
Leveraging Structured Data Input for Effective Chatbot
Integration in Enterprises

Caio Siqueira1, Orlando Guilarte1, Giuliano Ferreira1, Omar Leiva1

1Diretoria de Sistemas de Informação - PUC-Rio
Rua Marquês de São Vicente 225 – 22451-900 - Gávea - Rio de Janeiro, Brasil

{csiqueira,ofonsek,giuliano.biblioteca}@puc-rio.br

omarleivac@aluno.puc-rio.br

Abstract. This paper introduces an approach for integrating structured data
into chatbot applications. Utilizing our Mindmap tool, which hierarchically
organizes data and maps nodes to actions, we developed an augmented JSON
schema to improve chatbot contextual understanding and response accuracy. By
applying the Langchain suite and Retrieval-Augmented Generation techniques,
our method enhances data retrieval and processing from a vector store, signifi-
cantly improving interaction relevance.
Keywords: Chatbot Integration; Structured Data; RAG; Langchain

1. Introduction

In recent years, the evolution of consumer-facing software has led to heightened expec-
tations among corporate users for more intuitive and natural interactions with computer
systems. Traditionally, user interfaces in corporate environments have relied on window-
based interaction paradigms. However, the advent of sophisticated natural language
processing (NLP) technologies has begun to shift this paradigm, making natural lan-
guage interfaces increasingly desirable for enterprise applications [Weiying et al. 2019].
A significant milestone in this transition was the public release of ChatGPT by OpenAI
[OpenAI 2023]. The underlying technology behind ChatGPT is based on a Large Lan-
guage Model (LLM), a type of machine learning model trained on extensive datasets con-
taining diverse textual content. The scale of these training datasets allows LLMs to effec-
tively respond to a wide range of user inputs. However, deploying LLMs in corporate en-
vironments presents unique challenges. A key limitation is that these models are typically
not trained on proprietary data from private institutions, which must remain confidential
to protect organizational integrity and data privacy. To address this issue, researchers
have explored the use of knowledge graphs to further enhance LLMs [Wen et al. 2023],
and techniques such as Retrieval-Augmented Generation (RAG) have been developed to
provide LLMs with context derived from private datasets, thereby enhancing their rele-
vance and accuracy in enterprise settings [Lewis et al. 2020]. Despite the effectiveness
of these techniques, they often fall short of meeting the demands of corporate software
development, where frequent updates and rapid responses to organizational changes are
common. These approaches also face challenges such as difficulty in incorporating new
knowledge and explaining their reasoning processes [Wen et al. 2023].

This study proposes a mechanism for structuring data more effectively to feed
LLM-based chatbots with the contextual information necessary to provide accurate and

271



contextually relevant responses within corporate environments. Given the stringent re-
quirements of corporate settings, where control over generated outputs is paramount, the
approach outlined in this work prioritizes supervised interaction models over autonomous
agent-based systems. Unlike general public applications, where disclaimers can mitigate
the risks of inaccurate or flawed outputs, corporate environments require a higher level of
oversight to prevent potential adverse outcomes.

2. Conception

With the growing demand from our key clients, particularly those forming the consumer
base of our business model, for a more integrated and sophisticated LLM chatbot inter-
face, we developed an approach that leverages existing structured chatbot systems and the
data already mapped within these systems.

The structured chatbot system organized data into a hierarchical, tree-like struc-
ture, where each parent node represented a topic, and the child nodes indicated possible
responses or subtopics associated with that topic. This setup ensured a well-defined and
navigable dialogue structure. With the goal of creating an LLM-based chatbot integrated
with RAG — which employs a vector store for semantic retrieval — we developed a tool
capable of exporting this structured data for integration into the new system.

However, we identified significant limitations in our current software, which
only supported data generation in RTF (Rich Text Format), a format unsuitable for our
needs. To overcome this challenge, we developed a new tool to manage the registra-
tion of nodes and their associated child nodes. This led to the creation of a web-based
interface (Mindmap), built using advanced JavaScript frameworks (React with Next.js
[Vercel, Inc. 2024]).

The introduction of this tool significantly expanded the scope of the project, al-
lowing us to move beyond simple topic and child text nodes, enabling the creation of more
complex data structures tailored to specific objectives. One of the critical features devel-
oped was the mapping of nodes to actions, which dictate the operations to be executed by
the chatbot. The text registered within each node is subsequently parsed as parameters for
the corresponding action.

With the development of the Mindmap tool, we now have a robust platform that al-
lows for the systematic registration of necessary data and facilitates its export into formats
more suitable for subsequent processing.

(a) Screenshot of the Mindmap tool (b) Snippet of the augmented json

Figure 1. Generated augmented json

272



3. Proposed pipeline
The Mindmap tool exports hierarchical data as a structured JSON file, which is pro-
cessed into an augmented JSON using Python scripts within the Langchain suite
[LangChain Documentation ], currently associated with the GPT-4 model from OpenAI.
This augmented file incorporates questions and answers, derived from the hierarchy of
each node, its actions, and related metadata.

These questions and answers are generated based on the node’s actions and prede-
fined profiles. The resulting JSON is then used to populate a vector store database, serving
as the foundation for the chatbot’s RAG functionalities. The design is agnostic concern-
ing the chatbot engine’s method of consuming this data to construct its vector store or run
the inference itself. For example, a collaborating research group utilizes the vector store
without incorporating questions and answers, using them later to validate the generated
dataset. In contrast, internally, we employ the questions and answers to create documents
directly in the vector store. A comparative study on the efficacy of these strategies for
various use cases could be the focus of future research.

Table 1. Sample of node actions
Action name Action description
Fetch data on a website The node contains a URL and a CSS selector to fetch

data. Additionally, it contains a JUDGE text to check
if the data is similar to what is expected.

Use a vector store for
document

Given a document link, build a vector store specific
to that document. Once an initial query matches that
the answer should come from the document, a second
LLM query is used on that specific vector store.

Fetch an API Translate the user input into an API call. Translate the
return into readable output to serve for the user. The
node has instructions on how this should be done.

Serve node text Use the node text as context to provide an answer to
the user input.

4. Data structure
The output augmented JSON schema encapsulates several key elements, including the
list of actions within the exported object, the profiles used for generating questions and
answers, and the hierarchical structure of nodes and their children. Each node is assigned
a unique identifier and an update timestamp, generated by our Mindmap application, to
facilitate efficient updates in downstream consumer applications.

To enhance the functionality of each node, we introduced a supplementary struc-
ture termed ”helper.” Each action within a node is associated with a helper, which con-
sists of parameters parsed during the generation of the augmented JSON. Internally, our
team loads these helpers into the vector database, enabling their retrieval at runtime via
Langchain and Python.

Looking forward, a significant improvement on our roadmap involves integrat-
ing the Mindmap frontend tool with the Python backend responsible for generating the

273



augmented JSON structure. We also plan to migrate the generated content, including
questions and answers, into our relational database alongside the nodes. This integration
will streamline the workflow, allowing for direct export of the augmented JSON from the
Mindmap application, thereby enhancing the user experience and operational efficiency.

Table 2. Sample profiles used when generating questions and answers
Question Profile Profile description Used in
Computer science stu-
dent

You are a computer science
student who focuses your in-
put using direct messages

Questions

Language student You are a language student
with rich vocabulary

Questions

Internet user You are an unknown inter-
net user with poor gram-
mar which basically uses key-
words when interacting with
systems

Questions

Institutional chatbot You are an organization chat-
bot, which needs to answer in
a formal way never betraying
the ideals of the organization

Answers

5. Conclusion
The work we present proposes an innovative and cohesive approach to integrating the
entire workflow in creating a chatbot application that is closely coupled with its under-
lying data. By leveraging structured data input and the advanced functionalities of our
Mindmap tool, we have established a solid foundation that not only supports the contin-
uous generation of enhanced JSON structures but also facilitates real-time data retrieval
and processing through advanced technologies such as Langchain and Python.

The management of the Mindmap software is designed to be in the hands of the
process owners, ensuring that those who understand the intricacies of each process are
directly involved in its configuration and oversight. For example, one of our chatbot
instances is currently managed by our Process Management Office (EP) 1.

Our collaboration with the partner research group, the Applied Computational
Intelligence Laboratory (ICA) 2, has proven invaluable, providing critical insights and
valuable feedback for the continuous improvement of our tool.

Looking ahead, we are confident that the continued development and refinement
of this tool will further enhance our ability to integrate complex data structures with chat-
bot applications, ultimately contributing to more intelligent and responsive systems across
the organization. This work not only demonstrates the potential of structured data integra-
tion but also lays the groundwork for future innovations in the field of enterprise chatbot
solutions.

1Escritório de Processos - https://ep.dsi.puc-rio.br
2Laboratório de Inteligência Computacional Aplicada - https://ica.ele.puc-rio.br

274



References
LangChain Documentation. Langchain: Building applications with llms through com-

posability. n.d.

Lewis, P., Oguz, B., Rinott, R., Riedel, S., and Stenetorp, P. (2020). Retrieval-augmented
generation for knowledge-intensive nlp tasks. In Proceedings of the 34th Conference
on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

OpenAI (2023). Gpt-4 technical report. Technical report, OpenAI.

Vercel, Inc. (2024). React Foundations: About React and Next.js. Next.js Documentation.

Weiying, K., Pham, D. N., Eftekharypour, Y., and Pheng, A. J. (2019). Benchmarking nlp
toolkits for enterprise application. In PRICAI 2019: Trends in Artificial Intelligence:
16th Pacific Rim International Conference on Artificial Intelligence, Cuvu, Yanuca Is-
land, Fiji, August 26-30, 2019, Proceedings, Part III 16, pages 289–294. Springer.

Wen, Y., Wang, Z., and Sun, J. (2023). Mindmap: Knowledge graph prompting sparks
graph of thoughts in large language models. arXiv preprint arXiv:2308.09729.

275


	Cópia de 245343_1



