background, which is implemented in the AMR
guidelines (Banarescu et al., 2019). We refer to
this criterion as the soundness of an AMR metric.
Here, we define soundness as a metric’s quality

*These authors contributed equally to this work.

to yield well-founded results that adhere to the
theoretical background of AMR during the metric’s
computation process. For example, soundness of a
metric can be operationally checked by whether the
metric correctly follows AMR guidelines, as AMR
guidelines define many special equivalence rela-
tionships between two AMRs with different forms
along with its theoretical background. Thus, an
AMR metric should treat such AMRs as equivalent
to meet the soundness criterion.

However, the existing metrics’ design has been
less focused on evaluating their soundness. Several
metrics have been proposed to measure the similar-
ity between two AMRs, including SMATCH (Cai
and Knight, 2013), SEMBLEU (Song and Gildea,
2019), S2MATCH (Opitz et al., 2020), WWLKθ-
variants (Opitz et al., 2021; Opitz and Frank, 2022),
SEMA (Anchiêta et al., 2019), and SMATCH++
(Opitz, 2023). Although these existing metrics
have helped evaluating the quality of various AMR
parsers, they do not sufficiently consider soundness.
The only exception is SMATCH++, which attempts
to address soundness partially by managing some
equivalent cases, like reification. Nonetheless, even
SMATCH++ has not reported whether their metric
adheres to other equivalent cases specified in the
AMR guideline.

Therefore, we designed an experiment that
investigates the soundness of AMR metrics, using
systematically simulated data. We implement
both 6 equivalent cases and 7 inequivalent cases
according to AMR guideline, to make a systematic
data for evaluating the soundness of metrics. We
also propose a simple statistical method to verify
soundness and a graph standardization method for
handling equivalence and inequivalence cases. As a
result, we propose SMATCH♯, an enhanced version
of SMATCH++, as an alternative to prior AMR
metrics that better addresses soundness.

Our paper is structured as follows: Section 2 pro-
vides theoretical background on AMR and assesses
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the designs of existing metrics from the perspective
of equivalence and inequivalence. Next, Sections 3
details our experimental design. Specifically, Sec-
tion 3 outlines the simulated dataset generation, the
proposed statistical test for soundness verification,
the SMATCH♯ metric, and implementation details.
Finally, Section 4 presents the results, and discuss
their implications. We analyzes the results from
applying our experiment to various AMR metrics
and examines their soundness issues.

2 Inspecting AMR Similarity Metrics

Here, we discuss seven existing AMR similarity
metrics in terms of the way that they handle
equivalent and/or inequivalent cases. As widely
used similarity metrics adopt a method of giving
partial credits to non-exact matching cases, existing
metrics differ in how they establish the range of
partial credit regarding equivalence and inequiva-
lence of AMR components. Thus, we categorize
the existing metrics into two types: (1) allowing
credits only to exact equivalent components, and
(2) allowing credits also to some inequivalent cases.

First, there are metrics that only give credit for
exactly matching/overlapping components when
measuring the similarity between two AMRs.
SMATCH (Cai and Knight, 2013), SEMBLEU (Song
and Gildea, 2019), SEMA (Anchiêta et al., 2019),
and SMATCH++ (Opitz, 2023) belong to this
category. These metrics approximately compute
the maximum overlap between two AMRs, by
constructing a mapping between substructures of
two AMRs. For example, SMATCH computes over-
lap as the maximum F1 score of common triples
between two AMRs. Similarly, in SEMBLEU,
the metric computes overlap as the BLEU score
using n-grams of triples commonly appearing in
the two given AMRs. However, these overlap-
based metrics can mistakenly identify equivalent
AMRs as inequivalent, since they primarily focus
on matching exactly the same components without
fully considering the AMR guidelines. As the
guidelines define some cases where AMRs are syn-
tactically inequivalent but semantically equivalent,
the soundness of the evaluation may decrease in
some cases.

Second, for the metrics allowing credits also
to some inequivalent cases, they try to measure
similarity by relaxing the constraint of exact
match. Metrics such as S2MATCH, WWLKθ, and
WWLKe2n (Opitz et al., 2020, 2021; Opitz and

Frank, 2022) belong to this category. These metrics
attempt to give partial credit for inequivalent AMRs
by incorporating the concept of pragmatic sense,
acquired by a language model. With a language
model, these metrics are able to construct intuitive
sense of similarity between some predicates or
between some instances. However, the use of
language models makes it difficult to verify that
these metrics fairly assess the meaning of AMRs
independently of any context, which contradicts
one of the key assumptions behind AMR - that
meaning should be context-independent. More
specifically, the AMR guideline tries to ensure
context-independency of semantics by using pre-
defined ontology of predicate senses, semantic
roles, and frame arguments from OntoNotes (Prad-
han et al., 2007) and PropBank (Kingsbury and
Palmer, 2003). Using a language model may
compromise such context-independency when com-
paring two AMRs, since a language model tries
to treat different pre-defined senses, roles, and
arguments as similar ones. Moreover, such intuitive
sense of similarity may weaken the transparency of
the evaluation process.

We suspect that all the metrics in the above two
categories may insufficiently handle equivalent and
inequivalent cases according to the AMR guide-
lines. For example, the case illustrated in Appendix
A shows that some prior metrics do not correctly
evaluate inequivalent AMRs which have different
meanings. Note that Goodman (2019) have already
shown that not handling these conditions results in
an unfair evaluation in SMATCH. We suspect that
other metrics have also insufficiently considered
the issues raised by Goodman (2019), because
other metrics were not designed to properly handle
equivalent and inequivalent cases according to the
AMR guidelines. Moreover, existing metrics have
not systematically verified whether they conform
to the equivalence/inequivalence conditions based
on the AMR guidelines. Systematic verification
of these conditions would therefore be helpful to
identify strengths and weaknesses of the existing
AMR metrics.

3 Experiment

To verify the soundness of existing metrics, we
designed an experiment based on the observations
on equivalence and inequivalence aspects. We
tested seven existing metrics and one new metric:
SMATCH, S2MATCH, SEMBLEU, SMATCH++,
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Equivalent cases (6 operations)

(When writing PENMAN notation,)
Lift Up Lift another node as a root.
Reorder Randomly re-order edges.
Relabel Randomly re-labeled variables.
Reify Apply the reification process.
De-reify Apply the de-reification process.
Duplicate Duplicate all edge twice.

(Semantically equivalent due to tautology)

Inequivalent cases (7 operations)

Insert N Insert a dummy node.
Insert E Insert a dummy edge between nodes.
Change N Change a node’s name with a dummy.
Change E Change an edge’s label with a dummy.
Delete N Delete a node.
Delete E Delete an edge.
Swap Swap heads of two edges.

Table 1: List of 13 operations for our simulated dataset

WWLKθ, WWLKe2n, SEMA, and SMATCH♯.
Note that SMATCH♯ is our revised version of
SMATCH++ which tries to handle equivalence and
inequivalence cases. Using our simulated data and
statistical methods, we tested whether these eight
metrics follow the AMR guideline.

SMATCH♯ To consider the AMR guidelines
while upholding the approximation method of
the existing metrics, we developed SMATCH♯.
The new metric is a variant of SMATCH++
which standardizes AMR graphs considering both
equivalence and inequivalence conditions. As
SMATCH++ is the only metric that attempts to han-
dle some of the equivalence conditions, we chose
to make SMATCH♯ based on SMATCH++. Thus,
SMATCH♯ retains the same evaluation process as
Smatch++. However, SMATCH♯ is additionally
designed to pass through a single graph standardiza-
tion pipeline before the evaluation stage. This ad-
ditional pipeline is a normalization technique that
converts any given AMR into a single, standardized
form. This normalization is necessary because
we want to ensure that semantically equivalent
AMRs are treated correctly during evaluation. For
example, some cases such as inversion, different
variable names, etc. should be treated as equiva-
lent according to AMR’s definition, and can be
converted into the exact same notation through
normalization.

Simulated Dataset with 13 Operations We have
designed a novel test method to verify how well
existing metrics conform to the AMR guidelines.
Our test employs the gold standard dataset, AMR

3.01, which is commonly used in the development
of existing AMR parsers. First, we extracted
20,000 AMRs by randomly sampling the AMR
3.0 train set. For each AMR in this gold stan-
dard dataset, we applied 13 perturbations, shown
in Table 1, following the guidelines to create
a simulated dataset. This perturbing procedure
generated 260,000 simulated pairs. This simulated
dataset helps us verify whether an AMR metric
can evaluate the original and perturbed cases as
equivalent. For six of the perturbations, we applied
one of the six equivalent cases described in Part III
(Phenomena) of the AMR guidelines, making the
original and perturbed pair equivalent. For seven of
the pairs, we randomly manipulated the structure of
the given AMRs, making the original and perturbed
pair inequivalent. Refer to the Appendix B for the
detailed illustration and example for each operation.
To the best of our knowledge, this is the first
attempt to verify the soundness of an AMR metric,
which concerns how well the metric adheres to the
rules of the representation being evaluated.

Statistical Test for Hypothesis A sound metric
should differentiate equivalent pairs and inequiva-
lent pairs. To verify this, we conducted a binomial
test to statistically examine the difference between
the average score ζ of equivalent pairs and the
theoretical maximum score ζmax for each metric.
The test process involves three steps. As the first
step, we compute each metric score ζ for each
graph pairs. In the second step, we compute
P (ζ = ζmax), i.e., the proportion of examples
where the score reaches ζmax. Lastly, in the
third step, we tested P (ζ = ζmax) > 0.999 for
equivalent cases and P (ζ = ζmax) < 0.001 for
inequivalent cases2. So, a sound metric should
pass all of the above tests by definition. Corollary,
such a metric should prevent overlap between the
score ranges of equivalent pairs and ranges of
inequivalent pairs.

Implementation Detail Here, we implemented
the eight metric as follows. For SMATCH,
S2MATCH, SMATCH++, and WWLKe2n, we ran
the exact official code. For SEMBLEU and SEMA,
we additionally added an outputting code into the
original source code to obtain a score for each

1https://catalog.ldc.upenn.edu/LDC2020T02
2We set P (ζ) > 0.999 for equivalent cases and P (ζ) <

0.001 for inequivalent cases, since the statistical power is
greater than 0.999 even with the significance level of 0.001.
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AMR pair3. Lastly, for WWLKθ, we used the
reified version of STS for zeroth-order learning4.
For SMATCH♯, we used Penman (Goodman, 2020)
library for graph standardization. The experiment
is conducted in a single-run on a PC with the
Ubuntu 20.04, an AMD Ryzen 5900X 16-core
CPU, and 64GB RAM. Our code5 used Python
3.11.9 and statsmodels (Seabold and Perktold,
2010) for the binomial tests. We provide additional
details in Appendix C.

4 Results and Discussion

Table 2 shows the results of soundness and bi-
nomial tests on 6 equivalent and 7 inequivalent
cases. We present average values for each per-
turbation cases. In addition, overall min(ζ) and
max(ζ) rows show the minimum/maximum score
in equivalent/inequivalent cases, respectively. And,
P (ζ = 1) rows refer to the proportion of items
evaluated as equivalent in total. Note that a sound
metric should yield statistically significant result on
all the tests, without making the overlap between
equivalent and inequivalent cases.

First, for the six equivalent cases, prior metrics
failed to fully handle equivalent but altered graph
structures. They only give ζmax for 48-78%
of graph pairs, as seen in the P (ζ = 1) row
for equivalent cases. Specifically, metrics such
as SEMBLEU, WWLKθ, WWLKe2n, SEMA,
SMATCH++ successfully gave the ζmax to some
equivalent cases (lift up, reordering, relabeling,
duplicate). However, SMATCH and S2MATCH

failed to give ζmax for above 4 cases. For example,
SMATCH assigned an average score of 1.212 in
duplicate cases, exceeding ζmax. So, it suggests
that SMATCH may overestimate similarity when a
graph has multiple tautological edges. Additionally,
following the soundness test, we attempted to
verify whether the metric accurately assigns ζmax

to the completely identical case by using the
original AMR as both the reference and hypothesis
simultaneously. Surprisingly, SMATCH and SEMA
failed to produce the maximum score ζmax even
for non-perturbed original cases, yielding scores
as low as 0.902 (SMATCH) and 0.833 (SEMA).
This result is likely due to the approximation

3We provide the modified code at our GitHub repository.
4As the WWLKθ and WWLKe2n are defined based on a

different score range of [−1, 1] compared to other metrics’
range of [0, 1], we normalized the range to [0, 1].

5Code for the experiment will be uploaded in https:
//github.com/snucclab/ssharp.

methods employed by these metrics. Note that
as SMATCH++ attempts to handle equivalent cases
in their design, it shows a better evaluation for the
de/reification case compared to other metrics.

Second, for the seven inequivalent cases, some
metrics showed incorrect evaluation results by
assigning ζmax to certain graph pairs, as seen
in the P (ζ = 1) row for the inequivalent cases.
Specifically, SEMA produced a score of 1.103,
exceeding the theoretical ζmax. Moreover, among
all the metrics, SEMA was the only one that
achieved statistical significance in only 3 cases for
the inequivalent cases. We suspect these results
from SEMA appear to be numerical errors caused
by its approximation algorithm. Furthermore,
S2MATCH assigned ζmax to some edge deletion
pairs (thus, p > 0.05), and SEMBLEU did the same
for some edge insertion pairs (p > 0.05), while
SMATCH, WWLKe2n, and SMATCH++ passed
all the tests, correctly identifying those cases as
inequivalent.

Third, for the overlap between equivalent and
inequivalent cases, all existing metrics showed
overlap. For example, as SMATCH made overlap
between equivalent and inequivalent cases on the
interval [0.371, 1], the score positioned in this
range cannot be determined either equivalent or
inequivalent. Similar overlap happens for SEMA
(range of [0.083, 1.103]), WWLKθ (range of
[0.656, 1]), SMATCH++ (range of [0.5, 0.998]), and
so on. Thus, we need to be careful in interpreting
a score fall within the overlap range because there
may exists incorrect evaluation in terms of AMR’s
theoretical background. Even the chance of falling
in the overlap range is low, the existence of these
overlapping sections is sufficient to pose a question
about the soundness of existing metrics.

On the other hand, SMATCH♯ has proven to be
effective in dealing with all the 13 cases. SMATCH♯

correctly assigned ζmax in 100% of equivalence
cases, achieving the highest possible score, which
no other metric accomplished. Furthermore,
SMATCH♯ did not assign ζmax for any inequiva-
lence cases, as confirmed statistically. Specifically,
for the six equivalent cases, SMATCH♯ successfully
provide ζmax. For the seven inequivalent cases,
SMATCH♯ showed slight decrease in score com-
pared to SMATCH++, the backbone of SMATCH♯.
For example, SMATCH++ had an average score
of 0.927 for edge deletion case, while SMATCH♯

scored an average of 0.907. Moreover, SMATCH♯
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SMATCH♯ SMATCH S2 MATCH SEMBLEU WWLKθ WWLKe2n SEMA SMATCH++

6 Equivalent Cases * Alternative hypothesis HA : P (ζ = 1) > 99.9%

Lift Up 1.000*** .964 .964 .999 1.000 1.000 .990 .949
Reorder 1.000*** .999 .998 1.000*** 1.000*** 1.000*** 1.000 1.000*

Relabel 1.000*** .999 .999 1.000** 1.000*** 1.000*** 1.000 1.000***

Reify 1.000*** .748 .748 .613 .866 .864 .660 .990
Dereify 1.000*** .988 .988 .975 .994 .994 .990 .990
Duplicate 1.000*** 1.212 .986 .470 .910 .937 .780 1.000***

Overall min(ζ) 1.000 .371 .371 .025 .610 .628 .083 .500
Overall P (ζ = 1)% 100 48.11 55.77 64.74 64.75 64.75 61.47 78.25

7 Inequivalent Cases * Alternative hypothesis HA : P (ζ = 1) < 0.1%

Insert Node .955*** .975*** .973*** .935*** .952*** .944*** .970*** .966***

Insert Edge .964*** .983*** .980** .931 .996*** .970*** .980*** .977***

Change Node .944*** .966*** .961*** .871*** .940*** .951*** .890 .946***

Change Edge .949*** .966*** .965 .935*** .982 .968*** .950 .952***

Delete Node .906*** .945* .946*** .908*** .936*** .933*** .940 .918***

Delete Edge .907*** .948*** .949 .930*** .959*** .946*** .930*** .927***

Swap .873*** .918*** .918*** .853 .949*** .954*** .880 .884***

Overall max(ζ) .998 1.000 1.000 1.000 1.000 0.999 1.103 .998
Overall P (ζ = 1)% .00 .01 .05 .65 5.09 .00 .63 .00

+p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001

Table 2: Result of soundness and binomial test on 13 simulated equivalent/inequivalent cases.

reduced the overlap range into zero, resolving the
overlap issue that appeared in all existing metrics.
This results suggest that SMATCH♯ provides a better
demarcation than existing metrics.

5 Conclusion

In this study, we proposed a novel experiment
for verifying soundness of an AMR metric using
simulated dataset and statistical tests. Through
the experiment, our work demonstrated that the
soundness problem exists in the previous metrics.
Also, we suggest an AMR metric SMATCH♯, which
is an improved version of SMATCH++ in terms of
soundness, using a graph standardization method
that follows AMR guidelines. By testing SMATCH♯

with the same experiment, we demonstrated that
we can alleviate the issue by slightly enhancing
the design of metrics. For future work, designing
a new AMR similarity metric by considering our
experimental results would be an interesting topic
to pursue.

Limitations

In this section, we discuss the study’s limitations
that stem from our adoption of the AMR graph
structure and experimental assumptions.

First, adopting the AMR graph structure, which
is a standard meaning representation, provides

a solid foundation for generating a score metric.
However, because we adopted AMR, two lim-
itations that affect our proposed approach also
exist: the application of the metric on a single
language, i.e. English, and the assumption of a
single interpretation of the text.

Second, though we designed equivalence and
inequivalence cases based on AMR specification,
confirming whether we tested all theoretical varia-
tions of equivalence/inequivalence cases would be
difficult. Therefore, it may be possible to present
additional perturbations of AMR in future work.

Ethics Statement

In accordance with the guidelines of the ACL
Ethics Policy, we will release all artifacts, including
code, experiment results, and statistics used in this
study on our GitHub repository. Also, because this
study is an algorithmic consideration of model eval-
uation, we did not need a hyperparameter optimiza-
tion process; thus, no such procedure is described.
Moreover, due to the characteristics of AMR, a
simulated dataset could be constructed without
human annotation for equivalence/inequivalence
conditions. Thus, we did not perform a human
annotation process.

In addition, this study only concerns the evalua-
tion of the output already generated by the model.
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Therefore, as our study has no direct relationship
to any sociocultural impacts or implications of
machine learning models, such as social bias, we
have not discussed these concerns.

Lastly, the AMR 2.0 (LDC2017T10) and 3.0
(LDC2020T02) datasets used in this study were
purchased according to the license under the LDC
User Agreement. Therefore, to create a simulated
dataset according to our experimental procedure, a
license would need to be purchased for the AMR
3.0 dataset. Furthermore, the LDC User Agreement
prohibits the re-distribution of their datasets. For
this reason, we can only provide the simulated
dataset used in the experiment to parties with a
valid license.
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Figure 1: An example case that related to soundness

A Sample Case

Figure 1 illustrates two AMR graphs with different
meanings; persons in two different ‘love’ relations
are swapped. The reference AMR graph means
a sentence “Alice loves Carol, and Bob loves
Daniel.” But, the hypothesis AMR graph means a
sentence “Alice loves Bob, and Carol loves Daniel.”
Thus, these two graphs do not have the same truth
condition since Bob and Carol are different people
in general. Therefore, its expected value should not
be the theoretical maximum score that corresponds
to equivalence. Furthermore, since the subject of
’love’ is set differently in both AMRs, it also should
not be receive a score that is nearly identical to the
theoretical maximum.

So, we computed the similarity between these
two graphs using existing metrics. All existing
metrics produced a score close to 1: SEMBLEU

and WWLKe2n assigned 1.0 and SMATCH and
S2MATCH assigned 0.9231. Specifically for SEM-
BLEU, we suspect that the maximum length of n-
grams used in SEMBLEU is not sufficient to handle
this case; official SEMBLEU use 3-grams, which is
shorter than the distance between ‘love-01’ and a
person’s name, e.g., ‘Carol.’ In contrast, SMATCH♯

assigned a value of 0.8889 for this case, which is
lowest score among the metrics.

B Graph Transformation

• Original AMR:

ID: DF-199-192794-660_6610.5

Sentence: I never missed a day of school.

(m / miss-02
:ARG0 (i / i)
:ARG1 (t / temporal-quantity

:unit (d / day)
:quant 1
:duration-of (s / school-01))

:polarity -
:time (e / ever))

• Equivalence Cases:

Lift Up randomly set other node as a root.
According to AMR guidelines, AMR can
also be viewed as conjunction of logical
triples, omitting root information. Thus,
changing root does not harm AMR’s
truth condition.
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(t / temporal-quantity
:ARG1-of (m / miss-02

:polarity -
:time (e / ever)
:ARG0 (i / I))

:duration-of (s / school-01)
:quant 1
:unit (d / day))

Reorder randomly changes the displaying
order of a graph.

(m / miss-02
:time (e / ever)
:polarity -
:ARG0 (i / i)
:ARG1 (t / temporal-quantity

:quant 1
:unit (d / day)
:duration-of (s / school-01)))

Relabel change the head of each node.

(r0 / miss-02
:ARG0 (r1 / i)
:ARG1 (r2 / temporal-quantity

:duration-of (r3 / school-01))
:quant 1
:unit (r4 / day)

:polarity -
:time (r5 / ever))

Reify / Dereify According to AMR guide-
lines, apply Reification/Dereification us-
ing PENMAN library.

(m / miss-02
:ARG0 (i / I)
:ARG1 (t / temporal-quantity

:ARG2-of (_ / last-01
:ARG1 (s / school-01))

:ARG1-of (_2 / have-quant-91
:ARG2 1)
:unit (d / day))

:ARG1-of (_3 / have-polarity-91
:ARG2 -)

:ARG1-of (_4 / be-temporally-at-91
:ARG2 (e / ever)))

Duplicate Randomly duplicate the graph
component.

(m / miss-02
:ARG0 (i / i)
:ARG0 i
:ARG1 (t / temporal-quantity

:duration-of (s / school-01)
:duration-of s
:quant 1
:quant 1
:unit (d / day)
:unit d)

:ARG1 t
:polarity -
:polarity -
:time (e / ever)
:time e)

Note that the motivation for duplicating edges is
that we suspected that score inflation may have

occurred in existing metrics when duplication
occurred in existing parsers. Indeed, the experi-
ment was useful in that it revealed problems with
SMATCH. As a result of the experiment, SMATCH

showed a tendency to evaluate higher than the score
limit (0-1) when such cases were introduced. This
implies the possibility that score inflation may have
occurred when using SMATCH to evaluate when
duplicates occurred in existing parsers.

C Implementation Detail

• Hardware:

CPU: AMD Ryzen 5900X
Memory: 64GB

• Software:

OS: Ubuntu 20.04.6 LTS (kernel 5.4.0-169)
Python: 3.11.9 (with virtualenv)

• Python libraries:

Penman 1.3.0
networkx 3.3
numpy 1.26.4
statsmodels 0.13.5
pandas 2.2.1
SciPy 1.12.0
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