Text extraction from Knowledge Graphs
in the Oil and Gas Industry

Laura P. Navarro'?, Elvis A. de Souza??, Marco A. C. Pacheco 2

! Department of Electrical Engineering (ELE/PUC-Rio)
2Applied Computational Intelligence Lab. (ICA/PUC-Rio)
3Institute of Mathematical and Computer Sciences (ICMC/USP)

laurap@aluno.puc-rio.br, elvis.desouza99@gmail.com

Abstract. This paper presents a detailed methodology for extracting and analyz-
ing data from a knowledge graph designed to store complex geological informa-
tion. Our pipeline was designed after a deep understanding of the KG, focuses
on browsing, querying and transforming data using curated text templates. The
extraction methodology is based on graph triples, key classes, properties and re-
lationships, which ensures the relevance and truthfulness of the data obtained.
With the recent advancements in neural large language models, which perform
exceptionally well on open-domain tasks, our work addresses the challenge of
presenting LLMs with accurate closed-domain data—originating from graph-
based sources—in a readable and accessible textual format.

1. Introduction

Efficient data extraction from knowledge graphs is fundamental for research and anal-
ysis across several fields [Ali et al. 2022]. Generating textual information from knowl-
edge graphs involves identifying and extracting relevant information from the dataset,
and may include collecting facts, relationships, and entities. Once this information
has been extracted using SPARQL queries, it can be utilized to create coherent narra-
tives or descriptions based on the extracted data [Ribeiro et al. 2020, Mizell et al. 2014,
Koncel-Kedziorski et al. 2019].

Our goal is to generate accurate textual data to be ingested by a domain-specific
Q&A system based on PetroKGraph, a knowledge graph from the oil and gas domain.
Besides textual generation, we also generate questions and answers to evaluate the per-
formance of our closed-domain Q&A system. In this context, the correct interpretation of
data from a knowledge graph is crucial to understand the distribution and characteristics
of geological formations and wells. Based on a small knowledge graph with 4,472 entities
(and classes and relations) and using 29 text templates, we generate a dataset with 1,414
simple and 8,805 complex questions, along with 10,219 answers and respective contexts.

2. Related Work

Authors in [Peng et al. 2017] create a subgraph using keywords and then augment it us-
ing terms from SPARQL queries.! [Elbassuoni et al. 2010] search the knowledge graph

'SPARQL [Harris et al. 2013] is a standard query language for finding and processing data in graph
databases, it enables users to execute complicated queries to retrieve particular information. The main
types of queries include SELECT, ASK and DESCRIBE to extract data by matching graph patterns.

502

503

dominated by extended SPARQL, which augments the triple patterns in SPARQL with
keyword criteria. [Koncel-Kedziorski et al. 2019] explore and improve the process of
generating multi-sentence text from automatically extracted information using knowledge
graphs; in this work they introduce, GraphWriter, a model which leverages the structured
representation of KG form to enhance the quality and coherence of generated texts.

Other approaches, such as graph-to-text generation, aim to produce fluent texts
from graph-based data [Colas et al. 2022, Yuan and Firber 2023]. In order to assess
the effects of various task-adaptive pretraining techniques in graph-to-text generation,
[Ribeiro et al. 2020] examine pretrained language models, BART [Lewis 2019] and TS5
[Raffel et al. 2020]. For our approach, we use text templates tailored by domain special-
ists, therefore the use of generative language models was not required.

3. PetroKGraph

Knowledge Graphs (KG) include various types of vertices and edges, which may be de-
noted as G = (V, E/, R). Here, V is a collection of vertices or entities, R is a collection
of relationships, and each edge is specified by its relation type » € R, which means
that edges can be represented as triplets. RDF (Resource Description Framework) triples
follow the structure of subject-predicate-object to represent data [Manola et al. 2004].

[Cordeiro et al. 2024b] present a methodology for extracting geoscientific entities
and relations from technical documents, which was used to populate a knowledge graph
called PetroKGraph, specifically developed for the oil and gas industry. The construc-
tion of PetroKGraph involved leveraging natural language processing (NLP) resources,
including annotated corpora and embedding models, under the framework of Petro NLP
[Cordeiro et al. 2024a]. This process was guided by the PetroKGraph Ontology, a geolog-
ical ontology populated with classes, instances, subclasses, and relations extracted from
technical documents and compiled by geoscientists. We used the PetroKGraph Ontology
to generate the text dataset, and it used RDF to store the information.

4. Methodology

In order to extract contexts from PetroKGraph, a well-structured data extraction pipeline
is required.? Figure 1 provides a systematic way to navigating, querying, and transform-
ing data embedded in the RDF framework. The procedure begins with understanding the
RDF graph structure, which is required to ensure that subsequent extraction methods are
successful. By establishing the foundation with a thorough understanding of RDF princi-
ples, schema analysis, and graph exploration, we can efficiently construct a pipeline.

We start by understanding the RDF graph structure of PetroKGraph using Protégé
software? to visualize and explore its nodes, relationships, and entities. Also, we employ
SPARQL to query and analyze the graph’s data patterns. We find that the PetroKGraph
has 2,069 entities and 26 relations. Some of the entities and relations include: basins,
fields, well, texture, lithostratigraphic_unit, constituted_by, located_in, crosses,
has_age, participates_in and part_of.

To extract and analyze data from an RDF graph, we first set up a suitable envi-
ronment by installing Python and essential libraries, specifically rdflib. After installation,

2We use contexts as textual statements encoding the knowledge from a KG in natural language.
3https://protege.stanford.edu/

Understand the RDF
Graph Structure

Setup the Extraction

Define Extraction Queries

Transform Data

504

Generate Output
Dataset

Data is represented as triples
(subject, predicate, object).
Exploring using Protégé and SPARQL

oY

PetroKGraph

|

1. Connect to the RDF
Graph using RDFLib

2. Execute SPARQL Queries
from nodes and relations.

3. Apply Specific Data
Transformations

>

Determine which entities and
relationships are of interest.

Example using SPARQL Query:
PREFIX ex: <htt
SELECT ?basin
WHERE {
?basin a ex:basin .
?field ex:located_in ?basin .
?well ex:located_in ?field. }

p:/
?field ?well

/[example.oxg/>

Use the extracted data to
perform specific analyses, such
as counting wells crossing
formations for each material.

Data Transformation:

Convert the question, query results
and answer into a usable format,
such as a dictionary.

1. Generate a
structured dataset
with the extracted and
processed data.

2. Save the final
dataset to a JSON file.

Figure 1. Pipeline for Data Extraction from RDF Knowledge Graph - PetroKGraph

we use rdflib to load the RDF graph into the environment. With a clear grasp of the
RDF triples, key classes, properties, and relationships, we can now proceed to design and
implement the pipeline. In this implementation phase, we determine which entities and
relationships are of interest to effectively query, extract, and transform data. We write
SPARQL queries and algorithms to extract relevant data from the PetroKGraph (Fig. 1).

We start transforming data by running SPARQL queries and algorithms as shown
in next section 5. A dataset of context, question, and answer is created by these queries,
which retrieve pertinent information based on criteria for Portuguese.

5. Experimental Results

Algorithm 1 is designed to process lithostratigraphic units or geological formation data,
focusing on mapping materials to the formations they constitute. This is particularly
useful in geological contexts, where the algorithm iterates through formations, extracts
relevant material information, and automatically generates questions based on the rela-
tionships between geological formations and their materials.

Algorithm 1 Query to retrieve the materials that constitute each lithostratigraphic unit
1: materials_to_formations « {}
2: for all formacoes, info in formations.items() do
3: if info[“constituted_by”] is not empty then

4: formation_name <— info[“labels”][0] if info[“labels”] else formacoes
5: for all material in info[“constituted_by”’] do
6: material_id <— material.split(“#”)[1]
7 material_name < str(g.value(URIRef(namespace + material_id), rdfs.label))
8: if material name not in materials_to_formations then
9: materials_to_formations[material_name] < []
10: end if
11: materials_to_formations[material_name].append(formation_name)
12: end for
13: end if
14: end for
After processing all formations, the «code iterates over the

materials_to_formations dictionary as shown in Algorithm 2. For each material,
it constructs a question about which lithostratigraphic units (formations) are constituted
by that material. The question, along with the list of formations (as the answer) and a
contextual statement, is stored in a questions list and saved in the dataset’s JSON file.

505

Algorithm 2 Generate questions for lithostratigraphic units by material
1: for material_name, formation_name in materials_to_formations.items() do

T3]

2: all_formations_names <— “, ”.join(formation_name)

3 formations_list < [str(formacao) for formacao in formation_name]

4 questions.append({

5: “question”: f*“Que unidades litoestratigraficas sdo constituidas por {material_name}?”,

6 “answer”: formations_list,

7 “context”: f“As unidades litoestratigrificas constituidas pelo {material name} sdo:
{all_formations_names}.”

8}

9: end for

Additionally, we used a different type of query, such as Algorithm 3, which re-
trieves information about basins from a SPARQL endpoint, basins (?basin) and lithos-
tratigraphic units (?lithostratigraphic_unit) intersected by wells located in those basins.
After processing all formations and basins, populates a list of question-answer pairs about
the basins containing a specific geological formation.

Algorithm 3 SPARQL query to retrieve basins with specific lithostratigraphic units

1: SELECT ?basin ?litho_unit
2: WHERE { ?basin rdf:type ont:basin

3: ?litho_unit rdf:type ont:lithostratigraphic_unit
4: ?well ont:crosses ?litho_unit
5 ?well ont:located.in ?basin . }

Table 1 presents a few text templates designed to extract specific information from
PetroKGraph using the data extraction pipeline in Fig. 1. Each row represents a specific
query formulated to obtain details about different aspects of the PetroKGraph, such as
field locations and geological age of formations. This table illustrates the effectiveness of
the queries and the applicability of the extraction method for collecting pertinent data.

Table 1. Text templates developed to extract information from PetroKGraph

id | Query Relation
1 | Onde esta localizado o campo {campo_name}? located_in
2 | Onde atravessa o poco {well_name}? Crosses

3 | Qual é a idade geoldgica de {formation_name}? has_age

4 | Qual é a entidade que faz parte de {formation_name}? | part_of

6. Conclusions

We develop a dedicated pipeline for extracting and analyzing complex geological data
by utilizing the pre-existing PetroKGraph. We generated a dataset of 10,219 items, each
consisting of a question, an answer, and a context. It will be used in a question answering
(Q&A) system based on Retrieval-Augmented Generation (RAG), both for ingestion and
for evaluating its performance in a closed-domain setting. This system will combine
efficient data retrieval with contextual answer generation, enhancing the ability to provide
accurate and relevant responses based on the information extracted from the PetroKGraph.
Integrating this dataset into the Q&A system will enable smoother and more precise text
generation from LLMs.

506

Acknowledgments

This work was supported in part by the Brazilian National Agency of Petroleum, Natural
Gas and Biofuels (ANP) and the Brazilian National Council for Scientific and Technolog-
ical Development (CNPq) under Grant 140506/2023-3.

References

[Ali et al. 2022] Ali, W., Saleem, M., Yao, B., Hogan, A., and Ngomo, A.-C. N. (2022).
A survey of rdf stores & sparql engines for querying knowledge graphs. The VLDB
Journal, pages 1-26.

[Colas et al. 2022] Colas, A., Alvandipour, M., and Wang, D. Z. (2022). Gap: A graph-
aware language model framework for knowledge graph-to-text generation. arXiv
preprint arXiv:2204.06674.

[Cordeiro et al. 2024a] Cordeiro, F. C., da Silva, P. F,, Tessarollo, A., Freitas, C., de Souza,
E., Gomes, D. d. S. M., Souza, R. R., and Coelho, F. C. (2024a). Petro nlp: Resources
for natural language processing and information extraction for the oil and gas industry.
Computers & Geosciences, page 105714.

[Cordeiro et al. 2024b] Cordeiro, F. C., Silva, P. F. d., Gomes, D. d. S. M., Souza, R. R.,
Coelho, F. C., and Ell, B. (2024b). Petro kgraph: A methodology for extracting knowl-
edge graph from technical documents-an application in the oil and gas industry. Avail-
able at SSRN 4776804.

[Elbassuoni et al. 2010] Elbassuoni, S., Ramanath, M., Schenkel, R., et al. (2010). Search-
ing rdf graphs with sparql and keywords. IEEE Data Eng. Bull., 33(1):16-24.

[Harris et al. 2013] Harris, S., Seaborne, A., Prud’hommeaux, E., et al. (2013). Sparql 1.1
overview. W3C recommendation.

[Koncel-Kedziorski et al. 2019] Koncel-Kedziorski, R., Bekal, D., Luan, Y., Lapata, M.,
and Hajishirzi, H. (2019). Text generation from knowledge graphs with graph trans-
formers. arXiv preprint arXiv:1904.02342.

[Lewis 2019] Lewis, M. (2019). Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461.

[Manola et al. 2004] Manola, F., Miller, E., McBride, B., et al. (2004). Rdf primer. W3C
recommendation, 10(1-107):6.

[Mizell et al. 2014] Mizell, D., Maschhoff, K. J., and Reinhardt, S. P. (2014). Extending
sparql with graph functions. In 2014 IEEFE International Conference on Big Data (Big
Data), pages 46-53. IEEE.

[Peng et al. 2017] Peng, P., Zou, L., and Qin, Z. (2017). Answering top-k query combined
keywords and structural queries on rdf graphs. Information Systems, 67:19-35.

[Raffel et al. 2020] Raffel, C., Shazeer, N., Roberts, A., Lee, K., et al. (2020). Exploring the
limits of transfer learning with a unified text-to-text transformer. Journal of machine
learning research, 21(140):1-67.

507

[Ribeiro et al. 2020] Ribeiro, L. F., Schmitt, M., Schiitze, H., and Gurevych, 1. (2020). In-
vestigating pretrained language models for graph-to-text generation. arXiv preprint
arXiv:2007.08426.

[Yuan and Farber 2023] Yuan, S. and Firber, M. (2023). Evaluating generative models for
graph-to-text generation. arXiv preprint arXiv:2307.14712.

