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Abstract

We present EDM3, a novel approach for Event
Detection (ED) based on decomposing and re-
formulating ED, and fine-tuning over its atomic
subtasks. EDM3 enhances knowledge transfer
while mitigating the error propagation inherent
in pipelined approaches. EDM3 infers dataset-
specific knowledge required for the complex
primary task from its atomic tasks, making it
adaptable to any set of event types. We evalu-
ate EDM3 on multiple ED datasets, achieving
state-of-the-art results on RAMS (71.3% vs.
65.1% F1), and competitive performance on
WikiEvents, MAVEN (∆ = 0.2%), and MLEE
(∆ = 1.8%). We present an ablation study over
rare event types (<15 instances in training data)
in MAVEN, where EDM3 achieves ∼ 90%
F1. To the best of the authors’ knowledge, we
are the first to analyze ED performance over
non-standard event configurations (i.e., multi-
word and multi-class triggers). Experimental
results show that EDM3 achieves ∼ 90% ex-
act match accuracy on multi-word triggers and
∼ 61% prediction accuracy on multi-class trig-
gers 1. This work establishes the effectiveness
of EDM3 in enhancing performance on a com-
plex information extraction task.

1 Introduction

Event Detection (ED) involves characterizing
events occurring in unstructured text, by recog-
nizing their event triggers and classifying their
event types. ED is used extensively for downstream
tasks such as information retrieval (Kanhabua and
Anand, 2016), event prediction (Souza Costa et al.,
2020), and argument detection (Cheng and Erk,
2018). Existing methods for ED (Liu et al., 2018;
Nguyen and Grishman, 2018) cannot easily lever-
age pre-trained semantic knowledge (Lai et al.,

∗Now at Microsoft Corporation
1Data and source code are available at https://github.

com/ujjwalaananth/EDM3_EventDetection
†Currently in Amazon (The work was done prior to joining
Amazon)

Figure 1: Comparing label formulation for ED output
in traditional discriminative approaches vs. EDM3. In
EDM3, EI (Event Identification) and EC (Event Classi-
fication) labels are analogous strings with event triggers
and types respectively, while ED output is a string with
all triggers and their types.

2020; Paolini et al., 2021), failing to identify com-
plex events or function in low-resource scenarios
(Chen et al., 2015; Nguyen et al., 2016). Addi-
tionally, they lack the ability to generalize across
domains such as biomedicine or cybersecurity. (He
et al., 2022; Satyapanich et al., 2020). As a result,
they may handicap comprehensive event extraction
(Liu et al., 2020; Huang et al., 2020).2

To overcome these challenges, we propose
EDM3 (Event Detection by Multi-task Text Gener-
ation over three subtasks), a novel approach based
on decomposing an intricate primary task (ED)
into its constituent atomic subtasks. We hypoth-
esize that these subtasks (EI, EC) are less reliant
on domain-specific knowledge than on semantic
similarities (Pustejovsky, 1991), and hence simpler
to learn. EDM3 involves training on these subtasks
simultaneously in a non-pipelined, multi-task fash-
ion. This diverges from the traditional discrimina-
tive token classification paradigm (Fig. 1). Unlike
concurrent works such as InstructUIE (Wang et al.,
2023) and UIE (Lu et al., 2022), which propose
a unified model over multiple disparate language
tasks, EDM3 focuses on a single complex task.
This approach thus provides a framework adapt-

2Extended related work is discussed in Appendix §A
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Approaches Datasets Tasks Covered Domain
Generalization

Comparative
PerformanceIdentification Classification Detection

Liu et al. (2022) ACE, MAVEN ✗ ✗ ✓ ✗ SOTA on MAVEN

Veyseh et al. (2021) ACE, RAMS, CysecED ✓ ✗ ✓ ✓
SOTA on ACE and CysecED

Competitive on RAMS

He et al. (2022) MLEE ✗ ✗ ✓ ✗ SOTA on MLEE

EDM3 (Ours)
MAVEN, MLEE

WikiEvents, RAMS
✓ ✓ ✓ ✓

SOTA on RAMS
Competitive on MLEE & MAVEN

Benchmark on WikiEvents

Table 1: Comparison of EDM3 with other SOTA approaches highlighting the advantages of our approach. Columns
‘Identification’, ‘Classification’, and ‘Detection’ denote which tasks can be performed independently and end-to-end
with the same model. We provide additional information to contextualize the performance metrics.

able to any independent complex task that can be
decomposed into subtasks.

To evaluate EDM3, we conduct extensive ex-
periments on RAMS, WikiEvents, MAVEN, and
MLEE datasets. EDM3 achieves an F1 score of
71.3% on RAMS, surpassing the SOTA score by
6.2% points. EDM3 also achieves a competitive
macro F1 score of 60.1% on MAVEN, compared to
60.3% (SOTA). We benchmark ED performance on
WikiEvents with 60.7% F1 score. Finally, EDM3
achieves a competitive result of 78.1% F1 against
79.9% (SOTA) on the biomedical MLEE dataset.
While other approaches use domain-specific em-
beddings and hand-crafted features, EDM3 uses a
vanilla T5 model to obtain these results, supporting
our hypothesis. Table 1 highlights the advantages
of EDM3 over previous SOTA approaches.

We conduct investigations along multiple lines
of inquiry to explore the efficacy of EDM3. We ob-
serve that our multi-tasking approach improves ED
performance by 3-6%. We explore the efficacy of
EDM3 in low-resource scenarios (evaluating rare
event types). Experimental results reveal scores of
∼ 90% F1 achieved over rare event types. We also
evaluate its performance over multi-word and multi-
class triggers, which while lacking in benchmark
datasets, are common in real-world data. EDM3
achieves ∼ 90% exact match accuracy on multi-
word triggers and ∼ 61% prediction accuracy on
multi-class triggers. Finally, we discuss the impor-
tance of multi-sentence context. In summary, our
contributions are as follows:
1. We propose EDM3, a novel training paradigm

that generatively reformulates ED and its sub-
tasks, and trains a single multi-task model that
can perform them concurrently.

2. We obtain SOTA or competitive performances
over various datasets across multiple domains.

3. Our analysis shows that EDM3 performs well
for low-resource scenarios as well as non-
standard event configurations.

2 Proposed Method

Given an input instance containing diversely-typed
event triggers, we aim to capture all triggers present.
We reformulate ED and its subtasks as sequence
generation tasks. We use instructional prompts to
train a model on all 3 generative tasks jointly to
create a single multi-task model.

Task Decomposition ED is a multi-level task re-
quiring both event identification and classification,
which sequence labeling approaches conduct in a
single step. We manually decompose ED into inde-
pendent tasks to be carried out in parallel with the
primary task, to augment the training process.

Generative reformulation The task labels are
converted to delimited strings following a consis-
tent pattern. The number of unique event types and
triggers for an instance may differ, making all tasks
notably distinct from one another, as opposed to
ED being a linear combination of EI and EC.

Event Identification/Classification We repre-
sent the task output as a singly-delimited sequence
of labels. An instance with x unique triggers and y
unique event types would have the following label
representations for the EI and EC tasks respectively:

T1 | T2 | T3 ... Tx

E1 | E2 | E3 ... Ey

Where Ti is the ith event trigger occurring in an
input instance and Ei is the ith type of event occur-
ring in the instance.

Event Detection Each label for ED contains 2
components: event trigger and type. The task out-
put can be represented as a doubly-delimited se-
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quence of events. We use -> as a delimiter between
trigger and type. For an instance with x events:

T1->E1 | T2->E2 | T3->E3 ... Tx->Ex

Where Tx is the xth event trigger and is of type
Ex. For an example of an instance showing the
reformulated outputs for all tasks, see Fig. 1.

Multi-Task Learning We posit that when trained
over ED alongside its atomic tasks, a multi-task
model gains significant transferable knowledge. In
the case of rarer event types, modeling Event Clas-
sification (EC) separately improves the model’s
recognition of instances containing these events -
leading to improved identification and detection.
We use task-specific instructional prompts (natural
language descriptions of how to perform each task
with examples) to improve multi-tasking. To craft
these instructional prompts, we follow the approach
detailed by Wang et al. (2022b). The task-specific
prompts and examples can be found in §B. For an
example, see Fig. 2 in §C.

3 Results and Analysis

3.1 Results

We use EDM3 to train T5-base (220M). For exper-
imental details, see §C. To compare our method
fairly with established baselines, we evaluate our
predictions by converting them to token-level la-
bels. We report the average performance over 5
experimental runs.

RAMS We achieve 71.33% F1 score, which sur-
passes GPTEDOT by 6.2% (Table 2). Furthermore,
the difference between precision and recall is much
lower, indicating greater robustness.

WikiEvents We establish the benchmark perfor-
mance of 60.7% F1 score (Table 3) on this dataset.
We use single-task ED performance as a baseline
to contextualize the benefits of EDM3. Over sen-
tences with at least one event, we observe that the
performance increases from 58.71% to 64.31% (Ta-
ble 6) We show an example of improved ED using
EDM3 in §C.1.

MAVEN We obtain a maximum F1 score of
62.66% (Table 4) which is influenced by severe
class imbalance in the dataset. The competitive
macro F1 score (60.1% vs. 60.3%) indicates better
performance on rare classes. EDM3 also shows
significant advantages in performing ED on multi-
word triggers (Table 7 in §C).

Model P R F1

DMBERT (Wang et al., 2019) 62.6 44.0 51.7
GatedGCN (Lai et al., 2020) 66.5 59.0 62.5
GPTEDOT (Veyseh et al., 2021) 55.5 78.6 65.1

EDM3 71.6 71.0 71.3

Table 2: Results on RAMS. All previous models are
sentence-level BERT-based models.

Model P R F1 W1

Single-task 60.0 49.6 54.3 52.1
EDM3 60.8 60.6 60.7 59.4

Table 3: Results on WikiEvents. W1: Weighted F1 %

Model P R F1 F1*

SaliencyED (Liu et al., 2022) 64.9 69.4 67.1 60.3

EDM3 60.1 65.5 62.7 60.1

Table 4: Results on MAVEN. All results are on the
publicly-available dev split. F1*: Macro F1 %

Model P R F1

SVM2 (Zhou and Zhong, 2015) * 72.2 82.3 76.9
Two-stage (He et al., 2018) * 79.2 80.3 79.8

EANNP (Nie et al., 2015) 71.0 84.6 77.2
LSTM + CRF (Chen, 2019) 81.6 74.3 77.8
LSTM + CRF (Chen, 2019) ** 81.8 77.7 79.7
BiLSTM + Att (He et al., 2022) 82.0 78.0 79.9

EDM3 75.9 80.4 78.1

Table 5: Results on MLEE dataset. * models using
handcrafted features. All neural network-based models
here use domain-specific embeddings. ** results when
4 biomedical datasets are used for transfer learning.

MLEE We compare with 1) labour-intensive ap-
proaches requiring creation of handcrafted fea-
tures and 2) neural network-based models that
use domain-specific embeddings obtained by pars-
ing Pubmed or Medline abstracts. Our domain-
agnostic approach achieves 78.1% F1 score, com-
petitive with more sophisticated, domain-specific
approaches (See Table 5). Our model also has
higher recall (80.4%) than most approaches.

3.2 Analysis
In this work, we conduct various experiments to
assess our approach in different scenarios.

Multi-tasking over EI and EC improves perfor-
mance over ED Without instructional prompts,
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Dataset Single-task EDM3 (tags) EDM3 (instr)
All Pos All Pos All Pos

MLEE 71.07 72.20 74.57 75.82 77.09 78.45
RAMS 63.21 63.21 67.66 67.66 69.53 69.53
MAVEN 58.10 59.18 62.29 63.56 62.40 63.66
WikiEvents 54.31 58.47 56.77 61.35 58.71 64.31

Table 6: Results on all datasets. Single-task: results us-
ing ED for training. EDM3 (tags): results from training
with EI, EC, and ED. EDM3 (instr): using instructional
prompts. All: performance on all input instances. Pos:
performance on only event-containing instances.

EDM3 improves performance by at least 3% over
single-tasking for all datasets. This can be at-
tributed to the success of the subtask-level multi-
tasking paradigm, with the improved performance
and fewer false negatives due to training the model
over EI and EC. Table 6 documents the metrics for
single-task and multi-task models over all datasets.

EDM3 is well-suited to low-resource scenarios
Despite its scope of 168 event types, Zhang et al.
(2022) show that 18% of all event types in MAVEN
have less than 100 annotated instances (Fig. 7 in
§D). Breathing and Extradition, have less than 15
annotated event instances in more than 8K training
sentences. Despite this, we see our model accu-
rately identify all triggers of these event types in
the testing split (see Fig. 3 in §C), achieving 100%
testing precision on both, and 100% and 80% micro
F1 score respectively.

Successful identification of multi-word triggers
Multi-word event triggers, common in real-word
data, comprise 3.42% and 3.38% of all triggers in
MAVEN and RAMS respectively (see Table 10 in
§D) Evaluating multi-word triggers as token classi-
fication yields misleading results as they represent
the event type only when the entire phrase is anno-
tated. For example, for the trigger "took place", the
individual words are distinct from the event type
denoted by the phrase. To evaluate performance
on multi-word trigger phrases, we calculate exact
match accuracy over them. We achieve nearly 91%
and 89% on MAVEN and RAMS, respectively (Ta-
ble 7 in §C), with incomplete predictions being
similar to the ground truth ("assault vs the assault",
"in touch" vs "been in touch").

Successful classification of multi-class triggers
In a real-world ED scenario, event triggers may
trigger multiple event classes in one context. 4%
of all event triggers in RAMS can be classified as

multi-class. (Table 10 in §C). See Fig. 4, where
purchasing denotes both transferownership (argu-
ments: previous and current owner) and transfer-
money (arguments: amount). To accurately extract
this event, it is necessary to capture all the senses
of the trigger purchasing. Existing token classifi-
cation methods perform event detection as multi-
class, not multi-label classification. Generating
sequences, as well as training over EC, enables our
model to identify multi-class triggers. We achieve
average prediction accuracy (% of types captured
for a multi-class trigger) of 61% on RAMS, indi-
cating the model can capture most of the senses in
which each multi-class trigger functions.

Case Study: Multi-sentence context is vital to
ED Consider these examples from WikiEvents:
Example 1: The whole building has collapsed.

Example 2: He chose destruction.

In Example 1, EDM3 extracts the token in bold as a
relevant event trigger of the type artifact existence.
However, this example is taken from a document
primarily focused on conflict events, with the trig-
gers bombing and explosion. Therefore, collapsed
becomes an auxiliary event that should not be pre-
dicted. Conversely, in Example 2, our model finds
no salient event; however, the following sentences
in the same document demonstrate that destruc-
tion is a salient event of type artifact existence.
It is difficult for a sentence-level model to judge
the saliency of an event without the context of its
document or surrounding events, making it vital to
include multi-sentence or document-level context.

4 Conclusion

In this paper, we propose EDM3, a domain-
agnostic generative approach to the Event Detec-
tion task. EDM3 leverages a multi-tasking strat-
egy that incorporates instructional prompts to im-
prove model performance on imbalanced data and
complex event instances. Our analysis shows an
improvement in F1 score over single-task perfor-
mance, supporting our main hypothesis viz. the
effectiveness of breaking down complex generation
tasks into subtasks that can support model learn-
ing on the primary task. Furthermore, our results
highlight the potential for generative models in tra-
ditionally discriminative tasks like ED, paving the
way for future advancements in the field.
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Limitations

Our work demonstrates a prompted and generative
approach on a single task, Event Detection, which
can be easily adapted to other information retrieval
tasks. Due to access issues, we were unable to
use the ACE05 dataset. In lieu of this, we uti-
lize 3 publicly-available general-domain datasets
(RAMS, MAVEN, WikiEvent). Furthermore, there
is a possibility of improving prompt quality further
by analyzing the number and scope of examples
required to achieve the best prompted performance.
Finally, integrating domain knowledge could im-
prove event-type classification, and we encourage
future researchers to explore this area. Despite
these limitations, our work provides a strong foun-
dation for generative, instructional prompt-based
frameworks for end-to-end Event Extraction and
opens up exciting avenues for future research.
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Appendix

A Related Work

Transformer-based models (Vaswani et al., 2017)
have been at the forefront of many language tasks
due to the wealth of pretrained knowledge. Mod-
els using BERT (Yang et al., 2019; Wang et al.,
2019) treat ED as word classification, in graph-
based architectures (Wadden et al., 2019; Lin et al.,
2020). Models that improve ED performance for
low resource settings include Lu et al. (2019); Deng
et al. (2021). Other works (Tong et al., 2020; Vey-
seh et al., 2021) generate ED and EI samples re-
spectively to augment training data. Many mod-
els frame ED as a question-answering task (Du
and Cardie, 2020; Boros et al., 2021; Wang et al.,
2021; Liu et al., 2020). APEX (Wang et al., 2022a)
augments input with type-specific prompts. With
the advent of more powerful sequence-to-sequence
models such as T5, there has been an increased
interest in formulating event detection and event
extraction as sequence generation tasks (Paolini
et al., 2021; Lu et al., 2021; Si et al., 2022)

Multi-Task Learning is a training paradigm in
which a single machine learning model is trained on
multiple separate tasks (Caruana, 1997; Crawshaw,
2020). Across domains, models trained on multiple
disparate tasks are better performing due to shared
learning. Multi-Task learning has been leveraged to
great effect in Xie et al. (2022); Lourie et al. (2021),
and in specific domains as well (Chen, 2019; Par-
mar et al., 2022). This paradigm is also the basis
of the generative T5 model. Paolini et al. (2021)
carried out multi-task learning experiments over a
number of information retrieval tasks. Specifically
for Event Detection, multi-tasking over ED sub-
tasks is implemented in GPTEDOT (Veyseh et al.,
2021), where EI is used to augment ED perfor-
mance. This is because the simplicity of EI makes
it easier to evaluate the quality of generated data.
However, there is a risk of introducing noise or
generating low-quality samples due to the charac-
teristics of the source data.

Prompt engineering Prompt-based models have
been used for Event Detection and Event Extrac-
tion as well. Prompt Engineering has been lever-
aged to great effect to generate data (Gupta et al.,
2023; Anantheswaran et al., 2024) to improve ex-
isting data quality or dearth. More recently, Si
et al. (2022) used predicted labels from earlier in

the pipeline as prompts for later stages of trigger
identification and argument extraction, while Wang
et al. (2022a), following the example of other works
that use prototype event triggers (Wang and Cohen,
2009; Bronstein et al., 2015; Lai and Nguyen, 2019;
Lyu et al., 2021; Liu et al., 2020; Zhang et al., 2021)
from the dataset, used triggers as part of tailored
prompts for each event type in the schema. In
proposing EDM3, we are the first to explore the
efficacy of instructional prompts for ED.

B Natural Language Prompts

For each task, we provide a natural language in-
struction followed by a general domain example
in conjunction with a biomedical domain example
as part of the instructional prompt. We choose in-
stances that are complex, i.e. have multiple labels,
or multi-word or multi-class labels.

B.1 Event Identification
Instruction You are given a text as input. The
text gives information about ongoing events. An
event trigger is a word or phrase that most clearly
expresses the event occurrence. Your task is to
identify the words or phrases that are event triggers
for events in the text, where event type is not given.
If there are no events, print NONE.

General example INPUT: The information min-
ister alleged that oil smuggled into Turkey was
bought by the Turkish president’s son , who owns
an oil company . Mr al - Zoubi said in an in-
terview , All of the oil was delivered to a com-
pany that belongs to the son of Recep (Tayyip)
Erdogan . This is why Turkey became anxious
when Russia began delivering airstrikes against
the IS infrastructure and destroyed more than
500 trucks with oil already.</s>OUTPUT: smug-
gled</s>EXPLANATION: The event describes
goods being moved. The exact trigger from the
text that describes this event is "smuggled".

Biomedical example INPUT: Left ven-
tricular weight, body weight, and their
ratio were not significantly altered by alin-
idine treatment.</s>OUTPUT: treatment |
altered</s>EXPLANATION: the words "treat-
ment" and "altered" are salient words describing
important events.

B.2 Event Classification
Instruction This input text gives information
about specific types of ongoing events. The output
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should be the types of events occurring in the text.
If there are no events, print NONE.

General example INPUT: The leaflets carried
several messages to the citizens attempting to re-
assure them that the advancing army " would not
target civilians , " but warned them to avoid the
known locations of Isis militants . The military
operation is the most complex carried out in Iraq
since US forces withdrew from the country in 2011
. Last week , the UN said it was bracing itself for
the world’s biggest and most complex humanitar-
ian effort following the battle , which it expects
will displace up to one million people and see
civilians used as human shields.</s>OUTPUT: con-
flict.</s>EXPLANATION: The event triggered by
"battle" refers to an event of the type "conflict"
which refers to a serious disagreement between
two or more entities.

Biomedical example INPUT: Left ventricu-
lar weight, body weight, and their ratio were
not significantly altered by alinidine treat-
ment.</s>OUTPUT: planned_process | regula-
tion</s>EXPLANATION: The input contains mul-
tiple events of planned_process and regulation type.

B.3 Event Detection

Instruction The text given as input discusses on-
going events. An event trigger is a word or phrase
that most clearly expresses the event occurrence.
Generate output in the format [event trigger->event
type] for all events in the text. If there are no events,
print NONE.

General example INPUT: The Organization
for Security and Cooperation In Europe ’s (
OSCE ) Office for Democratic Institutions and
Human Rights and the OSCE High Commis-
sioner on National Minorities issued a report
in September saying that since Russia ’s land
grab , fundamental freedoms had " deteriorated
radically " for many in Crimea , especially for pro -
Ukrainian activists , journalists , and the Crimean
Tatar community.</s>OUTPUT: land grab-
>transaction.exchangebuysell</s>EXPLANATION:
In this text, the event being discussed is the "land
grab", which functions as the event trigger. The
type of event it describes is a transaction, in which
ownership of entities is transferred.

Biomedical example INPUT: Left ventricu-
lar weight, body weight, and their ratio were

Figure 2: An example of an input instance for reformu-
lated generative ED. The input comprises a task defini-
tion followed by diverse domain examples before the
input sentence containing the events to be detected.

not significantly altered by alinidine treat-
ment.</s>OUTPUT: treatment->planned_process
| altered->regulation</s>EXPLANATION: The
word "treatment" in the input denotes a planned
process, while the "altered" indicates the sentence
talks about regulation.

C Extended Analysis

Hyperparameters GPU: 2x NVIDIA GTX1080
GPUs. We train for 50 epochs with a batch size
of 1. We use beam search decoding (Tillmann
and Ney, 2003) during inference to generate output
sequences. For beam search decoding, we use 50
beams.
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Figure 3: Result on event type extradition , which has
only 11 annotated instances.

Figure 4: EDM3 improving prediction on multi-class
triggers.

C.1 EDM3 improves single-task ED
performance on WikiEvents

Input:
Police in Calais have dispersed a rowdy anti-
migrant protest with tear gas after clashes with
protesters and detained several far-right demonstra-
tors.

Single-task:
detained->movement.transportperson

EDM3:
detained->movement.transportperson | clashes
->conflict.attack

Gold:
detained->movement.transportperson | clashes
->conflict.attack

C.2 Negative instances hamper ED
performance

From the dataset statistics in Table 9, we see that
the WikiEvents dataset has close to 54% instances
that have no annotated events, i.e. negative in-
stances. We hypothesize that this detracts from
the model’s ability to discern relevant events and
their types, and instead emphasizes the binary clas-
sification task of identifying event presence. We
analyze the effect of negative examples further ex-
perimentally (Table 6). The consistent trend of
higher Pos scores indicates that, given a sentence,

Dataset
#mwt

EM acc %

Train Test

MAVEN 2442 633 90.84
RAMS 228 20 88.89

Table 7: Results on multi-word triggers. #mwt: number
of multi-word triggers in training and testing data. EM
acc %: exact match accuracy, i.e. percentage of multi-
word triggers in test data predicted by our model.

our approach is better at extracting its events accu-
rately as opposed to identifying whether it contains
an event.

The difference between both metrics is stark in
the case of WikiEvents. We observe increased per-
formance (60.71% to 65.67% after beam search
decoding) over WikiEvents, which is significantly
higher than what we observe on other datasets.
From further analysis, we find that training on only
positive examples improves the ED performance
on event sentences by nearly 5%. Furthermore,
despite the fact that MAVEN has 168 event types
and WikiEvents has only 49 (Table 8), the ED per-
formance on MAVEN (62.4%) is higher than on
WikiEvents (58.7%). This indicates that rather than
the complexity of the ED task, the distribution of
positive and negative instances may hamper the
model’s ability to perform the task.

We attribute this to the much higher share of
negative instances in this dataset. The performance
drops over non-event sentences as the model may
predict event occurrence based on salient events in
the sentence, that are important in the context of
the sentence alone but are divorced from the sub-
ject of the document, and therefore annotated as
non-events. We explore this further in our discus-
sion of the need for multi-sentence context, which
may be a way to counter the negative impact of a
high proportion of non-event sentences on our ED
model.

C.3 Annotation issues

We present an approach that accurately extracts text
terms for event annotations while preserving case
sensitivity, a crucial factor in distinguishing differ-
ent event triggers. Improper extraction or human
error can lead to errors in existing annotations. Our
approach can identify such errors by highlighting
discrepancies in the case of event triggers. Addi-
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Figure 5: Example of an event with multi-word trigger (2 words)

Figure 6: Example of an event with multi-word trigger (4 words)

tionally, we observe an ambiguity in some anno-
tation schema, particularly in MAVEN, where the
extensive coverage of event types results in overlap-
ping event type definitions. For instance, the event
types motion, self_motion, and motion_direction
exhibit minor differences, leading to inconsistent
annotations. This ambiguity introduces noise into
the classification and ED subtasks. Our proposed
model resolves this issue and accurately extracts
all events in the corpus. We provide examples
that demonstrate the improved ED performance
achieved through multi-tasking.

D Data

The datasets we choose to demonstrate our ap-
proach on span a range of characteristics, from
sentence-level to multi-sentence level, with vary-
ing proportions of non-event instances. We also in-
clude a biomedical domain dataset to illustrate the
adaptability of our approach. In Table 8, we note
the document and event instance statistics across
datasets. Table 9 delineates the dataset statistics
post-data processing. We note the average and max-
imum number of events and distinct event types
that occur per data instance for each dataset. We
evaluate on two-level event type labels for RAMS
and WikiEvents.

MAVEN Wang et al. (2020) proposed this dataset
with the idea of combating data scarcity and low
coverage problem in prevailing general domain
event detection datasets. The high event coverage
provided by MAVEN results in more events per
sentence on average, including multi-word triggers,
as compared to other general domain ED datasets
(more details in App. C.3). The dataset, reflective

of real-world data, has a long tail distribution (see
Fig. 7).

We follow the example of SaliencyED (Liu et al.,
2022) and evaluate our model performance on the
development split of the original MAVEN dataset.

WikiEvents Existing work on this dataset pro-
posed by Li et al. (2021) focuses exclusively on
document-level argument extraction and event ex-
traction.

Sentences without any event occurrences make
up nearly half of the entire dataset (see Table 9). In
the absence of existing baselines, we establish the
benchmark performances on sentence-level ED on
this dataset for future researchers.

RAMS This dataset, created by Ebner et al.
(2020), is primarily geared towards the task of
multi-sentence argument linking. The annotated
argument roles are in a 5-sentence window around
the related event trigger.

In its native form, the dataset is geared towards
multi-sentence argument role linking. Using the
original configuration allows us to test the efficacy
of our model on the multi-sentence level. Further-
more, on the sentence level, the dataset is imbal-
anced: 77% of the sentences contain no events.
Training a model on this incentivizes event occur-
rence detection over ED.

MLEE This biomedical ED corpus by Pyysalo
et al. (2012) is taken from PubMed abstracts cen-
tered around tissue-level and organ-level processes.

The majority of the datasets used in this work
are Event Extraction (EE) datasets, maintaining
the scope of possible extensions of the proposed
reformulation and multi-tasking approach to EE.
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Figure 7: Distribution of event types in MAVEN. The distribution is a long-tail distribution, indicating strong class
imbalance.

Dataset Docs #triggers #typesTrain Dev Test
MLEE 131 44 87 8014 30
RAMS 3194 399 400 9124 38
MAVEN 2913 710 857 118732 168
WikiEvents 206 20 20 3951 49

Table 8: Dataset statistics, including number of docu-
ments per data split, as well as number of event triggers
and unique event types across the dataset.

Dataset Neg (%) Events per row Types per row #zsAvg Max Avg Max
MLEE 18.22 2.867 16 2.369 9 3
RAMS 0 1.066 6 1.061 4 0
MAVEN 8.64 2.433 15 2.314 15 0
WikiEvents 54.11 1.671 7 1.429 6 1

Table 9: Dataset statistics (post-processing) for training.
Neg%: Proportion of input instances with no event oc-
currences. Events per row: Number of event triggers
per input instance. Types per row: Number of unique
event types per input instance. #zs: Number of event
types in test split not seen during training.

Dataset Multi-word triggers Multi-class triggers

%instances %rows %instances %rows

RAMS 3.38 2.89 3.97 3.72
MAVEN 3.42 7.39 0.06 0.13

Table 10: Statistics on multi-word and multi-class trig-
gers in all datasets. %instances: the % of total triggers
present. %rows: the % of all input instances that contain
at least 1 multi-word or multi-class trigger.

Category Event type Example triggers

Anatomical

cell_proliferation proliferation, proliferate, growing
development formation, progression, morphogenesis
blood_vessel_development angiogenic, angiogenesis
death death, apoptosis, survival
breakdown dysfunction, disrupting, detachment
remodeling remodeling, reconstituted
growth proliferation, growth, regrowth

Molecular

synthesis production, formation, synthesized
gene_expression expression, expressed, formation
transcription expression, transcription, mRNA
catabolism disruption, degradation, depleted
phosphorylation phosphorylation
dephosphorylation dephosphorylation

General

localization migration, metastasis, infiltrating
binding interactions, bind, aggregation
regulation altered, targeting, contribute
positive_regulation up-regulation, enhancement, triggered
negative_regulation inhibition, decrease, arrests

Planned planned_process treatment, therapy, administration

Table 11: Event types in MLEE, along with example
triggers.

Event type Frequency Example triggers
process_start 2468 began, debut, took place
causation 2465 resulted in, caused, prompted
attack 2255 bombing, attacked, struck
hostile_encounter 1987 fought, conflict, battle
motion 1944 fell, pushed, moved
catastrophe 1785 explosion, hurricane, flooded
competition 1534 event, championships, match
killing 1380 killed, murder, massacre
process_end 1323 closing, complete, ended
statement 1269 asserted, proclaimed, said

Table 12: Top 10 event types in MAVEN, along with
example triggers.
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Event type Frequency Example triggers
conflict.attack 721 massacre, battle, bombing
movement.transportperson 491 smuggling, walked, incarcerate
transaction.transfermoney 482 reimbursed, paid, purchasing
life.die 442 die, murder, assassinating
life.injure 422 surgery, injured, brutalized
movement.transportartifact 367 imported, trafficking, smuggling
transaction.transferownership 327 auction, donated, acquire
contact.requestadvise 250 advocating, recommending, urged
contact.discussion 249 discuss, meet, negotiated
transaction.transaction 211 funded, donated, seized

Table 13: Top 10 event types in RAMS, along with
example triggers.

Event type Frequency Example triggers
conflict.attack 1188 explosion, shot, attack
contact.contact 530 met, said, been in touch
life.die 501 killed, died, shot
life.injure 273 injuring, wounded, maimed
movement.transportation 212 transferred, brought, arrived
justice.arrestjaildetain 176 arrested, capture, caught
artifactexistence.damagedestroydisabledismantle 103 damaged, destruction, removed
justice.investigatecrime 102 analysis, discovered, investigation
justice.chargeindict 96 charged, accused, alleged
artifactexistence.manufactureassemble 82 construct, make, build

Table 14: Top 10 event types in WikiEvents, along with
example triggers.

451


