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Abstract

The prevalence and strong capability of large
language models (LLMs) present significant
safety and ethical risks if exploited by mali-
cious users. To prevent the potentially decep-
tive usage of LLMs, recent work has proposed
algorithms to detect LLM-generated text and
protect LLMs. In this paper, we investigate the
robustness and reliability of these LLM detec-
tors under adversarial attacks. We study two
types of attack strategies: 1) replacing certain
words in an LLM’s output with their synonyms
given the context; 2) automatically searching
for an instructional prompt to alter the writing
style of the generation. In both strategies, we
leverage an auxiliary LLM to generate the
word replacements or the instructional prompt.
Different from previous works, we consider a
challenging setting where the auxiliary LLM
can also be protected by a detector. Experi-
ments reveal that our attacks effectively com-
promise the performance of all detectors in
the study with plausible generations, under-
scoring the urgent need to improve the robust-
ness of LLM-generated text detection systems.
Code is available at https://github.com
/shizhouxing/LLM-Detector-Robustness.

1 Introduction

Large language models (LLMs), such as Chat-
GPT (OpenAI, 2023b), PaLM (Chowdhery et al.,
2022), and LLaMA (Touvron et al., 2023), have
demonstrated human-like capabilities to generate
high-quality text, follow instructions, and respond
to user queries. Although LLMs can improve the
work efficiency of humans, they also pose several
ethical and safety concerns, such as it becomes
hard to differentiate LLM-generated text from
human-written text. For example, LLMs may be
inappropriately used for academic plagiarism or
creating misinformation at large scale (Zellers
et al., 2019). Therefore, it is important to de-
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velop reliable approaches to protecting LLMs and
detecting the presence of AI-generated texts, to
mitigate the abuse of LLMs.

Toward this end, previous work has devel-
oped methods for automatically detecting text
generated by LLMs. Existing methods mainly fall
into three categories: 1) Classifier-based detectors
by training a classifier, often a neural network,
from data with AI-generated/human-written labels
(Solaiman et al., 2019; OpenAI, 2023a); 2) Water-
marking (Kirchenbauer et al., 2023) by injecting
patterns into the generation of LLMs such that
the pattern can be statistically detected but imper-
ceptible to humans; 3) Likelihood-based detec-
tors, e.g., DetectGPT (Mitchell et al., 2023), by
leveraging the log-likelihood of generated texts.
However, as recent research demonstrates that
text classifiers are vulnerable to adversarial attacks
(Iyyer et al., 2018; Ribeiro et al., 2018; Alzantot
et al., 2018), these LLM text detectors may not be
reliable when faced with adversarial manipula-
tions of AI-generated texts.

In this paper, we stress-test the reliability of
LLM text detectors. We assume that there is an
LLM G that generates an output Y = G(X) given
input X. G is protected when there exists a detec-
tor f that can detect text normally generated by
G with high accuracy. An attack aims to manipu-
late the generation process such that a new output
Y′ is still plausible given input X while the de-
tector fails to identify Y′ as LLM-generated. The
attack may leverage another attacker LLM G′.

In this context, we propose two novel attack
methods. In the first method, we prompt G′ to
generate candidate substitutions of words in Y,
and we then choose certain substitutions either
in a query-free way or through a query-based
evolutionary search (Alzantot et al., 2018) to at-
tack the detector. Our second method focuses
on classifier-based detectors for instruction-tuned
LLMs such as ChatGPT (OpenAI, 2023b). We au-
tomatically search for an additional instructional
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prompt with a small subset of training data for a
given classifier-based detector. At inference time,
the additional instructional prompt instructs the
LLM to generate new texts that are hard to detect.

Several concurrent studies (Sadasivan et al.,
2023; Krishna et al., 2023) proposed to attack de-
tectors by paraphrasing AI-generated texts, with
a different language model G′ for paraphrasing.
However, they assume that G′ here is not pro-
tected by a detector. Paraphrasing withG′ has been
shown as effective in attacking detectors designed
for the original LLM G, but it can become much
less effective when G′ is also protected by a
detector since the paraphrased model can still be
detected by the detectors of G′. In contrast, we
demonstrate that even when the attacker LLM G′

is also protected by a detector, we can still lever-
age G′ for attacking LLM detectors. Therefore,
even if all the strong LLMs are protected in the
future, the currently existing detectors can still
be vulnerable to our attacks.

We experiment with our attacks on all three
aforementioned categories of LLM detectors. Our
results reveal that all the tested detectors are vul-
nerable to our proposed attacks. The detection
performance of these detectors degrades signifi-
cantly under our attacks, while the texts produced
by our attacks still mostly maintain reasonable
quality as verified by human evaluation. Our find-
ings suggest the current detectors are not suffi-
ciently reliable yet and it requires further efforts
to develop more robust LLM detectors.

2 Related Work

Detectors for AI-generated Text. Recent de-
tectors for AI-generated text mostly fall into three
categories. First, classifier-based detectors are
trained with labeled data to distinguish human-
written text and AI-generated text. For exam-
ple, the AI Text Classifier developed by OpenAI
(OpenAI, 2023a) is a fine-tuned language model.
Second, watermarking methods introduce distinct
patterns into AI-generated text, allowing for its
identification. Among them, Kirchenbauer et al.
(2023) randomly partition the vocabulary into a
greenlist and a redlist during the generation, where
the division is based on the hash of the previously
generated tokens. The language model only uses
words in the greenlists, and thereby the generated
text has a different pattern compared to human-
written text which does not consider such green-

lists and redlists. Third, DetectGPT (Mitchell
et al., 2023) uses the likelihood of the generated
text for the detection, as they find that text gen-
erated by language models tends to reside in the
negative curvature region of the log probability
function. Consequently, they define a curvature-
based criterion for the detection.

Methods for Red-teaming Detectors. As the de-
tectors emerge, several concurrent works showed
that the detectors may be evaded to some extent,
typically by paraphrasing the text (Sadasivan et al.,
2023; Krishna et al., 2023). However, they need
additional paraphrasing models which are typi-
cally unprotected models that are much weaker
than the original LLM. Besides paraphrasing,
Kirchenbauer et al. (2023) also discussed attacks
against watermark detectors with word substitu-
tions generated by a masked language model such
as T5 (Raffel et al., 2020) which is a relatively
weaker language model and tends to generate re-
sults with lower quality, and thus it may generate
attacks with lower quality. On the other hand,
Chakraborty et al. (2023) analyzed the possibilities
of the detection given sufficiently many samples.

Adversarial Examples in NLP. Word substi-
tution is a commonly used strategy in generating
textual adversarial examples (Alzantot et al., 2018;
Ren et al., 2019; Jin et al., 2020). Language mod-
els such as the BERT (Devlin et al., 2019) have
also been used for generating word substitutions
(Shi and Huang, 2020; Li et al., 2020; Garg and
Ramakrishnan, 2020). In this work, we demon-
strate the effectiveness of using the latest LLMs
for generating high-quality word substitutions, and
our query-based word substitutions are also in-
spired by the genetic algorithm in Alzantot et al.
(2018) and Yin et al. (2020). For our instructional
prompt, it is relevant to recent works that prompt
LLMs to red team LLMs themselves (Perez et al.,
2022) rather than detectors in this work. In addi-
tion, we fix a single instructional prompt at test
time, which is partly similar to universal trig-
gers in adversarial attacks (Wallace et al., 2019;
Behjati et al., 2019), but unlike them constructing
an unnatural sequence of tokens as the trigger,
our prompt is natural and it is added to the input
for the generative model rather than the detec-
tor directly.

Safety of Large Language Models. Detecting
AI-generated texts is also related to the broader
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Attack Perturbation type
Test-time Queries Applicability

G ′ f Classifier Watermarking Likelihood
Query-free

Word Substitutions
Output � − � � �

Query-based Output � � � − �
Instructional Prompts Input − − � − −

Table 1: Properties of various attack methods and their applicability to various detectors. ‘‘Test-time
queries’’ indicates whether each method requires querying G′ or f for multiple times at test time.

topic of LLM safety. Research for the safety of
LLMs aims to reduce privacy leakage and intel-
lectual property concerns (Wallace et al., 2020;
Carlini et al., 2021; Jagielski et al., 2023; Zhao
et al., 2023), detect potential misuse (Hendrycks
et al., 2018; Perez et al., 2022), defend against
malicious users or trojans (Wallace et al., 2019,
2021), or detecting hallucinations (Zhou et al.,
2021; Liu et al., 2022). See Hendrycks et al. (2021)
for a roadmap of machine learning safety chal-
lenges. We test the reliability of some LLM text
detection systems, which helps better understand
the current progress in LLM text detection.

3 Settings and Overview

We consider a large language model G that condi-
tions on an input context or prompt X and gener-
ates an output text Y = G(X). We use upper-case
characters to denote a sequence of tokens. For
example, X = [x1, x2, . . . , xm], where m is the
sequence length. The model G is protected by a
detector f(Y) ∈ [0, 1] that predicts whether Y is
generated by an LLM, where a higher detection
score f(Y) means that Y is more likely to be LLM-
generated. We use τ to denote a detection thresh-
old such that Y is considered LLM-generated if
f(Y) ≥ τ .

In this work, we consider three categories
of detectors: (1) classifier-based detectors, (2)
watermark detectors, and (3) likelihood-based
detectors. For classifier-based detectors, a text
classifier f(Y) is trained on a labeled dataset with
G-generated and human-written texts. For water-
mark detectors, G is modified from a base gen-
erator G0 with a watermarking mechanism W ,
denoted as G = W (G0), and a watermark detec-
tor f(Y) is constructed to predict whether Y is
generated by the watermarked LLM G. Specifi-
cally, we consider the watermarking mechanism
in Kirchenbauer et al. (2023). For likelihood-based
detectors, they estimate f(Y) by comparing the

log probabilities of Y and several random pertur-
bations of Y. Specifically, we consider Detect-
GPT (Mitchell et al., 2023). We consider a model
G as protected if there is a detector f(Y) in place
to protect the model from inappropriate usage.

To stress test the reliability and robustness
of those detectors in this setting, we develop
red-teaming techniques to generate texts that can
downgrade a detector using an LLM that is also
protected by this detector. We consider attacks
by output perturbation and input perturbation
respectively:

• Output perturbation perturbs the original
output Y and generates a perturbed output Y′.

• Input perturbation perturbs the input X into
X′ as the new input, leading to a new output
Y′ = G(X′).

In both cases, we aim to minimize f(Y′) so that the
new output Y′ is wrongly considered as human-
written by the detector f . Meanwhile, we require
that Y′ has a quality similar to Y and remains a
plausible output to the original input X. For our
attack algorithms, we also assume that the detec-
tor f is black-box—only the output scores are vis-
ible but not its internal parameters.

We propose to attack the detectors in two
different ways. In Section 4, we construct an out-
put perturbation by replacing some words in Y,
where we prompt a protected LLM G′ to obtain
candidate substitution words, and we then build
query-based and query-free attacks respectively
to decide substitution words. In Section 5, if G is
able to follow instructions, we search for an in-
structional prompt from the generation by G and
append the prompt to X as an input perturbation,
where the instructional prompt instructs G to gen-
erate texts in a style making it hard for the de-
tector to detect. Table 1 summarizes our methods
and their applicability to different detectors. At
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test time, instructional prompts are fixed and thus
totally query-free. For word substitutions, they re-
quire querying G′ multiple times to generate word
substitutions on each test example; the query-free
version does not repeatedly query f while the
query-based version also requires querying f mul-
tiple times. In practice, we may choose between
these methods depending on the query budget
and their applicability to the detectors.

4 Attack with Word Substitutions

To attack the detectors with output perturbations,
we aim to find a perturbed output Y′ that is
out of the original detectable distribution. This is
achieved by substituting certain words in Y. To
obtain suitable substitution words for the tokens
in Y that preserve the fluency and semantic mean-
ing, we utilize a protected LLM denoted as G′.
For each token in Y denoted as yk, we use
s(yk,Y, G′, n) to denote the process of gener-
ating at most n word substitution candidates for
yk given the context in Y by prompting G′, and
s(yk,Y, G′, n) outputs a set of at most n words.
Note that not every word can be substituted, and
s(yk,Y, G′, n) can be an empty set if it is not
suitable to replace yk. We will discuss how we
generate the word substitution candidates using
G′ in Section 4.1.

General Attack Objective. The objective of
attacking f with word substitutions can be formu-
lated as a minimization problem given a substi-
tution budget ε:

Y ′ = argmin
Y ′

f(Y ′), (1)

s.t. y ′
k ∈ {yk} ∪ s(yk,Y, G′, n),
m∑

k=1

1(yk �= y ′
k) ≤ εm.

Here we aim to find an optimally perturbed out-
put Y′ that minimizes the predicted score f(Y′)
among all possible Y′. Each word in the per-
turbed output y′k is either the unperturbed word
yk or selected from the word substitution can-
didates s(yk,Y, G′, n), and the total number of
perturbed words is at most εm. To solve the min-
imization problem in Eq. (1), we consider both
query-free and query-based substitutions respec-
tively. We may choose between the two methods

ChatGPT

Given this sentence: ‘‘The scientists said the findings
could help improve treatments and lead to new ways
of preventing breast cancer spreading. Experts have
described the findings as ‘‘exciting’’. ’’, for each word
in ‘‘findings, exciting’’, give 10 substitution words
that do not change the meaning of the sentence.
Return each word and its substitutions in one line,
in the format of ‘‘word:substitutions’’

findings: results, discoveries, outcomes, conclusions,
observations, data, evidence, findings, research, studies
exciting: thrilling, exhilarating, stimulating, electri-
fying, gripping, captivating, invigorating, inspiring,
breathtaking, exciting

LLaMA

‘‘The scientists said the findings could help improve
treatments and lead to new ways of preventing breast
cancer spreading. Experts have described the findings
as ‘‘exciting’’.’’
Synonyms of the word ‘‘exciting’’ in the above
sentence are:
a) ‘‘interesting’’
b) ‘‘surprising’’
c) ‘‘unusual’’

Table 2: Prompts for generating word substitution
candidates using ChatGPT and LLaMA as well as
the corresponding outputs. Text in bold denotes
the prompt template. Text in italic denotes a text
to be perturbed or words to be replaced for a given
example. The generated word substitutions are in
blue and listed after the bold text.

depending on whether the attacker can query f
multiple times.

4.1 Generating Word Substitution
Candidates

Table 2 shows the prompts we use and the outputs
produced byG′, whenG′ is ChatGPT and LLaMA,
respectively. ChatGPT is able to follow instruc-
tions, and thus our prompt is an instruction asking
the model to generate substitution words, and
multiple words can be substituted simultaneously.
For LLaMA, which has less instruction-following
ability, we expect it to generate a text comple-
tion following our prompt, where the prompt is
designed such that a plausible text completion
consists of suggested substitution words, and we
replace one word at a time.
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The benefit of applying an LLM here is that
it enables us to obtain substitution words that
not only have similar meanings with the original
word but are also compatible with the context, as
previous works also used language models such
as BERT for generating adversarial examples (Shi
and Huang, 2020). Thus it is more convenient than
earlier methods using synonym lists for generat-
ing substitution words which need to be further
checked with a separate language model (Alzantot
et al., 2018) for compatibility with the context.

4.2 Query-based Word Substitutions

For query-based substitutions, we use the evolu-
tionary search algorithm (Alzantot et al., 2018;
Yin et al., 2020) originally designed for generat-
ing adversarial examples in NLP. The algorithm
starts from a population of perturbed texts which
includes input texts with a certain amount of to-
kens randomly replaced. Then, it iterates over
several generations of populations to select elites
in each population, i.e., the most effective sub-
stitution that leads to the lowest detection score.
New generations are constructed by crossing over
the elite substitutions in the previous generation.

4.3 Query-free Word Substitutions

For the query-free attack, we simply apply word
substitution on random tokens in Y to attack
DetectGPT and classifier-based detectors. For wa-
termark detectors, we further design an effective
query-free attack utilizing the properties of the
detection method.

Specifically, for the watermark in Kirchenbauer
et al. (2023), the watermarked LLM generates a
token by modifying the predicted logits at position
i+1: g(yi+1|[y1, . . . , yi]) = g0(yi+1|[y1, . . . , yi])+
δ if the candidate token yi+1 is in the greenlist,
where we use g0 to denote the output logits of
the original model G0 and g for the watermarked
model G. δ is an offset value for shifting the
logits of greenlist tokens, and γ is the proportion
of greenlist tokens in the vocabulary. Therefore,
a text generated by the watermarked model tends
to have more greenlist tokens compared to a text
generated by the original model. f(Y) calculates
the detection score based on the number of green-
list tokens in Y as:

f(Y) = (|sG| − γT )/
√

Tγ(1− γ), (2)

where |sG| is the number of greenlist tokens in Y
and T is the total number of tokens in Y.

Therefore, given a fixed substitution budget ε,
we aim to identify and substitute more greenlist
tokens to reduce the total count of greenlist to-
kens. We achieve this with a two-stage algorithm.
At the first stage, we sort all tokens in Y by the pre-
diction entropy estimated with a language model
M , which can be either the same generative model
G or a weaker model as we only use the entropy
as a heuristic score. The prediction entropy is es-
timated by feeding M with the prefix or masked
text without the word to be estimated. As the
watermarking offset δ is applied on the decoding
process, a token with higher entropy is easier to
be affected by watermarking. At the second stage,
we pick εm tokens with highest entropy and use
a watermarked LLM G′ to generate word substi-
tutions as introduced in Section 4.1.

5 Attack by Instructional Prompts

In this section, we build attacks by perturbing
the input prompt to encourage LLMs to generate
texts that are difficult to detect. In particular, we
focus on LLM-based generative models that can
follow instructions and classifier-based detectors.
We consider ChatGPT (OpenAI, 2023b) as the
generative model G and OpenAI AI Text Clas-
sifier (OpenAI, 2023a) as the detector f . The
OpenAI AI Text Classifier is a fine-tuned neural
network, while neural networks have been shown
to be vulnerable to distribution shifts in NLP liter-
ature (Miller et al., 2020; Awadalla et al., 2022).
Therefore, we aim to shift the generated text to a
different distribution where the detector is more
likely to fail. We do not require the shifted gener-
ation to be semantically equivalent to the original
text, but the generation should still be a plausible
output to the given input.

We achieve this by searching for an additional
prompt Xp appended to the original input X,
which forms a new input X′ = [X,Xp] to G. In
particular, Xp consists of Xins and Xref, where Xins

is an instruction asking the model to follow the
writing style of reference Xref.

Searching for Xp. We search for Xp on a small
subset of training examples with n examples
X1,X2, · · · ,Xn. We assume that we can query
the detector f for multiple times during search
time. After an effective Xp is found, it can be
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Generative Model DetectGPT Watermarking Classifier-based Detector

GPT-2-XL ChatGPT LLaMA-65B ChatGPT
LLaMA-65B LLaMA-65B LLaMA-65B –
ChatGPT ChatGPT – ChatGPT

Table 3: The protected LLM G′ used in generating perturbations for each generative model G and the
detectors. ‘‘–’’ indicates a combination of the generative model and the detector is not applicable.

applied universally on all inputs from this dataset
at test time. The objective of the search is:

argmin
Xp

1

n

n∑

i=1

1(f(G([Xi,Xp])) ≥ τ), (3)

which aims to minimize the average detection rate
for the new outputs generated with Xp appended
to the input.

We use G to generate various Xins and Xref

in each iteration and try to search for an opti-
mal Xp = [Xins,Xref] following the objective in
Eq. (3). Initially, we set Xins to a manually writ-
ten instruction, ‘‘Meanwhile please imitate the
writing style and wording of the following pas-
sage:’’. An initial value for Xref is not necessary.
We also create and initialize a priority queue O
with n initial outputs generated from the n train-
ing examples without Xp. O sorts its elements
according to the detection scores from f and pri-
oritize those with lower scores. In each iteration
of the search, we have two steps:

• Updating Xref: We pop the top-K candidates
from O. For each candidate, we combine
it with the current Xins respectively as the
potential candidates for Xp in the current
iteration.

• Updating Xins: We instruct modelG to gener-
ate K variations of the current Xins, inspired
by Zhou et al. (2023) for automatic prompt
engineering. And we combine them with the
current Xins respectively as the potential can-
didates for Xp.

For both of these two steps, we take the best can-
didate Xp according to Eq. (3). When generating
G([Xi,Xp]) in Eq. (3), we push all the generated
outputs to O as the candidates for Xref in the
later rounds. We take T iterations and return the

final Xp = [Xins,Xref] to be used at test time, and
Y′ = G([X,Xp]) is the new output given input X.

For some Xp, we find that the G may directly
copy text from Xref to generate Y′ when Xp is
appended into the input prompt. To prevent this
behavior, we compute a matching score between
Xref and Y and discard a candidate Xp during
the search if more than 20% of words from Xref

(except stop words) appear in Y′. In this way,
we find that the copying behavior is effective
prevented.

6 Experiments

6.1 Experimental Settings

Generative Models and Detectors. We exper-
iment with a wide range of generative LLMs and
corresponding detectors. For the generative model
G, we consider GPT-2-XL (Radford et al., 2019),
LLaMA-65B (Touvron et al., 2023), and Chat-
GPT (gpt-3.5-turbo) (OpenAI, 2023b). For
detectors, we consider DetectGPT (Mitchell et al.,
2023), watermarking (Kirchenbauer et al., 2023),
and classifier-based detectors (OpenAI, 2023a;
Solaiman et al., 2019). For DetectGPT, we use
GPT-Neo (Black et al., 2021) as the scoring model
to estimate the log-likelihood. DetectGPT also re-
quires masking spans of the texts and filling in the
spans with an external T5-3B model (Raffel et al.,
2020). We fix the mask rate to be 15%. Water-
marking is applied to open-source LLaMA-65B
and GPT-2-XL but not ChatGPT, as it requires
logits scores in generation. We use γ = 0.5 in
all the watermarking experiments, following the
default setting in Kirchenbauer et al. (2023). More-
over, classifier-based detectors include a fine-
tuned RoBERTa-Large detector (Solaiman et al.,
2019) for GPT-2 texts and the OpenAI AI Text
Classifier (OpenAI, 2023a) for ChatGPT texts.
We summarize all generative models and detec-
tors considered in the experiments in Table 3.
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Generative Model Dataset Unattacked Dipper Paraphrasing Query-free Substitution Query-based Substitution

GPT-2-XL
XSum 84.4 35.2 25.9 3.9
ELI5 70.6 36.7 21.2 3.8

ChatGPT
XSum 56.0 34.6 25.6 4.5
ELI5 55.0 39.5 12.2 6.5

LLaMA-65B
XSum 59.3 49.0 25.5 9.9
ELI5 60.5 53.1 31.4 18.6

Table 4: AUROC scores (%) of DetectGPT under various attack settings.

For experiments involving watermarking, we
use a watermarked LLaMA-65B as G′, as we
cannot implement watermarking on ChatGPT;
we also use LLaMA-65B as G′ in the setting with
LLaMA-65B itself as G and DetectGPT as the
detector; and in other settings, we use ChatGPT as
G′ which is protected by either DetectGPT or the
classifier-based detector. The choice of protected
LLM G′ is also summarized in Table 3.

Baselines. To demonstrate the advantage of our
methods in revealing detectors’ weakness, we
compare with several baselines. Dipper paraphrase
(Krishna et al., 2023) is a recent method that trains
a paraphrasing model to rewrite AI texts and by-
pass detectors. It prepends diversity codes to con-
trol the level of paraphrases introduced to the texts.
We use Dipper-paraphraser-XXL with 20
lexical diversity and 60 order diversity to para-
phrase the AI texts, which keeps the same level
of 20% uni-gram difference as word substitution.
We use nucleus sampling (Holtzman et al., 2019)
with p = 0.9 for the paraphraser. And in Chat-
GPT experiments, we also use ChatGPT itself for
paraphrasing.

Datasets. We mainly use two types of datasets
including text completion and long-form question
answering. We use XSum (Narayan et al., 2018)
for text completion, where we take the first sen-
tence as the input prompt for the completion, and
we use ELI5 (Fan et al., 2019) for long-form ques-
tion answering. In addition, for the RoBERTa-
Large detector, we also use a specific GPT-2
output dataset (Solaiman et al., 2019) as they are
fine-tuned solely on GPT-2 texts. Since the Open-
AI AI Text Classifier requires the text to contain
at least 1,000 characters, we filter XSum and ELI5
datasets and only retain examples with human ref-
erence text containing at least 1,000 characters.

Figure 1: ROC plot of OpenAI AI Text Classifier under
different attack methods. We show the ROC plot on
the ELI5 dataset in Table 10.

For each dataset, we shuffle the test set and use
the first 100 examples.

Metrics. We use several metrics to evaluate the
detectors under attacks. Area Under the Receiver
Operating Characteristic Curve (AUROC) scores
summarize the performance of detectors under
various thresholds. A detection rate (DR) is the
true positive rate under a fixed threshold (positive
examples mean LLM-generated texts), where we
either tune the threshold to meet a particular false
positive rate or follow the original thresholds
of the detectors. For the GPT-2 output dataset,
we also use Attack Success Rate (ASR) which
computes the rate that the attack successfully flips
the prediction by the detector, out of all the posi-
tive examples on which the detector originally
predicts correctly.

6.2 Attack with Word Substitutions

We apply word substitution-based attack on all
the three categories of detection methods. In each
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Figure 2: ROC plot of DetectGPT detectors under
different attack methods. We show the ROC plot on
the ELI5 dataset in Table 4 for the GPT2-XL model.

Figure 3: ROC plot of watermark detectors under dif-
ferent attack methods. We show the ROC plot on the
ELI5 dataset in Table 5 for the GPT2-XL model with
δ = 1.5.

Figure 4: ROC plot of watermark detectors under
different attack methods. We show the ROC plot on
the ELI5 dataset in Table 5 for the LLaMA-65B model
with δ = 1.5.

Figure 5: ROC plot of watermark detectors under
query-free attacks with different replacement ratios.
We show the ROC plot on the ELI5 dataset for the
GPT2-XL model with δ = 1.5.

Figure 6: ROC plot of watermark detectors under
query-free attacks with different replacement ratios.
We show the ROC plot on the ELI5 dataset for the
LLaMA-65B model with δ = 1.5.

setting, we assume that both G and G′ are pro-
tected by the same detector f . We limit the
number of substituted words to be at most 20% of
the total number words except stop words and
proper nouns that should not be substituted. This
leads to around 7 substituted tokens per example.
For the evolutionary search, it requires 70 queries
per example with a population size of 10.

Attack against DetectGPT The results are
shown in Table 4. We show an example of
ROC plot in Figure 2. We find that DetectGPT’s
AUROC drops below random guess when we
simply apply query-free substitutions which ran-
domly select substitutions from the candidate pool.
For example, on XSum, AUROC on GPT-2-XL
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Generative Model δ Dataset
Unattacked Dipper Paraphrasing Query-free Substitution

AUROC DR AUROC DR AUROC DR

GPT-2-XL
1.0

XSum 98.0 81.0 84.7 38.0 85.9 34.0
ELI5 97.14 72.0 86.3 34.0 86.9 33.0

1.5
XSum 99.4 96.0 94.1 72.0 91.6 35.0
ELI5 98.7 91.0 95.0 67.0 91.5 47.0

LLaMA-65B
1.0

XSum 88.9 22.0 79.3 12.0 67.8 10.0
ELI5 94.7 70.0 81.6 45.0 79.6 34.0

1.5
XSum 96.4 63.0 85.5 27.0 84.5 16.0
ELI5 99.6 95.0 92.3 72.0 91.8 61.0

Table 5: Attack against the watermark detector. We report both AUROC scores (%) and the detection
rates (DR) (%). For DR, we set the decision threshold such that the false positive rate for the human
reference text on the same test examples is 1%.

drops from 84.4% to 25.9%. For ChatGPT and
LLAMA-65B, AUROC drops from 56.0% to
25.6% and from 59.3% to 25.5%, respectively.
The AUROC scores further drop to only 3.9%,
4.5%, and 9.9% respectively with the query-based
evolutionary search. Our word substitution meth-
ods consistently surpass the Dipper paraphrasing,
which demonstrates that our methods are reveal-
ing more vulnerability of the detectors. We do not
use DR here as we find that the DR values are
already very low (usually below 10%) even when
no attack is applied, and we follow Mitchell et al.
(2023) which originally also only used AUROC.

Attack against Watermarking We use a
T5-Large model to estimate the prediction en-
tropy for each token. In our main experiments, we
select 20% of tokens in the initial output Y with
highest prediction entropy to be replaced in the
attack. We also compare the attack performance
with different replacement ratios in Figure 5 and
Figure 6. In all experiments in Table 5, we keep
the first 100 tokens in each text. We filter the
suggested word substitutions to keep fewer than
4 tokens in the substitution candidates to avoid
invalid substitution. We report the AUROC score
and detection rate for each setting in Table 5.
We show two examples of ROC plot in Figure 3
and 4. For the detection rates, we set the threshold
value to keep the false positive rate for hu-
man texts equal to 1% following Krishna et al.
(2023). The results show that the detection rates
are significantly degraded after the query-free
word substitution attack under two different water-
marking settings with δ = 1.0, 1.5. Although the

Original output

The scientists said the findings could help improve
treatments and lead to new ways of preventing breast
cancer spreading. Experts have described the findings
as ‘‘exciting’’. Bone is the most common site for
breast cancer to spread to. Once breast cancer reaches
the bone, it can be treated but often is not curable. In
experiments in mice, the Sheffield researchers found
breast cancer cells were sending signals to the cells
inside

Query-free Substitution

The researchers said the findings could help improve
drugs and lead to new ways of stopping breast can-
cer metastasizing. Experts have said the discoveries
as ‘‘interesting’’. Bone is the most common place
for bone cancer to metastasize to. Once bone cancer
spreads to the bone, it can be treated but usually is
not can be treated. In research in the Sheffield re-
searchers, the Sheffield Scientists found cancer can-
cer cells were sending signals to the cells in.

Table 6: An example from the XSum dataset.
We show the original output from watermarked
LLaMA-65B, as well as the output after query-free
word substitution attack.

detection rate on unattacked texts can be further
increased by increasing δ, in practice, the water-
mark strength should be kept under an appropriate
level to avoid hurting the quality of text generation
(Kirchenbauer et al., 2023). Compared to Dipper
paraphrasing, we achieve lower detection rates
without using a separate unprotected paraphraser
model. We also show qualitative examples for
attacks against watermarking in Table 6.
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Attack ASR

Dipper Paraphrasing 4%
Query-free Substitutions 2%
Query-based Substitutions 68%

Table 7: Attack Success Rate (ASR) for OpenAI
RoBERTa-Large detector for GPT-2 texts.

Initial prompt for querying ChatGPT on XSum

Please complete this passage with at least 150 words:
{X}
Initial prompt for querying ChatGPT on ELI5

Please answer this question with at least 150 words:
{X}
Prompt for paraphrasing

Please paraphrase the following passage, with at least
200 words:
{Y}

Table 8: Prompts used for querying ChatGPT.
Initial prompts are used for instructing ChatGPT
to perform text completion or question answering
on XSum and ELI5 respectively. And the prompt
for paraphrasing is used in Table 10 for para-
phrasing Y into Y′ directly. We also instruct Chat-
GPT to generate at least 150 words as the OpenAI
AI Text Classifier does not accept shorter texts.

Xp on XSum

During the waiting period, please take into consider-
ation utilizing the writing style and vocabulary used
in the subsequent paragraph.
‘‘Wales football star, Gareth Bale, is set to undergo
surgery on his ankle after suffering an injury during
Real Madrid’s 2-1 victory over Sporting Lisbon in the
Champions League. (. . .) ’’

Xp on ELI5

At the same time, kindly mimic the writing technique
and diction utilized in the subsequent excerpt.
‘‘The reason why metal feels cooler compared to
other things at the same temperature is due to its ther-
mal conductivity. (. . .)’’

Table 9: Our searched instructional prompts on
XSum and ELI5 respectively. Part of the Xref is
omitted due to the space limit.

Attack against Classifier-based Detectors Re-
sults for attacking GPT-2 text detector are shown
in Table 7. We find that the attack success rate
(ASR) on detecting GPT-2 texts is close to 0 for

Method
XSum ELI5

AUROC DR AUROC DR

Unattacked 88.8 30.0 87.1 54.0
ChatGPT Paraphrasing 80.0 14.0 76.2 27.0

Query-free Substitution 69.9 2.0 59.0 2.0
Query-based Substitution 43.4 0.0 31.5 0.0
Instructional Prompts 54.9 5.0 66.7 21.0

Table 10: AUROC scores (%) and detection rates
(DR) (%) of the OpenAI AI Text Classifier on
the original outputs by ChatGPT and outputs with
various attacks respectively.

Dataset Method Fluency Plausibility

XSum

Unattacked 2.79±0.47 2.76±0.52
ChatGPT Paraphrasing 2.60±0.52 2.75±0.43
Query-free Substitution 2.58±0.57 2.68±0.50
Query-based Substitution 2.49±0.67 2.68±0.52
Instructional Prompts 2.67±0.57 2.66±0.55

ELI5

Unattacked 2.78±0.45 2.87±0.34
ChatGPT Paraphrasing 2.35±0.48 2.95±0.28
Query-free Substitution 2.83±0.37 2.60±0.49
Query-based Substitution 2.65±0.54 2.63±0.47
Instructional Prompts 2.73±0.50 2.56±0.62

Table 11: Average score and standard deviation of
ratings from human evaluation on attacks against
the OpenAI AI Text Classifier for ChatGPT.

Dataset Method Fluency Plausibility

XSum
Unattacked 2.79±0.47 2.76±0.52
Dipper Paraphrasing 2.67±0.51 2.60±0.52
Query-free Substitution 2.58±0.57 2.68±0.50
Query-based Substitution 2.35±0.51 2.40±0.49

ELI5
Unattacked 2.78±0.45 2.87±0.34
Dipper Paraphrasing 2.63±0.48 2.68±0.47
Query-free Substitution 2.83±0.37 2.60±0.49
Query-based Substitution 2.47±0.50 2.42±0.53

Table 12: Average score and standard deviation of
ratings from human evaluation on attacks against
DetectGPT for detecting ChatGPT generation.

Dataset Method Fluency Plausibility

XSum
Unattacked 2.65±0.51 2.68±0.53
Dipper Paraphrasing 2.68±0.47 2.58±0.59
Query-free Substitution 2.45±0.69 2.68±0.47

ELI5
Unattacked 2.45±0.50 2.42±0.49
Dipper Paraphrasing 2.63±0.51 2.66±0.53
Query-free Substitution 2.27±0.62 2.58±0.49

Table 13: Average score and standard deviation of
ratings from human evaluation on attacks against
the watermark detector for the watermarked
LLaMA-65B with δ = 1.0, γ = 0.5.
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Original input

Please answer this question with at least 150 words:
Why we don’t yet have a cable provider that will let me pick and pay for ONLY the channels I want?

Original output

The reason why we do not yet have a cable provider that will allow choosing and paying for only the channels we want
is that it may not be economically feasible for the providers. The cable providers typically negotiate content deals with
media companies in packages or bundles. This packaging provides providers with a lower cost per channel, making it more
profitable for them. (. . .)

ChatGPT Paraphrasing

The lack of cable providers that offer the option to choose and pay for individual channels is due to the feasibility of the idea.
Cable providers, such as media companies, negotiate bundles or packages of channels rather than individual offerings. This
arrangement allows for a lower cost per channel for the providers, which translates to higher profits. Additionally, media
companies benefit from bundling channels as it increases the exposure of lower-demand channels and ensures programming
visibility. (. . .)

Query-free Substitution

The motive why we do not yet have a cable provider that will allow choosing and paying for only the channels we want is
that it may not be monetarily feasible for the providers. The cable providers typically negotiate content deals with media
companies in wrap or bundles. This packaging provides providers with a lower expense per channel, making it more
profitable for them. . The media companies also benefit from integrating their channels, as they can sell lower-demand
channels as a package deal, ensuring broader visibility for their programs. (. . .)

Query-based Substitution

The reason why we do not yet have a cable provider that will allow nominating and paying for only the channels we want
is that it may not be economically feasible for the providers. The Cablegram providers typically negotiate content deals
with media companies in packages or bundles. This parcel provides providers with a lower cost per channel, making it
more profitable for them. The media companies also benefit from packaging their channels, as they can sell lower-demand
avenue as a package deal, ensuring broader visibility for their programs. (. . .)

Instructional Prompts

The reason why we don’t yet have a cable provider that lets us pick and pay for only the channels we want is due to
the complex and structured industry model that cable companies have established. The traditional cable model focuses on
bundling channels together into packages, often forcing customers to pay for channels they don’t want or need. This model
benefits cable companies by allowing them to earn more revenue from customers who are willing to pay for premium
packages, even if they don’t watch all the channels that come with it. (. . .)

Table 14: An example from the ELI5 dataset when using ChatGPT as the generative model. We show
the original input and output, as well as the output under various attacks. Due to space limit, we omit
part of the generation as indicated by ‘‘(. . .)’’.

both paraphrasing and query-free substitutions.
We hypothesize that this is because the detector
is specifically trained on detecting GPT-2 texts,
and it is hard to remove the patterns leveraged
by those detectors by randomly selecting word
substitutions or paraphrasing. Our evolutionary
search-based substitutions achieve much better
ASR compared to the query-free methods.

For the OpenAI AI Text Classifier shown in
Table 10, query-free attacks are able to decrease
the detection AUROC by 18.9 and 28.1 percentage
points on XSum and ELI5, respectively, while
query-based ones further decrease them by 45.4
and 55.6 percentage points to lower than ran-

dom. Comparison with the attack using instruc-
tional prompts and more details are discussed in
Section 6.3.

6.3 Attack with Instructional Prompts
We conduct experiments for our instructional
prompts using ChatGPT as the generative model
and the OpenAI AI Text Classifier as the
classifier-based detector. The detector is model-
detect-v2 accessible via OpenAI APIs as of
early July 2023. We choose this detector as it
is developed by a relatively renowned company
andhas been shown to achieve stronger detec-
tion accuracy (Krishna et al., 2023) than other
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classifier-based detectors such as GPTZero (Tian
and Cui, 2023). This detector was also avail-
able at no cost when our experiments were con-
ducted. Its output contains five classes, including
‘‘likely’’, ‘‘possibly’’, ‘‘unclear if it is’’, ‘‘un-
likely’’ and ‘‘very unlikely’’, with thresholds 0.98,
0.90, 0.45, and 0.10 respectively. We follow these
thresholds and use a threshold of 0.9 to compute
detection rates.

We search for the instructional prompt using
n = 50 training examples, T = 5 iterations, and
K = 5 candidates in each iteration. We show the
prompts for querying ChatGPT in Table 8 and
the results in Table 10 and Figure 1. Our instruc-
tional prompts significantly reduce the the AUROC
scores and detection rates compared to the un-
attacked setting and are more effective than para-
phrasing with ChatGPT. While using instructional
prompts may not lead to lower AUROC or DR
compared to word substitutions, it does not re-
quire querying G′ or f multiple times, making it
a more efficient and equally effective option. We
show an example on ELI5 with various attacks in
Table 14 and the instructional prompts found by
our algorithm in Table 9.

7 Human Evaluation

To validate that our approach mostly preserves
the quality of the generated text, we conduct a
human evaluation on Amazon Mechanical Turk
(MTurk). On each dataset, we consider the first 20
test examples and ask 3 MTurk workers to rate
the quality of the text generated by each method
on each of the test examples. Specifically, we use
two metrics, including fluency and plausibility,
where fluency measures whether the text is gram-
matically correct and fluent, and plausibility mea-
sures whether the generated text is a plausible
output given the input, on either the text com-
pletion (XSum) or long-form question answering
(ELI5) task. We use a 1/2/3 rating scale for each
of the metrics (3 is the best and vice versa), and
we provide the workers with guidance on the rat-
ings, according to whether there are many/several/
almost no issues for the 1/2/3 ratings on fluency
and plausibility respectively. The workers are paid
USD $0.05 for each example and we provide an
additional bonus. The annotation time varies, but
the estimated wage rate is $10/hr, which is higher
than the US minimum wage ($7.25/hr).

Tables 11 to 13 show results on attacks against
the three detectors respectively. These results
show that our attack methods can maintain reason-
able and satisfactory plausibility and fluency with
a small degradation compared to the unattacked
texts. Among our attack methods, we find that the
query-free substitution usually has better fluency
and also sometimes better plausibility compared to
the query-based substitution, as the query-based
one which aims to search for a stronger attack
tends to degrade the text quality slightly more.
Our method with instructional prompts has bet-
ter fluency than the query-based substitution and
sometimes better fluency than the query-free sub-
stitution, and its generation is directly from model
G without further substituting words; it also has
comparable plausibility compared to the word
substitution methods.

8 Discussions

Robustness of Detectors. Comparing the re-
sults in Tables 4, 5, and 10, we see a clear
trend that watermarking is relatively more ro-
bust to the attacks compared to the other two
techniques. The detection mechanism in water-
marking is mainly a statistical method and tends
to be more robust compared to the likelihood-
based and classifier-based detectors which heavily
rely on neural networks. However, watermarking
is also the only method here that modifies the gen-
eration process of the protected LM. It requires
access to the intermediate outputs of the LM and
the generation quality may degrade. While the
three detectors are not strictly comparable, as wa-
termarking has a different setting by modifying
the generation, our results still show insights on
the different degrees of robustness of the various
detectors. From Table 4 and Table 10, we can also
see that query-based method generally produces
stronger attacks, which benefits from the guidance
of multiple queries to the detector when searching
for more effective word substitutions.

Text Quality under the Attacks. We note that
attack approaches often result in a minor decline
in generation performance. Nonetheless, based on
human assessment, the quality remains acceptable
and is adequate to spam the target in a real-world
scenario. Note that in practical scenarios such as
online spamming, malicious actors do not have to
use perfect text and they may still use text with
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slightly degraded quality, as their main purpose is
not to generate perfect text but text that is hard
to detect. Therefore, the insufficient robustness
of existing detection strategies continues to be a
significant concern.

Defending against the Attacks. Inspired by our
attack results, we discuss on potential directions
for developing methods to defend against the at-
tacks. One possibility is to combine watermarking
with a likelihood estimation to defend against
word substitution attacks. This is based on the
observation that the word substitution attacks of-
ten need to substitute around 20% tokens from
greenlisted tokens to redlisted tokens. After the
word substitution, the new redlisted tokens tend
to have lower probabilities in the prediction by
the original watermarked model, and the new text
also tends to have a higher perplexity under the
watermarked model. Thus, one may leverage a
watermarked language model to check the per-
plexity or the likelihood of all the redlist tokens,
to predict whether a word substitution attack is
possibly present.

9 Conclusion and Limitations

In this work, we study the reliability of three
distinct types of LLM text detectors by proposing
two attack strategies: 1) word substitutions and
2) instructional prompts using protected LLMs.
Experiments reveal the vulnerability of existing
detectors, which urges the design of more reli-
able LLM text detectors. We have released the
source code and data with BSD-3-Clause license
at GitHub (https://github.com/shizhouxing
/LLM-Detector-Robustness).

Finally, the purpose of this work is to test and
reveal the limitations of the currently existing
LLM text detectors, and we red-team the detec-
tors for future works to improve their robustness
and reliability based on our proposed evaluation.
Thus this work is potentially beneficial to for de-
veloping future systems protecting LLMs and pre-
venting abusive usage. The proposed approaches
should not be used to bypass real-world LLM text
detectors for malicious purposes.
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