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Abstract

Automated fact-checking systems verify
claims against evidence to predict their verac-
ity. In real-world scenarios, the retrieved evi-
dence may not unambiguously support or
refute the claim and yield conflicting but valid
interpretations. Existing fact-checking data-
sets assume that the models developed with
them predict a single veracity label for each
claim, thus discouraging the handling of such
ambiguity. To address this issue we present
AMBIFC,1 a fact-checking dataset with 10k
claims derived from real-world information
needs. It contains fine-grained evidence an-
notations of 50k passages from 5k Wikipedia
pages. We analyze the disagreements aris-
ing from ambiguity when comparing claims
against evidence in AMBIFC, observing a
strong correlation of annotator disagreement
with linguistic phenomena such as underspec-
ification and probabilistic reasoning. We de-
velop models for predicting veracity handling
this ambiguity via soft labels, and find that a
pipeline that learns the label distribution for
sentence-level evidence selection and veracity
prediction yields the best performance. We
compare models trained on different subsets
of AMBIFC and show that models trained on
the ambiguous instances perform better when
faced with the identified linguistic phenomena.

1 Introduction

In Natural Language Processing, the task of auto-
mated fact-checking is given a claim of unknown
veracity, to identify evidence from a corpus of
documents, and predict whether the evidence sup-

1https://github.com/CambridgeNLIP/verification
-real-world-info-needs.

ports or refutes the claim. It has received consid-
erable attention in recent years (Guo et al., 2022)
and gained renewed relevance due to the hallu-
cination of unsupported or even false statements
in natural language generation tasks, including
information-seeking dialogues (Dziri et al., 2022;
Ji et al., 2023).

Automated fact-checking is closely related to
natural language inference (NLI) where the evi-
dence is considered given (Thorne et al., 2018;
Wadden et al., 2020; Schuster et al., 2021). Sev-
eral studies (Pavlick and Kwiatkowski, 2019; Nie
et al., 2020; Jiang and Marneffe, 2022) have shown
that NLI suffers from inherent ambiguity leading
to conflicting yet valid annotations. To address
this, recent work has focused on utilizing these
conflicting annotations, especially when aggre-
gated labels are not considered to adequately rep-
resent the task (Plank, 2022; Leonardelli et al.,
2023).

Many fact-checking datasets are purpose-made
rather than naturally occurring, similar to those
used in NLI; their claims are often created by
manipulating sentences from the evidence docu-
ments (Thorne et al., 2018; Jiang et al., 2020; Aly
et al., 2021). As a result, they are unlikely to rep-
resent real-world information needs, as they are
written with knowledge of the evidence. On the
other hand, in datasets with real-world claims
evidence is often used without manual annota-
tion, assuming that it is sufficient (Glockner et al.,
2022). If evidence annotation is performed, data-
sets include artificially created incorrect claims,
ensuring that the used evidence contradicts the
claims (Wadden et al., 2020; Saakyan et al., 2021),
or exhibits low annotator agreement (Hanselowski
et al., 2019; Diggelmann et al., 2020) without
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Figure 1: An example of an instance of claim and Wikipedia passage which is ambiguous due to underspecifi-
cation. We consider all supporting (S), refuting (R), and neutral (N) annotations as valid perspectives. Given
a claim and a Wikipedia passage, the model must predict soft labels derived from these annotations.

attempts to handle ambiguity. However, even hu-
man fact-checkers often disagree, particularly in
ambiguous cases (Lim, 2018).

More concretely, the claim that ‘‘it is illegal
in Illinois to record a conversation’’ in Figure 1
seems clear on its own, yet becomes ambiguous
when compared to the evidence, as it is underspec-
ified. The claim does not explicitly state whether
the recording was done surreptitiously (i.e., secre-
tively), allowing for various interpretations: (a)
as refuting the claim since it is legal if not done
surreptitiously, and (b) as neutral as it is impos-
sible to determine whether it refutes or supports
the claim without information about the record-
ing intent. Surreptitious recording only pertains to
a specific case and none of the annotators deemed
it as prominent enough to provide overall support
for the claim.

In this study we aim to investigate the pres-
ence of such ambiguities in fact-checking using
realistic claims and evidence. To this end, we
present AMBIFC, a large fact-checking dataset de-
rived from real-world information needs, sourced
from real-world yes/no questions of BoolQ (Clark
et al., 2019). AMBIFC contains evidence annota-
tions at the passage and sentence level from full
Wikipedia pages, from a minimum of five annota-
tions per instance. Unlike previous fact-checking
datasets we consider each annotation as a valid
perspective of the claim’s veracity given a
Wikipedia passage as evidence, and task mod-
els to predict the veracity via soft labels that con-
sider all annotations. We provide explanations
for the annotator disagreement via our annota-
tions of linguistic phenomena, inspired by Jiang
and Marneffe (2022), adding inference types id-

iosyncratic to fact-checking. Further, we exper-
iment with three established methods to model
annotator disagreement. Our work emphasizes
the importance of ambiguity within automated
fact-checking and takes a step towards incorporat-
ing ambiguity into fact-checking models.

2 Related Work

Disagreement among humans are often studied
in computational argumentation. Habernal and
Gurevych (2017) create a realistic dataset for min-
ing arguments from online discussions, covering
various topics. Perspectrum (Chen et al., 2019)
gathers different perspectives supported by evi-
dence and their stance on claims. However, com-
putational argumentation focuses on controversial
topics with diverse legitimate positions, while au-
tomated fact-checking focuses on claim factuality.

In automated fact-checking, earlier works con-
structed complex claims from question answer-
ing datasets (Jiang et al., 2020; Tan et al., 2023;
Park et al., 2022) or knowledge graphs (Kim
et al., 2023). Our work is most comparable to
FaVIQ (Park et al., 2022), which was also gener-
ated from real-world information needs questions.
Unlike AMBIFC, it lacks evidence annotations and
utilizes disambiguated question-answer pairs from
AmbiQA (Min et al., 2020), hence excluding the
natural ambiguity of claims based on real-world
information needs, studied in this work.

Other works gathered claims from credi-
ble sources such as scientific publications or
Wikipedia, using cited documents as evidence.
This provides realistic claims which are only sup-
ported by evidence, and requires the generation
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of artificial refuted claims (Sathe et al., 2020;
Wadden et al., 2020; Saakyan et al., 2021), or only
distinguishes between different levels of support
(Kamoi et al., 2023). Another line of research col-
lects claims from professional fact-checking or-
ganizations. These works often face disagreement
among annotators but do not handle ambiguity
(Hanselowski et al., 2019; Sarrouti et al., 2021),
or do not provide annotated evidence (Augenstein
et al., 2019; Khan et al., 2022). The recently pub-
lished AVeriTeC dataset (Schlichtkrull et al.,
2023) reconstructs the fact-checkers’ reasoning
via questions and answers from evidence docu-
ments. In AMBIFC we consider claims that are
interesting according to the search queries used
in constructing BoolQ (Clark et al., 2019), not
claims deemed check-worthy by fact-checkers.
Additionally, we provide passage- and sentence-
level annotation, and address uncertainty and
disagreement.

In the domain of NLI, Nie et al. (2020, Chaos-
NLI) presented a comprehensive annotation of
NLI items, involving 100 annotators for each
item. Jiang and Marneffe (2022) further inves-
tigate the causes of disagreement in ChaosNLI,
categorizing them into pragmatic and lexical fea-
tures, as well as general patterns of human be-
havior under annotation instructions. Our work
extends the existing work in NLI to fact-checking,
by examining the types of linguistic phenomena
common in the two tasks. Plank (2022) and Uma
et al. (2022) provide overviews of the current
state of modeling and evaluation techniques for
data with annotation variance. They highlight
various methods, such as calibration, sequential
fine-tuning, repeated labeling, learning from soft
labels, and variants of multi-task learning.

3 Preliminaries

Each instance (c, P ) comprises a claim c and
a passage P from Wikipedia. A passage P =
[s1, s2, . . . , sn] is composed of n sentences si.
Annotations are collected for the entire passage P
and for each individual si ∈ P , indicating their
stance towards c as supporting, refuting, or neu-
tral. These ternary sentence-level annotations ex-
pressing stance towards the claim can be mapped
to binary annotations by treating non-neutral an-
notations as ‘‘evidence’’ regardless of stance. We
do not aggregate passage-level annotations into
hard veracity labels. Instead, for each (c, P ) we

use soft labels, representing the veracity as a dis-
tribution of the passage-level annotations given
a claim.

We specifically focus on the fact-checking sub-
tasks of Evidence Selection (Ev.) and Veracity
Prediction (Ver.) for each claim-passage instance
(c P ). We consider each sentence si as part of
the evidence E for c if at least one non-neutral
annotation for it exists. For the evidence selec-
tion subtask, the model must select all evidence
sentences si ∈ E in P . In the veracity predic-
tion subtask, the model must predict the veracity
of c given P using soft labels that represent
the annotation distribution at the passage level
(Figure 1). In addition to comparing the pre-
dicted and human label distributions, we assess
the models using less stringent metrics (out-
lined in §6.2.2) to accommodate potential annota-
tion noise.

4 The AMBIFC Dataset

To create the claims and annotate them with ev-
idence, we followed a two-step process. First,
crowd-workers transformed questions from BoolQ
into assertive statements. Second, the crowd-
workers labeled evidence sentences and passages
from a Wikipedia page to indicate whether they
support or refute the corresponding claim.

Claims BoolQ comprises knowledge-seeking
user queries with yes-or-no answers, similar to
fact-checking intentions. Dataset instances are
generated by rephrasing these queries into claims.
Two annotators on Mechanical Turk rephrase each
BoolQ question as a claim, with instructions to re-
tain as many tokens from the original question
as possible. In case the claims by the two anno-
tators were different, they were included in the
dataset after manual review. The crowd-workers
underwent a qualification round evaluated by the
authors. A total of 512 unique annotators with
a 95% acceptance rate completed the task; 20%
of HITs were used for worker qualification and
training, 80% form the final dataset.

Evidence Annotation For each claim, the full
Wikipedia page from BoolQ containing the an-
swer to the yes/no question was used as evidence.
To prevent positional bias, where annotators con-
centrate on a page’s beginning, and annotator
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fatigue, pages were divided into multiple passage-
level annotation tasks (capped at 20 contiguous
sentences). Annotators assessed each sentence in
a passage as supporting, refuting, or neutral to-
wards the claim, and provided an overall judg-
ment of the claim’s veracity given the passage.
Passages without evidence sentences were la-
beled neutral. In anticipation of potentially low
inter-annotator agreement as observed in compa-
rable annotation tasks (Hanselowski et al., 2019;
Diggelmann et al., 2020), we introduce a sec-
ond level of passage annotation to indicate uncer-
tainty: If annotators chose ‘‘neutral’’ they could
additionally flag passages as ‘‘relevant’’ to differ-
entiate it from entirely unrelated passages. Non-
neutral passage annotations could be flagged as
‘‘uncertain’’ by the annotators. We treat both of
these additional labels (‘‘relevant’’ for ‘‘neutral’’
instances and ‘‘uncertain’’ for non-neutral ones)
as indicators of unclear decision boundaries. Pas-
sages received two initial annotations, with an
additional three for passages with at least one
supporting or refuting initial annotation, resulting
in five annotations per instance in these cases.
Instances with identical claims (from identical
paraphrasing of questions by different annotators)
and passages were merged, resulting in instances
with more than five annotations.

Quality Controls Annotators underwent a
3-stage approval process consisting of a qualifi-
cation quiz, manual review of their first 100 HITs
and continuous manual review. Errors were com-
municated to them to provide formative feedback.
A batch of claims was sampled daily for contin-
uous manual review during annotation. The au-
thors reviewed and accepted 12,137 HITs (5.2%
of all annotation tasks), while corrections were
provided for additional 400 HITs, indicating a
3.2% error rate where annotators deviated from
guidelines, not due to differences in opinion. The
number of HITs reviewed for each annotator
was proportional to the annotator’s error rate and
the number of annotations submitted. Annotation
times were used to calibrate worker hourly pay
at $22.

Agreement The inter-annotator agreement in
terms of Krippendorff’s α on the collected data
is 0.488 on the passage veracity labels and 0.394
on the sentence level. The disagreement implies
that single labels cannot capture all valid view-

AMBIFCC AMBIFCU

2-4 Ann. 5+ Ann. 5+ Ann.
Claims 6,241 4,613 9,380
Wiki Pages 3,418 2,732 4,789
Cl./Passage 18,214 6,475 26,680
Cl./Sentence 141,079 49,497 223,370
Pass. Ann.
Has N 100% 38.7 % 93.1 %
Has S 0% 82.2 % 78.4 %
Has R 0% 29.0 % 42.0 %
Has S & R 0 % 11.3 % 21.6 %

Table 1: AMBIFC statistics including passages
containing Supporting, Refuting, and/or Neutral
annotations.

points, necessitating the use of soft labels for
evaluation. Fully neutral samples have only two
annotations (as per dataset construction), which is
insufficient for reliable evaluation of soft labels,
unless we can ensure that they are indeed 100%
neutral. We estimate the probability of misclassi-
fying an instance as fully neutral when only seeing
two annotations, by randomly selecting two an-
notations from samples with 5+ annotations. The
likelihood of wrongly assuming an instance as
fully neutral when observing two neutral annota-
tions is 0.9% for the entire dataset but it increases
up to 20.9% when sampling from uncertain in-
stances. Using this estimate, we omit fully neutral
(but ‘‘relevant’’) instances from our experiments,
while retaining them in our linguistic analysis
in §5.2.

Subsets of AMBIFC We partitioned instances
into subsets based on the additional labels ‘‘rel-
evant’’ (for neutral passages) and ‘‘uncertain’’
(for non-neutral passages) provided by the an-
notators. Instances marked with either of these
labels by any annotator form the ‘‘uncertain’’
subset (AMBIFCU), while the remaining instances
form the ‘‘certain’’ subset (AMBIFCC). We split
AMBIFC into train/dev/test splits with the propor-
tions of 70/10/20 for both AMBIFCC and AMBIFCU

based on instances (c, P ). We ensure each
Wikipedia page only exists in one split, and that
the claims and Wikipedia pages occur in the same
split regardless of their belonging to AMBIFCC

or AMBIFCU. The entire AMBIFC includes 51,369
instances (c, P ) with 10,722 unique claims and
5,210 unique Wikipedia pages (Table 1). Similar
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Figure 2: Evidence by section for claims and passages.

to VitaminC (Schuster et al., 2021), each claim is
annotated based on different evidence passages.
Consequently, the same claim may have differing
veracity labels depending on the passages. This
helps diminish the influence of claim-only biases
(Schuster et al., 2019), and allows the same claim
to be present in both subsets with different ev-
idence passages. For 7,054 claims (65.8%), (c,
P ) instances exist in both subsets, AMBIFCU and
AMBIFCC. Passages with contradictory veracity
labels are substantially more frequent in AMBIFCU

than in AMBIFCC (21.6% vs 11.3%). Instances
in AMBIFCU have at least one non-neutral an-
notation, as per the dataset annotation process.
However, 93.1% of them additionally contain
at least one neutral annotation, indicating pos-
sibly insufficient evidence. Thus, models cannot
achieve high performances when relying on spu-
rious correlations within the claim only (Schuster
et al., 2019; Hansen et al., 2021).

Positional Analysis Wikipedia pages have gen-
eral information in the introduction and more
specific details in later sections. In contrast to
FEVER, which only uses introductions, our ap-
proach involves utilizing passages from entire
Wikipedia pages. Figure 2 visualizes the detected
evidence per Wikipedia section, revealing that a
substantial number of passages from later sections
contain evidence for or against the claim. The
curves show cumulatively the number of claims
with evidence found per section when considering
passages with at least 10% or 50% of non-neutral
annotations as evidence. While most claims have
sufficient evidence in the early sections, there are
still many claims that require later sections to be
verified.

Krippendorff’s α

Label Samples AMBIFCC AMBIFCU

Sentence
binary all 0.607 –

binary 5+ Ann. 0.563 0.314

ternary all 0.595 –

ternary 5+ Ann. 0.560 0.302
Passage

stance all 0.815 –

stance 5+ Ann. 0.553 0.206

Table 2: Krippendorff’s α over different subsets.
Samples in the bold are used for AMBIFC.

5 Disagreement Analysis

5.1 Quantitative Analysis

Agreement over Subsets Table 2 shows the
agreement results for both subsets. We compared
ternary and binary evidence labels at the sen-
tence level. The inter-annotator agreement for
the instances (‘‘all’’) in AMBIFCC is 0.607 when
calculated with binary labels and 0.595 with
ternary labels. For the utilized instances in AMBI-
FCU, the agreement is 0.314 with binary labels
and 0.302 with ternary labels. The minor differ-
ences in agreement under both labeling schemes
suggest that annotators with conflicting interpreta-
tions may emphasize different evidence sentences
rather than assigning opposing labels to the same
sentences. The agreement is consistently higher
for the certain subset compared to the uncer-
tain subset. The passage-level agreement for the
certain subset, measured by Krippendorff’s α, is
0.815. When computed over instances with 5+ an-
notations (removing neutral instances with perfect
agreement as they did not receive annotations be-
yond the first two) the agreement drops to 0.553.
We observe much poorer agreement (0.206) on
AMBIFCU. The difference in inter-annotator agree-
ment between these two subsets, based on the
annotators’ own judgment, signals their awareness
of alternative interpretations on these instances.

Agreement over Sections Continuing from the
positional analysis (§4), we explore whether the
position of evidence passages within sections
affects annotator disagreement. Figure 3 visu-
alizes the number of instances (solid) and average
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Figure 3: Passage-level annotation entropy (dashed)
and count (solid) per section over samples with 5+
annotations.

passage-level annotation entropy (dashed), sepa-
rated by subset. We only consider passages with
5+ annotations. The entropy is relatively stable
within each subset, but substantially different
between them. Instances from AMBIFCC mostly
contain evidence in the first section, with few
samples in later sections considered certain by
annotators. In contrast, instances from AMBIFCU

appear throughout most sections.

Agreement per Veracity Interpretation We
aim to determine if different annotators focus
on different, or on the same sentences of a pas-
sage when assigning contradictory veracity labels
to a claim.2 To examine this, we calculate the
agreement among sentence annotations over bi-
nary evidence labels in two scenarios: (1) between
all annotations of the same instance (c, P ), and
(2) between all annotations of the same instance
when annotators assigned the same veracity label
yp to the claim (c, P , yp). The results are reported
in Table 3. To compare, we need at least two
annotators per instance and veracity label. This
yields annotations for 15,814 (c, P ) instances
(32.3% of all instances with 5+ annotations). Due
to this selection, this subset represents a highly
ambiguous subset of AMBIFC. As expected, the
evidence inter-annotator agreement computed at
the instance level is poor. When only comparing
the evidence annotations among annotators who
assigned the same veracity label, the agreement
is substantially higher. This suggests that annota-
tors deemed different sentences as important when
assigning different veracity labels.

2Contradictory sentence- and passage-level annotations
by the same annotator occur only in 0.8% (389 instances).

Subset Size Agreement per α

AMBIFCC 1,000
Instance .404

Veracity .601

AMBIFCU 14,814
Instance .250

Veracity .561

AMBIFC 15,814
Instance .264
Veracity .565

Table 3: Sentence-level Krippendorff’s α of ev-
idence annotations between all annotators of the
same Instance, or Veracity interpretation on the
same instance.

5.2 Linguistic Analysis
To assess the extent to which annotator disagree-
ment in AMBIFC can be attributed to ambiguity,
we conduct a statistical analysis that examines
various forms of linguistic inference in the data
and their relationship to annotator disagreement
on veracity labels. We hypothesize that lexical,
discourse, and pragmatic inference contributes to
disagreements. The inference classes considered
are Implicature, Presupposition, Coreference,
Vagueness, Probabilistic Enrichment, and Un-
derspecification, and examples of each type are
shown in Table 4. Implicature concerns con-
tent that is suggested by means of conversational
maxims and convention, but not explicitly stated
(Grice, 1975). A Presupposition refers to accepted
beliefs within a discourse (Karttunen, 1974).
Coreference is used here as a shorthand for dif-
ficulty in resolving coreference of ambiguous
denotations (Hobbs, 1979), Vagueness describes
terms with fuzzy boundaries (Kenney and Smith,
1997), and Probabilistic Enrichment is a class
for inferences about what is highly likely but not
entailed. These classes closely follow the frame-
work of Jiang and Marneffe (2022), with changes
as follows.

Experimental research has explored the is-
sue of Underspecification in generic statements
in relation to human cognitive predispositions
(Cimpian et al., 2010). They show that generic
statements are inconsistently interpreted, suggest-
ing a potential for discourse manipulation. We
found many instances of generic underspecified
claims in AMBIFC, such as the last example in
Table 4. The claim is false in Britain, but ill-
defined elsewhere, leading to disagreement on
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Example Inference interpretation Annotations

IMPLICATURE

Claim: Red eared sliders can live in the ocean.
Evidence: In the wild, red-eared sliders brumate over the winter
at the bottoms of ponds or shallow lakes.

Listing the types of bodies of water that red
ear sliders brumate in implies that the ocean
is not one of them.

[N, N, R, R,
R, R]

PRESUPPOSITION

Claim: The Queen Anne’s Revenge was a real ship.
Evidence:On June 21, 2013, the National Geographic Society
reported recovery of two cannons from Queen Anne’s Revenge.

The evidence presupposes that Queen
Anne’s Revenge is an existing ship by stating
that parts of it were recovered.

[S, S, S, S,
N]

COREFERENCE

Claim: Steve Carell will appear on the office season 9.
Evidence: This is the second season not to star Steve Carell as
lead character Michael Scott, although he returned for a cameo
appearance in the series finale.

Whether the claim is supported or refuted
depends if ‘series finale’ and ‘season 9’
have the same referent.

[S, S, S, S,
S, R, R]

VAGUENESS

Claim: Gibraltar coins can be used in the UK.
Evidence: Gibraltar’s coins are the same weight, size and metal
as British coins, although the designs are different, and they
are occasionally found in circulation across Britain.

The veracity judgment depends on the mean-
ing of the word ‘can’ being interpreted as ‘be
able to’ or ‘be legally allowed to’.

[S, N, N, N,
N, R, R]

PROBABILISTIC ENRICHMENT

Claim: It is rare to have 6 wisdom teeth.
Evidence: Most adults have four wisdom teeth, one in each of
the four quadrants, but it is possible to have none, fewer, or
more, in which case the extras are called supernumerary teeth.

The fact that most adults have 4 wisdom
teeth makes it likely that having 6 is rare.

[S, S, S, N,
N]

UNDERSPECIFICATION

Claim: You cannot have a skunk as a pet.
Evidence: It is currently legal to keep skunks as pets in Britain
without a license.

The claim is false under specific conditions
of location, and underspecified otherwise.

[S, N, R, R,
R, R, R]

Table 4: Examples of claim and relevant evidence which require different types of inference to re-
solve, and their corresponding veracity annotations at the passage level: Refuted, Neutral, and Supported.

the veracity label for the generic statement. This
inference type is the reverse of ‘‘Accommodat-
ing Minimally Added Content’’ in hypotheses in
Jiang and Marneffe (2022), as the claim (the
counterpart to the hypothesis in NLI) in our case
is less specific than the evidence. NLI data is
usually collected by hypotheses being written for
given premises (Williams et al., 2018), whereas
the claims in realistic fact-checking data are gen-
erated independently from evidence, which leads
to different inference types being encountered.

Annotation Scheme We employ stratified sam-
pling to select 384 items, ensuring coverage of
both rare and frequent veracity annotation combi-
nations. Each claim is then evaluated with respect
to its evidence sentences to determine whether
the veracity judgment depends on a specific type
of inference or is explicit. Initially, a subset of
20 items was double-annotated to assess the con-
sistency of the guidelines, resulting in a Cohen’s

κ agreement of 0.67. Subsequently, an additional
364 items were annotated by one of the authors
with graduate training in Linguistics.

Variables and Statistics Measured We per-
form ANOVA to examine the relationship be-
tween the independent variables (inference types)
and the dependent variable (annotator agreement
on veracity labels). Interactions are not included
due to the non-overlapping nature of the indepen-
dent variables in the linguistic inference annota-
tion scheme. Confounders, such as the length of
evidence and claim, presence of negation in the
claim, and presence of quantifiers in the claim,
are added to account for variance unrelated to the
hypothesized independent variables. These con-
founders aim to capture aspects of annotator be-
havior, as increased cognitive load from negation
or longer input length might negatively impact
annotation quality, while quantifiers could make
the claims clearer to the annotators.
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Independent variable coefficient P-value

Implicature −0.2989 0.000*

Presupposition −0.3800 0.012*

Coreference −0.2961 0.009*

Vagueness −0.6469 0.000*

Underspecification −0.6111 0.000*

Probabilistic reasoning −0.5590 0.000*

Evidence length −0.0356 0.966

Claim length 1.2642 0.600

Negation in claim −0.2209 0.001*

Quantifier in claim 0.1255 0.119

Table 5: Results of ANOVA showing linguistic
inference effects on Krippendorff’s α in AMBIFC.
The significant effects are marked with an asterisk.

Results The variance analysis showed an R2

value of 0.367, indicating that a significant por-
tion of the variation in annotator disagreement
could be explained by annotators’ sensitivity to
non-explicitly communicated content in claims or
evidence as captured by the independent variables.
Table 5 presents the significant effects observed
in the correlation between the presence of in-
ference types and the level of disagreement. The
coefficients in the table reveal that ambiguous con-
tent is significantly linked to agreement scores,
with the presence of negation in the claim also
having a significant effect, likely due to confusion
regarding polarity. This corroborates the results
of previous work, showing that ambiguity is in-
herent to linguistic data and therefore annotator
disagreement on labels should be incorporated in
NLP models.

6 Experiments

6.1 Evidence Selection (Ev.)

The system is tasked with identifying the sentences
in a given Wikipedia passage P = [s1, . . . , sn]
that serve as evidence si ∈ E ⊆ P for a claim
c. We use the F1-score over claim-sentence pairs
(c, si) for evaluation. We compare four evidence
selection methods using binary/ternary evidence
annotations with hard or soft labels. Evaluation is
performed on AMBIFCC and AMBIFC datasets.

Models We experiment with four evidence se-
lection approaches. First, following Thorne et al.
(2018) and Wadden et al. (2020) we model (Ev.)
as a binary classification task. Second, we train
a model to predict the ternary label for each
(c, si). For training, the majority of ‘‘support-
ing’’ and ‘‘refuting’’ annotations determines the
ternary label, with the overall majority (‘‘sup-
porting’’) as tiebreaker, and ‘‘neutral’’ assigned
if only neutral annotations exist. Ternary predic-
tions are mapped to binary evidence labels for
evaluation. We refer to these evidence selection
models as binary or ternary, respectively. To han-
dle the different perspectives by the annotators,
one intuitive approach is to mimic the annotation
distribution using distillation (Hinton et al., 2015;
Fornaciari et al., 2021). Annotation distillation
is achieved by minimizing the soft cross-entropy
loss between human and predicted distributions.
Previous studies directly modeled human annota-
tion probabilities for each class (Peterson et al.,
2019), or applied softmax over annotation counts
(Uma et al., 2020). We calculate human proba-
bilities by dividing the frequency of annotations
per class by the total number of annotations per
instance, as this method proved most effective
for AMBIFC in our initial experiments. We refer
to models that distill these probabilities as distill
models. A sentence is classified as evidence if
the sum of predicted probabilities for ‘‘support-
ing’’ and ‘‘refuting’’ exceeds a threshold chosen
by maximizing the evidence F1-score on the dev
set, with values ranging from 0 to 0.3 in intervals
of 0.01. Lastly, we experiment with a regression
approach for evidence selection. We calculate the
estimated probability pi for a sentence si being
part of the evidence set E based on the ratio
of annotators who assigned a non-neutral label.
We train a regression model (denoted as regr)
to predict the probabilities pi by minimizing the
MSE loss.

6.2 Veracity Prediction (Ver.)

We experiment with soft labels on the entire AMBI-
FC and with aggregated labels only on AMBIFCC.
Previous studies in fact-checking have used two
model architectures. The Pipeline approach pre-
dicts the claim’s veracity solely based on selected
evidence, as seen in approaches for FEVER. Fol-
lowing Wadden et al. (2020), we randomly sam-
ple one to two sentences during training only
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when no evidence sentence exists. During infer-
ence, if no evidence is selected, the prediction
defaults to neutral. The second architecture is the
Full-text approach, where veracity is directly pre-
dicted based on the entire evidence document(s)
as by Augenstein et al. (2019) or Park et al. (2022).

Fact-checking tasks typically assume single ve-
racity labels (Thorne et al., 2018; Schuster et al.,
2021; Park et al., 2022). However, aggregated
labels cannot capture the ambiguity in AMBIFC.
Therefore, our evaluation based on aggregated la-
bels is only applied on AMBIFCC, which exhibits
higher annotator agreement for the veracity label.
We experiment with soft labels using the entire
dataset AMBIFC = AMBIFCC ∪ AMBIFCU.

6.2.1 Single Label Veracity Prediction

To aggregate the passage-level veracity annota-
tions we employ the Dawid-Skene (Dawid and
Skene, 1979) method using the implementation
of Ustalov et al. (2021) on AMBIFCC. Models
are assessed based on their accuracy of in pre-
dicting the veracity for each (c, P ). Similar to
FEVER-score (Thorne et al., 2018), we require
models to correctly predict the evidence and ve-
racity label (Ev.+Ver.). We score models via the
averaged instance-level product of the evidence
F1-score with the accuracy of the veracity label.
This results in scores of zero when either the ve-
racity or evidence is incorrect, thereby penalizing
the model if it doesn’t perform well in both tasks.

Models We compare pipeline and full-text mod-
els for single-label veracity prediction (SINGLE).
We also evaluate a self-correcting version of the
pipeline (CSINGLE), which removes selected evi-
dence if it predicts ‘‘neutral’’ as veracity. Base-
line models utilize selected sentences from the
ternary evidence selection approach: The MAX

baseline selects the stance with the highest prob-
ability, while the MAJ baseline uses majority
voting. Sentences are only considered if the pre-
dicted probability for a non-neutral label reaches
a threshold t = 0.95. We determine the thresh-
old t by optimizing the accuracy on the dev
set over values ranging from 0 to 1 at intervals
of 0.05.

6.2.2 Soft Labels Veracity Prediction

Incorporating diverse annotations in model eval-
uation is still an open challenge (Plank, 2022).

We use four metrics adapted from recent liter-
ature (Baan et al., 2022; Jiang and Marneffe,
2022), to score models: The Human Entropy Cal-
ibration Error (EntCE) assesses the difference in
indecisiveness between humans and model pre-
dictions by comparing their distribution entropies
at the instance level. The Human Ranking Calibra-
tion Score (RankCS) evaluates the consistency of
label rankings between predicted and human prob-
abilities at the instance level. We modify RankCS
introduced by Baan et al. (2022) to handle mul-
tiple valid rankings for veracity labels identi-
cally. The Human Distribution Calibration Score
(DistCS) is derived from Baan et al. (2022) and
quantifies the total variance distance (TVD) be-
tween the predicted distribution ŷ and the human
label distribution y. It is calculated as DistCS =
1 − TVD(ŷ, y) at the instance level and is the
strictest of our metrics.

Our annotations may not fully capture the
true human distribution. Hence, we treat verac-
ity prediction as a multi-label classification task.
Following Jiang and Marneffe (2022), we require
models to predict all veracity labels chosen by at
least 20% of the annotators. We evaluate mod-
els using the sample-averaged F1-score (F1). For
the joint evaluation (Ev.+Ver.), we calculate the
point-wise product of the evidence F1-score with
the sample-averaged F1-score (w-F1) and DistCS
(w-DistCS).

Models We examine four models that incorpo-
rate different annotations to different extents. The
first model, referred to as SINGLE (from §6.2),
assumes a single veracity label for each (c, P )
instance. Additionally, similar to §6.1 we train an-
notation distillation models (denoted as DISTILL)
to learn the human annotation distribution. When
no evidence is selected for the pipeline, the pre-
diction defaults to 100% neutral. Third, we apply
temperature scaling (Guo et al., 2017) as a method
to recalibrate models by dividing the logits by
a temperature parameter t before the softmax
operation. This technique has demonstrated effec-
tiveness in various NLP tasks (Desai and Durrett,
2020). We choose t based on the highest DistCS
score on the dev set for the trained SINGLE mod-
els. This calibrated model is denoted as TEMP.
SCALING. In the case of the pipeline model, if
no evidence is selected, the predicted distribu-
tion defaults to 100% neutral. Finally, we explore
a multi-label classification approach. Following
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Jiang and Marneffe (2022), we estimate the prob-
ability of each class by applying the sigmoid
function to the model’s logits. Classes with a
probability of p ≥ 0.5 are considered as pre-
dicted. When necessary for computing metrics,
we generate probability distributions by replac-
ing the sigmoid function with softmax during
inference. We use evidence selection models with
ternary labels and annotation distillation as base-
lines. We combine the predicted probabilities of
the labels ‘‘supporting’’ (S) and ‘‘refuting’’ (R)
by summing them, resulting in pS+R = 1 − pN ,
where pN represents the predicted probability for
‘‘neutral’’. We use the predictions based on the
sentence with the highest pS+R as the verac-
ity prediction and refer to this baseline as MAX-
EVID. We only consider sentences with pS+R ≥ t,
where the threshold t is optimized for DistCS on
the development set.

6.3 Implementation

We employ DeBERTaV3large (He et al., 2021)
from the Transformers library (Wolf et al.,
2020) for both (Ev. and Ver.) tasks, including
Pipeline and full-text variants. DeBERTaV3large

has achieved exceptional performance on the Su-
perGlue benchmark, including MNLI (Williams
et al., 2018) and RTE (Dagan et al., 2006), related
to fact-checking. We use fixed hyperparameters
(6e-6 learning rate, batch size of 8)3 and train
for 5 epochs, selecting the best models based
on evidence F1-score (Ev. classification), MSE
(Ev. regression), accuracy (Ver. single-label),
micro F1-score (Ver. multi-label), and negative
cross-entropy loss (distillation). DeBERTaV3large

accommodates both short text snippets and longer
sequences, enabling fair comparisons between all
variants. In initial experiments, we observed that
including the Wikipedia entity and section ti-
tle enhances performance. We input all to the
model via [CLS] claim [SEP] evidence
@ entity @ title [SEP] and feed [CLS]
embeddings to linear layer for predictions.

7 Results

Evidence Selection The results in Table 6 show
that predicting ternary labels provides no advan-

3As proposed for MNLI: https://huggingface
.co/microsoft/deberta-v3-large.

Training Evidence F1

Data Model AMBIFC AMBIFCC

binary 64.1 ±0.2 64.4 ±1.2

AMBIFC
ternary 63.5 ±0.7 64.4 ±1.3

regr 64.5 ±0.4 63.1 ±0.8

distill 65.3 ±0.3 63.0 ±1.5

binary 56.4 ±1.2 66.2 ±0.6

AMBIFCC ternary 54.0 ±1.9 65.6 ±0.5

regr 58.2 ±2.3 66.9 ±0.4

distill 57.9 ±2.0 66.8 ±0.6

Table 6: Evidence F1-score averaged with stan-
dard deviation over five runs.

tage over binary evidence labels. This holds true
for both training on the entire AMBIFC and the
AMBIFCC subset. However, integrating annota-
tors’ uncertainty in evidence selection consistently
improves the overall scores. Training solely on
AMBIFCC leads to lower F1-score on the en-
tire AMBIFC. A possible reason is the different
distribution of evidence sentences: In AMBIFCC,
evidence sentences constitute only 8.9% of all
sentences. These sentences contain on average
52.2% non-neutral annotations. In AMBIFC, evi-
dence is found in 19.9% of all sentences. These
sentences contain on average 38.8% non-neutral
annotations. The distill approach trained on
AMBIFCC performs well in detecting evidence in
AMBIFCC (recall = 68.8%, precision = 65.2%),
but struggles on AMBIFC as it fails to detect
many evidence sentences on instances from AMBI-
FCU (recall = 42.8%, precision = 76.5%). Train-
ing on all of AMBIFC improves the recall of
selected evidence, reaching a recall of 80.4% / 64.3%
and precision of 51.9% / 68.3% on AMBIFCC and
AMBIFCU.

Single Veracity Labels We evaluate single
label classification models for veracity predic-
tion, selecting the best evidence selection meth-
ods from Table 7. The MAJ and SINGLE models
achieve high accuracy when provided with ora-
cle evidence. When using automatically selected
evidence, SINGLE outperforms the baselines on
(Ver.) but performs worse on the joint score
(Ev.+Ver.): One possible explanation is that our
baselines cannot predict ‘‘neutral’’ when evidence
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Model Ver. Ev.+Ver.

Train Ev. Ver. Acc. w-Acc.
– oracle MAJ. 98.5 98.5

– oracle SINGLE 97.1 97.1
ternary MAJ. 91.4 85.2

AMBIFCC ternary MAX. 91.5 85.2

regr SINGLE 94.0 83.3

regr CSINGLE 94.0 88.2
– SINGLE 94.1 –

ternary MAJ. 89.0 82.8

AMBIFC
ternary MAX. 89.1 82.9

binary SINGLE 94.1 77.0

binary CSINGLE 94.1 88.0
– SINGLE 94.4 –

Table 7: Averaged veracity prediction results on
AMBIFCC over aggregated single labels over five
runs.

sentences are selected. This is beneficial on AMBI-
FCC where 96.6% of all instances with evidence
sentences have non-neutral veracity labels. The
trained SINGLE model, however, can incorrectly
predict ‘‘neutral’’ even when evidence is cor-
rectly identified. For comparison, assuming sin-
gle labels on AMBIFCU, 37.2% of instances have
a neutral veracity along with supporting or re-
futing evidence sentences. Training on AMBIFC
improves performance on aggregated labels in
AMBIFCC, especially for the full-text model that
avoids errors from evidence selection.

High scores on aggregated labels may not
comprehensively represent all valid perspectives
(Prabhakaran et al., 2021; Fleisig et al., 2023). In
the test set, 6.6% of annotations in AMBIFCC are
ignored by the aggregated labels (Figure 4; left).
The single-label prediction of the full-text model
trained on AMBIFCC aligns with 87.3% of the
veracity annotations. In comparison, aggregated
veracity labels in AMBIFCU would capture only
66.9% of all annotations (Figure 4; right). The
AMBIFC-trained full-text model only agrees with
57.1% of them when predicting single labels (with
a computed accuracy of 68.8%). Both highlight
the importance of annotation-based evaluations
throughout AMBIFC.

Soft Veracity Labels We report the results on
AMBIFC in Table 8. While SINGLE models are

Figure 4: Annotations that are (not) considered by
aggregated labels on the respective test sets.

not optimized for metrics over soft labels, they
serve as informative baselines. Applying temper-
ature scaling significantly boosts performance on
most metrics, particularly EntCE. MULTI and DIS-
TILL outperform other models on various metrics,
with each excelling in metrics aligned with their
respective optimization objectives. The pipeline
approach is comparable to the full-text approach
in terms of DistCS, while also providing a rationale
for predictions and room for improvement through
better evidence selection methods (as indicated
by oracle evidence). The sentence-level base-
lines of annotation distillation perform well, but
cannot compete with models trained for veracity
prediction.

The performance of the top-performing pipe-
lines (based on DistCS) is examined on differ-
ent subsets in Table 9. Additionally training on
ambiguous instances from AMBIFCU improves
performance across all subsets, except for AMBI-
FCC. This discrepancy may be attributed to the
abundance of fully neutral instances within AMBI-
FCC—which do not exist in AMBIFCU. Perfor-
mance on instances with 5+ annotations benefits
from the inclusion of ambiguous instances. The
notable performance gap between AMBIFC and
the ambiguous claims in AMBIFCU underscores
the challenge posed by these ambiguous cases.

8 Analysis

Errors by Linguistic Category Model perfor-
mance varies depending on which lexical, prag-
matic, and discourse inference types are present
in the items. We compare the predictions of the
best performing model (Annotation Distillation,
last row in Table 8) trained on AMBIFCC and AMBI-
FC, and separate the results per linguistic category
(Figure 5). The results corroborate the analysis
in §5.2, as the smallest difference between the
models trained on AMBIFCC and AMBIFC is seen
with items without linguistic cues for ambiguity.
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Model Ver. Ev. + Ver.

Ev. Ver. EntCE↓ RankCS↑ DistCS↑ F1↑ w-DistCS↑ w-F1↑
avg. distribution .568 .529 .597 .747 .215 .267

ternary MAXEVID. .305 ±0.03 .644 ±0.01 .701 ±0.03 .730 ±0.03 .546 ±0.02 .506 ±0.03

distill MAXEVID. .223 ±0.01 .712 ±0.01 .793 ±0.00 .850 ±0.00 .574 ±0.01 .593 ±0.00

oracle SINGLE .289 ±0.03 .779 ±0.01 .787 ±0.01 .800 ±0.01 .787 ±0.01 .800 ±0.01

oracle TEMP. SCALING .175 ±0.00 .779 ±0.01 .840 ±0.00 .842 ±0.01 .840 ±0.00 .842 ±0.00

oracle MULTI .244 ±0.01 .792 ±0.00 .810 ±0.00 .915 ±0.00 .810 ±0.00 .915 ±0.00

oracle DISTILL .146 ±0.00 .801 ±0.00 .867 ±0.00 .891 ±0.00 .867 ±0.00 .891 ±0.00

distill SINGLE .306 ±0.02 .744 ±0.01 .760 ±0.01 .777 ±0.01 .552 ±0.01 .543 ±0.00

distill TEMP. SCALING .244 ±0.01 .744 ±0.01 .795 ±0.00 .812 ±0.01 .584 ±0.00 .567 ±0.01

distill MULTI .270 ±0.01 .755 ±0.01 .782 ±0.01 .881 ±0.01 .566 ±0.01 .615 ±0.01

distill DISTILL .214 ±0.00 .764 ±0.00 .826 ±0.00 .862 ±0.00 .603 ±0.01 .601 ±0.00

– SINGLE .302 ±0.02 .755 ±0.00 .765 ±0.01 .782 ±0.01 – –

– TEMP. SCALING .264 ±0.00 .755 ±0.00 .783 ±0.01 .801 ±0.01 – –

– MULTI .249 ±0.01 .764 ±0.00 .795 ±0.00 .884 ±0.00 – –

– DISTILL .228 ±0.00 .773 ±0.01 .826 ±0.00 .867 ±0.00 – –

Table 8: Results on AMBIFC averaged over five runs. All models are trained on AMBIFC.

Trained

Evaluated AMBIFCC AMBIFC
AMBIFCC .928 .905

AMBIFCC (5+) .804 .824
AMBIFCU .642 .751
AMBIFC .781 .826

Table 9: DistCS↑ evaluated across different sub-
sets. AMBIFCC (5+) refers to all instances of
AMBIFCC with at least five annotations.

Furthermore, the largest difference appears in the
subsets of the development set which contain
Underspecification, Vagueness, Probabilistic En-
richment, and Coreference, and the first three
of these categories have the strongest correlation
with annotator disagreement, as seen in Table 5.
This suggests that the model performs better on
the more ambiguous items when it has seen such
items in training. Furthermore, Underspecifica-
tion, Vagueness, and Coreference have a lower
agreement in the AMBIFCC subset as compared to
the overall agreement in the AMBIFC. This sug-
gests that the annotators are often not aware of
the presence of alternative interpretations in these
classes, which could also be the reason for these
items being more difficult for the model to learn.

Figure 5: Performance of the Annotation Distillation
model on different linguistic categories, separated by
the training data used: AMBIFCC and AMBIFC.

Correct Probabilities by Veracity Labels We
analyze how accurately the DISTILL pipelines
trained on AMBIFC predict veracity label prob-
abilities in Figure 6. Predictions are considered
correct if the difference between human and pre-
dicted probabilities falls within the tolerance t
on the x-axis. With a tolerance of t = 0.15, the
pipeline accurately predicts the probability for
70% of instances across all labels in AMBIFCC.
However, the performance is consistently lower
in AMBIFCU, highlighting the greater challenge
posed by this subset. The model performs best
in predicting the probability for ‘‘refuting’’ labels
on both subsets. This is likely because it assigns
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Figure 6: Correct Veracity Estimation by allowing
Errors within the margin of the threshold.

Figure 7: Probability differences of the correctly pre-
dicted class when only providing evidence for one of
both veracity labels (S or R).

a lower probability to this less common label.
When no refuting annotations exist, the average
error is 0.04. However, when refuting annotations
are present, the error increases to 0.19.

Contradictory Evidence Interpretations Fol-
lowing our observations in §5.1 we analyze
whether models learn the subtle differences be-
tween different evidence sentences for different
veracity interpretations. We analyze the predic-
tions of a DISTILL pipeline model (M) by inputting
evidence sentences annotated with supporting
(ES) or refuting (ER) veracity labels separately.
A model that captures the subtle differences would
assign high probabilities to the refuting veracity
label R given ER, and low probabilities to R
given ES . We input the claim c and evidence E
into M to predict the probability pR for the verac-
ity label R via pR = M(c, E). We measure the
different effect of ER and ES for both veracity
labels R and S as ΔpR = M(c, ER)−M(c, ES)
and ΔpS = M(c, ES)−M(c, ER). In Figure 7,

we examine all 1,352 test instances from AMBIFC
with both supporting and refuting veracity anno-
tations. To address cases where similar sentences
are selected for ER and ES , we group samples
based on their similarity using the Jaccard Index.
Presenting only ER or ES generally increases the
probability of the correct class. On average, the
Δp score is at 11.9%, and decreases with more
overlap between sentences in ER and ES .

9 Conclusions

We present AMBIFC, a fact-checking dataset with
annotations for evidence-based fact-checking,
addressing the inherent ambiguity in real-world
scenarios. We find that annotator disagreement
signals ambiguity rather than noise and provide
explanations for this phenomenon through an
analysis of linguistic phenomena. We establish
baselines for fact-checking ambiguous claims,
leaving room for improvement, particularly in
the area of evidence selection. By publishing
AMBIFC along with its annotations, we aim to
contribute to research integrating annotations into
trained models.

Limitations Claims in AMBIFC are based on
real-world information needs. They are not col-
lected from real-world sources and differ from
claims seen as check-worthy by human fact-
checkers. AMBIFC lacks evidence retrieval beyond
the passage level. It contains different veracity
labels for the same claim given different pas-
sages, without overall verdict. Models trained on
AMBIFC are constrained to this domain and only
address partial aspects of complete fact-checking
applications, as defined by Guo et al. (2022).
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