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Abstract

Changing an attribute of a text without chang-
ing the content usually requires first disen-
tangling the text into irrelevant attributes and
content representations. After that, in the infer-
ence phase, the representation of one attribute
is tuned to a different value, expecting that the
corresponding attribute of the text can also be
changed accordingly. The usual way of disen-
tanglement is to add some constraints on the
latent space of an encoder-decoder architec-
ture, including adversarial-based constraints and
mutual-information-based constraints. However,
previous semi-supervised processes of attri-
bute change are usually not enough to guaran-
tee the success of attribute change and content
preservation. In this paper, we propose a novel
approach to achieve a robust control of at-
tributes while enhancing content preservation.
In this approach, we use a semi-supervised
contrastive learning method to encourage the
disentanglement of attributes in latent spaces.
Differently from previous works, we re-
disentangle the reconstructed sentence and
compare the re-disentangled latent space with
the original latent space, which makes a closed-
loop disentanglement process. This also helps
content preservation. In addition, the contras-
tive learning method is also able to replace the
role of minimizing mutual information and
adversarial training in the disentanglement
process, which alleviates the computation
cost. We conducted experiments on three text
datasets, including the Yelp Service review
dataset, the Amazon Product review dataset,
and the GoEmotions dataset. The experimen-
tal results show the effectiveness of our model.

1 Introduction

Controlling the attributes of a text is an important
application of interpretable natural language mod-
els. The term ‘‘control’’ usually means to take at-
tributes as a handle, and pulling the handle causes

corresponding changes in the text. The control
process should not change the content of the text
as is shown in Figure 1. Usually, this is realized
by disentangling the text into multiple irrelevant
latent spaces for content and multiple attributes
(Sha and Lukasiewicz, 2021).

Previous work mainly use two methods for
disentangling the attributes: adversarial learning
(Chen et al., 2016; John et al., 2019) and mutual in-
formation minimization (Moyer et al., 2018; Sha
and Lukasiewicz, 2021). For each latent space
(corresponding to the content or attributes), the
former (John et al., 2019) applies adversarial
training to reduce the information that should not
be contained in that space. Also, Logeswaran et al.
(2018) uses an adversarial method to encourage
the generated text to be compatible with the tuned
attributes. To alleviate the training cost and the
instability of adversarial methods, Moyer et al.
(2018) and Sha and Lukasiewicz (2021) proposed
to minimize the mutual information between dif-
ferent latent spaces.

When changing attributes, previous methods
change the representation of an attribute in the
latent space, expecting the generated text to satisfy
the changed attribute. However, the generated text
does not necessarily do so and preserve the content
as well as other attributes, if this is not explicitly
encouraged in the training process.

In this paper, we propose a novel attribute con-
trol model, which uses contrastive learning to
make the latent representation of attributes irrele-
vant to each other, while encouraging the content
to be unchanged during attribute control. We still
use an autoencoder architecture to disentangle the
text into latent spaces. Inspired by closed-loop
control systems (Di Stefano et al., 1967) and
closed-loop data transcription (Dai et al., 2022),
we utilize the encoder once more to disentan-
gle the generated text into re-disentangled latent
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Figure 1: Attribute control: a sentence is disentangled
into separate attributes. Each dashed circle represents
an attribute. After one of the attributes was changed
to another value (here, attribute 3 was changed from a
circle to a triangle), the corresponding attribute of the
reconstructed sentence was changed accordingly.

spaces. This enables the disentanglement process
to operate in a closed-loop manner, resulting in
greater stability. Then, we use contrastive learning
to reduce the difference of unchanged attributes
between the original and the re-disentangled la-
tent spaces, while enlarging the difference be-
tween changed attributes. The contrastive learning
method thus provides an alternative way for dis-
entanglement, since it directly encourages content
preservation and non-target attribute preservation
when changing the targeted attribute.

Our contributions are briefly summarized as
follows:

• We propose a new approach to disentangle-
ment based on contrastive learning, where
we re-disentangle the reconstructed sentence
and compare the re-disentangled latent space
with the original latent space to make a
closed-loop control.

• We propose several contrastive learning loss
functions to disentangle the text into irrel-
evant latent spaces as a replacement for
adversarial learning or mutual information
minimization.

• We conduct extensive experiments on three
text datasets (Yelp Service review, Amazon
Product review, and GoEmotions dataset) to
show the disentanglement effectiveness of
our method.

2 Related Work

Disentanglement for Attribute Control. For
a natural text, if we want to change one of its

attributes while keeping all its other attributes
unchanged, a promising way is to disentangle the
attributes from the text. Then, changing one at-
tribute is not expected to affect other attributes.

Techniques for disentangling attributes can be
divided into two different types: explicit disentan-
glement (Chen et al., 2016; John et al., 2019; Sha
and Lukasiewicz, 2021) and implicit disentangle-
ment (Higgins et al., 2017; Chen et al., 2018).
Explicit disentanglement requires the training da-
taset to contain attribute annotations, which may
help to separate the latent space into interpretable
components for each attribute. For example, Chen
et al. (2016) and John et al. (2019) used adver-
sarial methods to reduce the influence between la-
tent spaces. To overcome the training difficulties
and resource-consuming problems of adversarial
methods, mutual information minimization meth-
ods (Moyer et al., 2018; Sha and Lukasiewicz,
2021) have been proposed to conduct disentan-
glement in a non-adversarial way. The explicit
disentanglement method is easier for attribute con-
trol, because it is easy to tell the model which part
of the latent space represents which attribute.

Implicit disentanglement does not use the at-
tribute annotations in the training dataset, so for
each disentangled component, it is hard to tell
exactly which attribute it corresponds to. Implicit
disentanglement includes β-VAE (Higgins et al.,
2017), β-TCVAE (Chen et al., 2018), and many
derivatives (Mathieu et al., 2018; Kumar et al.,
2017; Esmaeili et al., 2018; Hoffman and Johnson,
2016; Narayanaswamy et al., 2017; Kim and
Mnih, 2018; Shao et al., 2020). The basic princi-
ple of implicit disentanglement is to capture the
internal relationship between input examples. For
example, Chen et al. (2018) break the evidence
lower bound (ELBO) into several parts and pro-
posed the Total Correlation, which encourages
the different attributes to be statistically indepen-
dent. Total Correlation is also the cornerstone for
MTDNA (Sha and Lukasiewicz, 2021). Esmaeili
et al. (2018) further break the ELBO into more
segments and discussed the effect of each segment
toward implicit disentanglement. However, with-
out the help of annotation, it is difficult for implicit
disentanglement to obtain better disentangled la-
tent spaces than explicit disentanglement.

Attribute Control without Disentanglement.
Although disentanglement is a general way to per-
form attribute control, there are also methods that
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control attributes without disentanglement. For
example, Logeswaran et al. (2018) use adversar-
ial training to judge whether the generated sen-
tence is compatible with the target attribute label.
Lample et al. (2019) use a back translation method
to model the attribute control process. Similar
methods are also applied by Luo et al. (2019),
Artetxe et al. (2018), and Artetxe et al. (2019).
Other methods also tried some other task formu-
lations, like probabilistic inference by HMM (He
et al., 2019) and paraphrase generation (Krishna
et al., 2020).

Contrastive Learning. Contrastive learning
has been proposed by Hadsell et al. (2006), and
has witnessed a series of developments in recent
years. The goal of contrastive learning can be seen
as training an encoder for a dictionary look-up task
(He et al., 2020). Triplet loss (Chechik et al., 2010;
Hoffer and Ailon, 2015; Wang and Gupta, 2015;
Sermanet et al., 2018) has originally been pro-
posed to achieve this, which reduces the distance
between the example and a positive example and
enlarges the distance between the example and
a negative example. Noise contrastive estimation
(NCE) loss (Gutmann and Hyvärinen, 2010, 2012)
uses a probabilistic model to discriminate the
positive and negative examples. Based on NCE,
InfoNCE (Oord et al., 2018; Hjelm et al., 2018;
Anand et al., 2019; Bachman et al., 2019; Gordon
et al., 2020; Hjelm and Bachman, 2020; Zhuang
et al., 2019; Xie et al., 2020; Khosla et al., 2020)
has a similar form of classification-based N-pair
loss (Le-Khac et al., 2020), and it has proved that
the minimization of InfoNCE also maximizes the
lower bound of the mutual information between
the input and the representation (Oord et al., 2018).
Similar mutual-information-based losses include
DIM (Hjelm et al., 2018), PCL (Li et al., 2020),
and SwAV (Caron et al., 2020). Also, MoCo (He
et al., 2020; Chen et al., 2020c, 2021) uses a dy-
namic memory queue for building large and con-
sistent dictionaries for unsupervised learning with
InfoNCE loss. SimCLR (Chen et al., 2020a,b) uses
a large batch size in an instance discrimination
task.

In contrast to the above, instead of on the input
examples, we apply contrastive learning in the
original and re-disentangled latent spaces to en-
courage that attributes can be robustly controlled,
which thus makes the latent space disentangled.
To our knowledge, this is the first work of us-

ing contrastive learning in such a way to conduct
disentanglement.

The difference between our approach and
other disentanglement methods. Our CLD ex-
ploits the essence of attribute disentanglement.
We now compare it with two previous methods of
disentanglement.

Adversarial disentanglement (Chen et al., 2016;
John et al., 2019) naturally uses adversarial meth-
ods to eliminate the information of other attri-
butes from the representation of one attribute.
However, if there are multiple style types, then
we need one discriminator for each of the style
types, which is a massive cost of resources. Also,
adversarial methods can only be taken as con-
straints on the latent space, since they do not
directly encourage the other attributes not being
affected by the changed attribute.

Another method is mutual information minimi-
zation (Moyer et al., 2018; Sha and Lukasiewicz,
2021), which is more efficient and elegant. How-
ever, it still does not directly encourage that the
change in the style’s latent space can be perfectly
reflected in the output sentence. On the other
hand, it is based on some strong assumptions like
that the content vector should also follow a Gaus-
sian distribution. But in our CLD, the contrastive-
learning-based method does not require any of
these assumptions. Moreover, CLD directly mod-
els the attribute control process in an easier and
more natural way, which is more flexible to be
generalized to more complex attributes and la-
tent spaces.

3 Approach

In this section, we introduce the design of our
model for contrastive learning disentanglement
(CLD). Differently from previous work, our pro-
posed model is very simple, as it only contains
the basic encoder-decoder architecture and three
contrastive learning loss functions. The architec-
ture of our model is shown in Figure 2.

3.1 Basic Architecture for Disentanglement

Like previous disentanglement methods (Higgins
et al., 2017; John et al., 2019; Sha and Lukasiewicz,
2021), we use an autoencoder as our basic archi-
tecture. Autoencoders are able to map the input
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Figure 2: Complete architecture of our proposed model CLD. The upper row (a) represents the normal
disentanglement process. The lower row (b) imitates the style/attribute transfer process. In both processes, we
conduct re-disentanglement and use contrastive learning to encourage the content vector (c) to stay unchanged,
while the style vectors (s, s̃) change to the desired values.

text into a latent space, while encouraging the la-
tent vector to contain the complete information of
the input. So, disentanglement is usually achieved
by adding constraints to the latent space to split
it into irrelevant segments. Then, each segment
represents an isolated feature of the input, and
once changed the reconstructed text should also
be changed correspondingly.

For explicit disentanglement (with annotated
attributes for training), we use two kinds of
autoencoders: vanilla autoencoders (Hinton and
Zemel, 1994) and variational autoencoders (VAEs)
(Kingma and Welling, 2014). Given a text data-
set SX = {X1, . . . , XN}, the loss functions of
these two autoencoders are defined as follows:

JAE =− EX∼SX
p(X|f(X)), (1)

JVAE =− Ez∼qE(z|X) log[p(X|z)]
+λKLKL(qE(z|X)||p(z)), (2)

where f(·) and qE(z|X) are the encoders in
the vanilla and the variational autoencoders, re-
spectively, p(X|z) is the decoder, and p(z) is a
prior distribution (usually, N (0, 1)). The detailed
architecture is given in the appendix.

Note that JVAE has the name ‘‘VAE’’ be-
cause the latent space is calculated using the

same method as a variational autoencoder (VAE).
Specifically, a VAE uses an encoder to gener-
ate a distribution over the latent space, and then
samples a vector z from this distribution, and then
feeds z to a decoder. Sampling from a distribu-
tion results in a continuous latent space (Bowman
et al., 2016).

3.2 Contrastive Learning for
Explicit Disentanglement

Contrastive learning is originally proposed to
learn such an embedding space in which simi-
lar sample pairs stay close to each other, while
dissimilar ones are far apart. So, for disentan-
gled representations, we can re-disentangle the
reconstructed input and conduct contrastive learn-
ing between the disentangled representations and
re-disentangled representations. Intuitively, after
one disentangled feature is changed, the corre-
sponding re-disentangled feature should also be
changed, and the other re-disentangled features
should remain unchanged.

Basics for Explicit Disentanglement. In ex-
plicit disentanglement, the most typical way is to
separate the latent space into two irrelevant latent
spaces, one for the style (s) and one for the content
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(c) (John et al., 2019; Sha and Lukasiewicz, 2021).
The style1 vector here is the representation of one
of the attributes of the text, including sentiment,
tense, and tone for text. In this paper, we define
a new symbol to represent the disentanglement:
‘‘�’’. Then, X � [s, c] represents that the rep-
resentations of s and c are obtained by directly
splitting the latent vector z (in Eq. (2)) into s and c.
On the other hand, we define ‘‘�’’ for generating
text according to the disentangled attributes. By
Eq. (2), the distribution of the generated text is
calculated by p(X|s, c). So, we can take a sam-
ple text from this distribution as X ′ ∼ p(X|s, c),
which is denoted by [s, c] � X ′ in this pa-
per. Then, the disentanglement process and the
reconstruction process are written as:

X � [s, c], [s, c] � X ′, (3)

where X ′ represents the reconstructed text.

Re-disentanglement for Style Transfer. Fol-
lowing the unified distribution-control (UDC)
method in Sha and Lukasiewicz (2021), we also
predefine a Gaussian distribution Ni for the i-th
style type value. To give a specific example,
there are two values for text sentiment (positive
and negative), each corresponds to a Gaussian
distribution.

To directly model the style transfer process, we
first change the style vector s to the vector of a
different style, which is sampled from the unified
style distribution defined by the UDC method.
In the training phase, this sampling process can
be conducted by the reparameterization trick as
shown in Kingma and Welling (2014). Then, we
reconstruct the text and disentangle the text for
a second time (namely, re-disentangle) into style
vector and content vector.

In detail, assuming that there are V possible
style values for s, we sample v style values
s̃1, . . . , s̃v that are different from s’s original style
value. Then, we replace s with s̃2 and generate the

1Following the glossary by Sha and Lukasiewicz (2021),
a style type is a style class that represents a specific feature
of text or an image, e.g., sentiment, tense, or face direction;
and a style value is one of the different values within a style
type, e.g., sentiment (positive/negative), or tense (past/now/
future).

2The subscript is omitted, since we do the same operation
for each style type value sample.

text X̃ . After that, we re-disentangle the gener-
ated text X ′ (in Eq. (3)) and X̃ , and compare the
re-disentangled representation of style and con-
tent with the original representation of style and
content.

So, the generation and re-disentanglement pro-
cess can be described as follows:

[s, c] � X ′, X ′ � [s′, c′]; (4)

[s̃, c] � X̃, X̃ � [s̃′, c̃′]. (5)

Contrastive Learning. First, under the UDC
setting, assume that the predefined trainable dis-
tributions for each style value are N1, . . . ,NV .
The disentangled style vector s is expected to be
close to the corresponding style value’s represen-
tation spre

∗
3 and far away from other style values’

representation. Consistent with previous work
(He et al., 2020), we use the dot product to mea-
sure the similarity and the InfoNCE (Oord et al.,
2018) loss as the contrastive learning loss func-
tion as follows:

spre
i ∼ Ni, i ∈ {1, . . . , v}, (6)

Lori = − log
exp(s · spre

∗ /τ)∑v
i=0 exp(s · s

pre
i /τ)

, (7)

where τ is a temperature hyperparameter (He
et al., 2020).

When we re-disentangle the reconstructed text
as X ′ � [s′, c′], the representation for style s′

should be close to the original style value, and far
away from all the other style value’s representa-
tions. The corresponding InfoNCE (Oord et al.,
2018) loss is as follows:

Lre = − log
exp(s′ · spre

∗ /τ)∑v
i=0 exp(s

′ · spre
i /τ)

. (8)

On the other hand, when the style transfer pro-
cess is conducted as Eq. (5), ideally, the re-
disentangled style representation s̃′ should be far
from the original style s and close to the trans-
ferred style vector s̃. So, the InfoNCE (Oord et al.,

3spre
i is sampled from the distribution Ni. s

pre
∗ is sampled

from the distribution N∗, which corresponds to the ground
truth attribute label.
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2018) loss function for each of the sampled style
values, namely, s̃k (k = 1, . . . , v), is as follows:

L̃k = − log
exp(s̃′k · s̃k/τ)

exp(s̃′k · s/τ) +
∑v

i=0,i�=k exp(s̃
′
k · s̃i/τ)

,

(9)

For the re-disentangled content representations c′

and c̃′, it should be close to the original content
representation c and far from the content repre-
sentation disentangled from other examples. The
InfoNCE loss for content representation is Lc(c

′).
Similarly, the contrastive learning constraint for
c̃′ is Lc(c̃

′) as follows.

Lc(c
′) = − log

exp(c′ · c/τ)∑M
i=0 exp(c

′ · c(i)/τ)
, (10)

Lc(c̃
′) = − log

exp(c̃′ · c/τ)∑M
i=0 exp(c̃

′ · c(i)/τ)
, (11)

where c(i) is the disentangled content representa-
tion of the i-th example in the current batch, M
represents the batch size.

Finally, if we are using a vanilla autoencoder
as the basic architecture, the total loss function
of contrastive-learning-based explicit disentan-
glement is shown in Eq. (12).

L = JAE+λoriLori+λreLre+λk

∑v

k=1
L̃k+λcLc,

(12)

where λori, λre, λk, and λc are hyperparame-
ters. When we are using a VAE as the basic
architecture, we only need to replace JAE with
JVAE in Eq. (12). Lc is obtained by summing
up the two contrastive learning losses for content
preservation as shown in Eq. (13). The coeffi-
cients of the three items are set to the same,
because they are expected to provide an equal
effect on the three latent spaces: the original latent
space, the re-disentangled latent space, and the
style-transferred re-disentangled latent space.

Lc = Lc(c
′) + Lc(c̃

′). (13)

4 Experiments

4.1 Data

Consistent with previous work, we use Yelp
Service Reviews4 (Shen et al., 2017), Amazon

4https://github.com/shentianxiao/language
-style-transfer.

Product Reviews5 (Fu et al., 2018), and the Go-
Emotions dataset6 (Demszky et al., 2020) as the
datasets for explicit disentanglement. In the Yelp
dataset, there are 444k, 63k, and 126k reviews in
the train, valid, and test sets, while the Amazon
dataset contains 559k, 2k, and 2k, respectively.
Both datasets contain sentiment labels with two
possible values (‘‘pos’’ and ‘‘neg’’). Additionally,
the tense label is also available in the Ama-
zon dataset, which contains three possible values
(‘‘past’’, ‘‘now’’, and ‘‘future’’).

GoEmotions dataset contains 58,009 exam-
ples with the train, test, and validation sets split
as 43,410, 5,427, and 5,426 examples, respec-
tively. GoEmotions annotations categorize the
examples into 27 distinct emotion labels. These
emotion labels are further grouped in two ways:
First, by sentiment into positive, negative, and
ambiguous classes. Second, by Ekman’s emotion
taxonomy which divides the emotions into 6 broad
categories: anger (including anger, annoyance,
disapproval), disgust, fear (including fear and ner-
vousness), joy (covering all positive emotions),
sadness (including sadness, disappointment, em-
barrassment, grief, and remorse), and surprise
(spanning all ambiguous emotions). The mapping
relations are shown in Table 1.

4.2 Evaluation Metrics
We borrow the metric mutual information gap
(MIG) in Chen et al. (2018) for evaluating the dis-
entanglement performance. MIG was originally
proposed for implicit disentanglement, which
takes each single dimension (a scalar latent vari-
able) of the latent vector as an attribute. In the
original design, MIG measures the difference of
two mutual information values, one of them is the
mutual information between the ground truth fac-
tor vk and latent variable z∗ (z∗ is the best fit latent
variable for vk with the largest mutual informa-
tion), the other is the mutual information between
the ground truth factor vk and latent variable z∗∗
(z∗∗ is the second best fit latent variable for vk).
MIG is defined as follows (Chen et al., 2018):

MIGim =
1

K

K∑
k=1

1

H(vk)

(
I(z∗; vk)− I(z∗∗; vk)

)
,

(14)
5https://github.com/fuzhenxin

/textstyletransferdata.
6https://github.com/google-research/google

-research/tree/master/goemotions.
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Sentiment: positive negative ambiguous
Ekman: joy fear sadness disgust anger surprise
Emotions: joy, amusement, approval disappointment, disgust anger, surprise,

excitement, gratitude, love, fear, embarrassment, annoyance, realization,
optimism, relief, pride, nervousness sadness, grief, disapproval confusion,
admiration, desire, caring remorse curiosity

Table 1: Mapping of emotion categories to sentiment and Ekman taxonomy in GoEmotions dataset.

where the subscript ‘‘im’’ stands for implicit dis-
entanglement, and the mutual information I(z; vk)
is defined by:

I(z; vk) = Eq(z,vk)

[
log

∑
X∈χvk

q(z|X)p(X|vk)
]
,

(15)

where K is the latent vector’s dimension, H(vk)
is the entropy of vk, and χvk is the support of
p(X|vk).

When computing MIG in explicit disentangle-
ment, we replace the latent variables z∗ and z∗∗
by s and c:

MIGex =
1

H(vk)

(
I(s; vk)− I(c; vk)

)
, (16)

where the subscript ‘‘ex’’ stands for explicit dis-
entanglement.

When evaluating the attribute control perfor-
mance, we have 4 metrics for the NLP tasks.

• Attribute transfer accuracy (TA): Follow-
ing previous works (John et al., 2019; Sha
and Lukasiewicz, 2021), we use an external
sentence classifier (TextCNN [Kim, 2014])
to measure the sentiment accuracy after the
attribute change. The external sentence clas-
sifiers are trained separately for the Yelp and
the Amazon dataset, and achieved an accept-
able accuracy on the validation set (Yelp:
97.68%, Amazon: 82.32%).

• Content preservation BLEU (CBLEU-1 &
CBLEU-4): This metric is proposed in
Logeswaran et al. (2018), which transfers
the attribute-transferred sentence back to the
original attribute, and then computes the
BLEU score with the original sentence.

• Perplexity (PPL): Perplexity is used for eval-
uating the fluency of the generated sentences.

We use a third-party language model (Kneser
and Ney, 1995, KenLM) as the evaluator.
Two separate KenLMs are trained and used
for evaluation on the two datasets.

• Transfer BLEU (TBLEU): The BLEU score
is calculated between the original sentence
and the attribute-transferred sentence. We
delete the sentiment words before evaluation
according to a sentiment word list.7

• Geometric mean (GM): We use the geometric
mean of TA, 1/PPL, and TBLEU as an aggre-
gated score, which considers attribute control
performance and fluency simultaneously.

4.3 Disentanglement Performance
We have visualized the latent space of attributes
and contents in Figures 3 and 4. To generate
this visualization, we perform dimension reduc-
tion on the hidden attribute representations in
the latent space. Specifically, we use t-SNE (van
der Maaten and Hinton, 2008) to reduce the
high-dimensional attribute representations to 2D
embeddings that can be plotted. We see that with
contrastive learning, both the vanilla and the var-
iational autoencoder have separated different la-
bels of sentiment (or tense) into different latent
spaces successfully. In comparison, the different
labels are mixed together in the content’s la-
tent space according to Figure 4, which means
that the content space does not contain infor-
mation of the sentiment attribute. Note that we
do not use any resource-consuming traditional
disentanglement methods like adversarial meth-
ods or mutual information minimization, simply
re-disentangling the generated sentence and us-
ing contrastive learning can lead to such a good
disentanglement performance.

For datasets with more granular emotion cate-
gories, we also visualize the attribute latent space
of the GoEmotions dataset. We again use t-SNE

7https://ptrckprry.com/course/ssd/data
/positive|negative-words.txt.
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Figure 3: Visualization of the disentangled latent space for the two style types: sentiment and tense. (a), (b), and
(c) are created by a vanilla autoencoder, while (d), (e), and (f) are created by a VAE. All results are obtained when
τ is set to 100.

Figure 4: Visualization of the content spaces after
disentanglement on the Yelp dataset.

to reduce the high-dimensional attribute represen-
tations to 2D embeddings that can be plotted. As
shown in Figure 5, the 2D latent space naturally
separates into three distinct clusters corresponding
to the semantic-level taxonomy of positive, neg-
ative, and neutral emotions. Furthermore, within
the positive and negative regions, the space sep-
arates into smaller sub-clusters representing each
of the six Ekman emotions. This demonstrates that
our model has learned a disentangled latent space
where proximity aligns with annotated emotion
similarities. By visualizing the latent space in 2D,
we can better understand the relationships learned
between different emotion categories.

Figure 5: Visualization of the Sentiment and Ekman
taxonomy in the latent space on the GoEmotions
dataset.

Also, the comparison of the MIG value is shown
in Figure 6. We reimplemented the previous works
of explicit disentanglement (John et al., 2019) and
MTDNA (Sha and Lukasiewicz, 2021), based on
their released code, the hyperparameters of the
encoder and the decoder are all set to the same.
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Figure 6: The box plot of the MIG metric for different
explicit disentanglement methods on the two datasets
in the experiments (for sentiment). The red boxes rep-
resent vanilla-autoencoder-based methods, while the
blue boxes are for VAE-based methods.

Different experiments for a model would have
multiple different MIG values due to different
random initialization. So, we draw box plots to
show the statistical comparison of MIG values
in 40 experiments. In both datasets for explicit
disentanglement, our method CLD achieves a bet-
ter MIG value and is more robust (has smaller
variance) than the other two methods.

Additionally, due to the computational effi-
ciency of contrastive learning losses, our proposed
method takes less time for each epoch compared to
adversarial-based and mutual-information-based
methods. On Yelp, it takes CLD 20.93 min
(Vanilla) and 21.56 min (VAE) for one epoch,
while John et al. (2019) requires 46.36 min
(Vanilla) and 44.59 min (VAE) for one epoch,
and MTDNA (Sha and Lukasiewicz, 2021) re-
quires 42.74 min (Vanilla) and 43.62 min (VAE)
for one epoch.

4.4 Performance of Attribute Control

We compare our method CLD with multiple
previous attribute control methods: Logeswaran
et al. (2018) and Lample et al. (2019) as non-
disentanglement methods, and John et al. (2019)
and MTDNA (Sha and Lukasiewicz, 2021) as
explicit disentanglement methods. We also com-
pared our approach with the prefix-tuning-based
method by Qian et al. (2022) for controlling the
attribute of generated text. However, we note that
their method was not specifically designed to
maintain the text content while modifying attri-
butes. Therefore, we limited our comparison to the
TA and PPL metrics.

The overall performances of the Yelp and Ama-
zon datasets are listed in Table 2. The overall

performance of GoEmotions dataset is listed in
Table 3. We can see that our proposed method
CLD outperforms all the previous works in the TA
metric, perplexity, and TBLEU score. Compared
with the baseline methods without contrastive
learning, our approach shows great advantages
over the MTDNA (Sha and Lukasiewicz, 2021)
models in the CBLEU metrics. This fact shows
that the content of a sentence is much easier to
be preserved (the attribute control process is more
robust) when we are using contrastive learning
to keep the content vector before and after re-
disentanglement to be as close as possible. More-
over, when we added back-translation loss as
is conducted by Logeswaran et al. (2018) and
Lample et al. (2019), our method CLD achieved an
even higher score in the CBLEU-1 and CBLEU-4
metric, and this score has outperformed the state-
of-the-art CBLEU score. This again proved that
back-translation loss will become more powerful
in content preservation when used together with
contrastive learning. According to the aggre-
gated performance (GM) listed in Table 2, CLD
also outperforms the baseline methods, and CLD-
(VAE) with back-translation loss achieved state-of-
the-art results. We have observed similar results in
the tense attribute, which is shown in the column
‘‘TA(T)’’ in Table 2.

We also conducted a comparison between our
method and the prompt-tuning-based approach
proposed by Qian et al. (2022). However, it is
important to note that the prompt-tuning-based
method only focuses on controlling the attribute
of the generated text, without ensuring content
preservation. Therefore, we limited our compari-
son to the TA and PPL metrics. To evaluate their
work, we applied Qian et al.’s (2022) method on
our datasets and assessed the results based on our
metrics. As demonstrated in Table 2, our method
still has a clear advantage over the prompt-tuning-
based approach, as the latter sacrifices some at-
tribute accuracy in order to achieve controllable
text generation.

Our method is very easy to be merged with
pretrained language models in encoder-decoder
architectures (like T5 [Raffel et al., 2020]). We
merged our method with T5 and report the re-
sults in Table 2. Due to the large storage of
text corpus and common sense knowledge in the
pretrained language model, the result achieved
a much better level in style transfer accuracy,
content preservation, and fluency metrics.
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Yelp Amazon
TA CBLEU-1 CBLEU-4 PPL TBLEU GM TA(S) TA(T) CBLEU-1 CBLEU-4 PPL TBLEU GM

(Logeswaran et al., 2018) 0.905 53.0 7.5 133 17.4 0.105 0.857 − 31.5 1.8 187 16.6 0.091

(Lample et al., 2019) 0.877 − − 48 14.6 0.139 0.896 − − − 92 18.7 0.122

(John et al., 2019) (Vanilla) 0.883 − − 52 18.7 0.147 0.720 − − − 73 16.5 0.118

(John et al., 2019) (VAE) 0.934 − − 32 17.9 0.174 0.822 − − − 63 9.8 0.109

MTDNA (Vanilla) 0.877 30.4 4.3 45 16.1 0.146 0.789 0.963 23.4 1.2 68 15.4 0.121

MTDNA (VAE) 0.944 32.6 5.1 27 21.2 0.195 0.902 0.993 24.0 1.2 44 20.1 0.160

(Qian et al., 2022) 0.873 − − 37 − − 0.795 0.902 − − 65 − −
CLD (Vanilla) 0.928 45.5 6.9 43 16.3 0.152 0.843 0.972 27.6 1.5 68 15.9 0.125

+ Back-Translation loss 0.890 54.1 8.7 38 16.8 0.158 0.844 0.975 36.7 2.2 59 17.1 0.135

+ T5 0.930 56.6 10.4 33 20.7 0.180 0.889 0.982 37.4 2.4 55 19.3 0.146

CLD (VAE) 0.951 45.7 6.3 28 22.5 0.197 0.910 0.994 28.2 1.6 43 21.3 0.165

+ Back-Translation loss 0.936 54.3 8.4 26 22.7 0.201 0.908 0.993 37.2 2.3 40 21.7 0.170
+ T5 0.985 58.1 11.2 25 23.7 0.211 0.921 0.994 38.3 2.5 38 22.9 0.177

Table 2: Overall attribute control performance. For the sentiment type, the transfer direction
is ‘‘Neg→Pos’’, and ‘‘Pos→Neg’’. For the tense type, the transfer direction is ‘‘Past→Now’’,
‘‘Now→Future’’ and ‘‘Future→Past’’. TA(S) is the TA metric for sentiment, while TA(T) is for tense.
All the advantages of our results compared to the previous best results are statistically significant, as
confirmed by the Wilcoxon signed-rank test (p < 0.05). The state-of-the-art results made by pretrained
language models are underlined.

TA(Sentiment) TA(Ekman) CBLEU-1 CBLEU-4 PPL TBLEU GM-4

(Logeswaran et al., 2018) 0.723 0.538 21.2 1.5 224 8.9 0.111

MTDNA (Vanilla) 0.759 0.602 25.4 3.1 136 9.5 0.134

MTDNA (VAE) 0.780 0.635 28.6 3.7 95 12.1 0.158

(Qian et al., 2022) 0.852 0.816 − − 97 − −

CLD (Vanilla) 0.864 0.845 34.9 4.6 79 15.4 0.194

+ Back-Translation loss 0.857 0.832 36.5 5.2 71 17.8 0.206

+ T5 0.893 0.887 39.7 7.1 63 20.3 0.225

CLD (VAE) 0.899 0.896 36.1 5.5 76 19.4 0.211

+ Back-Translation loss 0.886 0.858 37.3 6.6 74 21.5 0.217
+ T5 0.923 0.901 39.6 8.2 60 23.3 0.238

Table 3: Overall attribute control performance of GoEmotions dataset. For the sentiment taxonomy,
the transfer direction is ‘‘Negative→Positive’’, and ‘‘Positive→ambiguous’’. For the Ekman taxon-
omy, the transfer direction is ‘‘joy→fear’’, ‘‘fear→sadness’’, ‘‘sadness→disgust’’, ‘‘disgust→anger’’,
‘‘anger→surprise’’, ‘‘surprise→joy’’. TA(Sentiment) is the TA metric for sentiment, while TA(Ekman)
is for Ekman taxonomy. All the advantages of our results compared to the previous best results are
statistically significant, as confirmed by the Wilcoxon signed-rank test. (p < 0.05). The state-of-the-art
results made by pretrained language models are underlined.

4.5 Ablation Test

Effect of the Re-disentanglement Process. To
prove that the re-disentanglement process is nec-
essary, we remove all the contrastive losses related
to the re-disentanglement process. The visualiza-
tion of the latent spaces for vanilla and VAE are
shown in Figure 8. We can see that the latent

space became partly mixed up, which shows that
the re-disentanglement process is indispensable.

Effect of Contrastive Loss Functions. To study
the effect of each contrastive learning loss, we re-
move the loss functions one by one to check the
difference of the evaluation metrics. The results
are shown in Table 4. We found that after the
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Yelp

TA CBLEU-4 TBLEU

CLD (Vanilla) 0.928 6.9 16.3

CLD (Vanilla) - Lc 0.935 4.6 11.5

CLD (Vanilla) - Lc -L̃k 0.903 4.3 10.8

CLD (Vanilla) - Lc -L̃k-Lre 0.862 4.4 10.2

CLD (VAE) 0.951 6.3 22.5
CLD (VAE) - Lc 0.959 4.2 13.6

CLD (VAE) - Lc -L̃k 0.928 4.3 12.8

CLD (VAE) - Lc -L̃k-Lre 0.887 4.1 12.4

CLD (Vanilla) (MSE) 0.926 5.0 12.2

CLD (VAE) (MSE) 0.945 5.1 15.6

Table 4: Ablation test results. We select three
metrics (TA, CBLEU-4, and TBLEU) in this ex-
periment, because they are closely related to the
contrastive losses Lre, L̃k, and Lc.

content contrastive loss Lc is removed, the style
transfer accuracy is improved, which shows that
the constraint on the content vector would nega-
tively affect the style information in the generated
sentences. Also, the CBLEU-4 and TBLEU scores
largely dropped, which shows that Lc is very im-
portant for content preservation. Then, after L̃k

is removed, the TA metric dropped about 3 per-
centage points, while the CBLEU-4 and TBLEU
scores did not have any significant change. Since
L̃k is a constraint for the re-disentangled style
vector of the style-transferred sentence, it does
not have too much effect on the content of the sen-
tence. A similar phenomenon is observed when we
remove the loss Lre: The TA metric significantly
decreased again, and the BLEU scores slightly
decreased.

Additionally, we also remove the three con-
trastive learning losses for the content preservation
(Lc(c

′), Lc(c̃
′)) to study their effect on the results.

The scores are also listed in Table 5. We can see
that removing any one of the two losses would
cause an increase in the TA score, which means
all of the content preservation losses are limita-
tions on the style latent space. Both the CBLEU-4
and TBLEU scores decrease a lot after removing
the two content preservation losses. In particular,
it seems that Lc(c

′) has the largest effect on the
scores, which is sensible, because a more dis-
tinguishable content space is easier for content
preservation intuitively.

Yelp

TA CBLEU-4 TBLEU

CLD (Vanilla) - Lc(c
′) 0.929 5.2 14.8

CLD (Vanilla) - Lc(c̃
′) 0.930 6.1 15.3

CLD (VAE) - Lc(c
′) 0.955 5.1 17.8

CLD (VAE) - Lc(c̃
′) 0.951 5.8 20.1

Table 5: Ablation test results w.r.t. different
components in Lc.

We also conducted experiments about chang-
ing the content’s contrastive learning loss Lc to
mean-square error (MSE) loss to check whether
contrastive learning is necessary. In this experi-
ment, we replace Lc with the following loss Lmse:

Lmse = ‖c′ − c‖2 , (17)

where ‖ · ‖2 represents the 2-norm. The results
are also shown in line CLD (Vanilla) (MSE)
and CLD (VAE) (MSE) of Table 4. We can see
that the score of CBLEU-4 and TBLEU dropped
considerably compared with CLD (Vanilla) and
CLD (VAE) after we replaced Lc with Lmse. The
intrinsic difference between Lc and Lmse is that
Lmse only encourages c′ and c from the same
case to be close, while Lc also requires the con-
tent vectors from different cases to be far away
form each other. The latter alleviates the possi-
bility of the content space to collapse. This result
proved that the contrastive learning loss is inev-
itable for content preservation.

Effect of τ . To investigate the effect of the
temperature hyperparameter τ , we run the model
several times with different values of τ , and vi-
sualize the latent space in Figure 7. According
to Figure 7, when τ has a small value, the latent
spaces for the different style values tend to be
connected in some area. In contrast, the latent
spaces become separated when the value of τ
increases. The reason is that when the temper-
ature τ is getting large, the distinction between
the positive and negative examples in the con-
trastive losses tends to be underestimated. Hence,
the model needs to work harder to make the dis-
tinction large, and thus the latent spaces are get-
ting more separated.
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Figure 7: Change of the latent space when the temperature hyperparameter τ is getting larger. We show four
different τ values (i.e., 0.5, 1.0, 10.0, 100.0) for the two possible architectures. The first row is from the vanilla
autoencoder architecture, while the second row is from the VAE architecture.

Figure 8: Visualization of latent space when we remove
the re-disentanglement process, i.e., we only keep the
contrastive losses in Eqs. 9.

4.6 Case Study
We sampled some generated text when we are
transferring the sentiment attribute from one to
another, the results are shown in Table 6. The cor-
responding results for tense are shown in Table 7.
According to the results, the content of text almost
remains unchanged, while the target attribute was
changed to what we expected.

Furthermore, we evaluated more complex emo-
tion attribute transfer cases from the GoEmotions
dataset. We transformed the emotions according
to the Ekman taxonomy and presented the re-
sults produced by CLD using both the vanilla and
VAE architectures. These results are tabulated in
Table 8.

4.7 Human Evaluation
We also conducted a human evaluation for the
attribute control results. We sampled 1,000 exam-
ples from each of Yelp and Amazon, and changed

their attribute value to the opposite value (‘‘Pos-
itive’’→‘‘Negative’’, ‘‘Negative’’→‘‘Positive’’).
Then, we collected the generated sentences and
asked 3 data graders to give a score to the sen-
tences on 3 metrics (transfer accuracy (TA), con-
tent preservation (CP), and language quality (LQ)).
Among them, TA is a percentage, CP and LQ are
scored between 1 ∼ 5. The detailed questions are
listed in the appendix. We randomly shuffled the
sentences to remove the ordering hint. The final
result of human evaluation is shown in Table 9.
The inter-rater agreements (the Krippendorff al-
pha values) of the three metrics are 0.84, 0.89,
and 0.92, all of them are acceptable due to
Krippendorff’s principle (2004). We can see that
our proposed method CLD outperforms the base-
line in each of the human evaluation metrics. We
also listed some generated cases in Appendix 4.6.

5 Discussion

Recent work has explored utilizing large language
models (LLMs) like ChatGPT and GPT-4 for
controllable text generation. For example, Reif
et al. (2021) have proposed methods to steer text
style transfer in these LLMs by conditioning on
discrete attributes or continuous latent represen-
tations. Compared to our approach, a key differ-
ence is that we train our model end-to-end to
disentangle latent attributes, while LLMs rely
on prompting or fine-tuning approaches applied
post-hoc.
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Original (Pos) Vanilla Transferred (Neg) VAE Transferred (Neg)

every one is so nice, and the food is
amazing !

the servant is rude and the food is
terrible .

every one is so tepid, and the food is
awful.

an excellent dining experience . the dining feels bad . an awful dining experience .

yesterday i went to this location and the
staff was very informative and personable .

yesterday i went to this location and
found the staff so rude and angry .

yesterday i went here and the staff was
very tepid, not a good choice .

Original (Neg) Vanilla Transferred (Pos) VAE Transferred (Pos)

crap service with mediocre food is not
a good business model to live by .

good service and the food is delicious . good service with delicious food, good
business model to live by .

this is a horrible representation of a deli . this is a great place to go in this area . this is a good place of a deli .

the staff does a horrible job with my teenagers . the staff works well with my teenagers . the staff does a great job working with
my teenagers.

Table 6: Examples of sentiment polarity control.

Original (Now) Vanilla Transferred (Past) VAE Transferred (Past)

this machine is exactly what the name
says it is - a speller .

this machine was exactly a speller . The machine was a speller, just as its
name indicated.

it’s so small (of course) and it’s really
only good for nuts .

it was so small and only good for nuts . it was very small and only useful for
nuts in the past, just as it is now .

Original (Past) Vanilla Transferred (Future) VAE Transferred (Future)

i did not like the taste of this at all. i will never like this taste . i will never like this taste any more .

i was not impressed, but at least i tried. I will never be impressed . I will not be impressed, but at least I
will try.

Original (Future) Vanilla Transferred (Past) VAE Transferred (Past)

i’m going to e-mail the company but in
the meantime, if you drink this tea, stop.

I emailed the company . I emailed the company, stop drinking
this tea .

i’m probably going to end up throwing
all of these out .

I threw all this out probably . I probably ended up throwing all of
these out.

Table 7: Examples of tense control.

While promising, utilizing LLMs for attribute-
controlled generation remains challenging. The
discrete prompting approach can yield brittle or
superficial style changes, as the models’ under-
standing of prompted attributes is imperfect and
limited to correlation patterns in the pretraining
data (Reif et al., 2021; Luo et al., 2023). La-
tent space steering has shown more coherent style
transfer, but current methods rely on complex opti-
mization schemes or assume access to an attribute
classifier (John et al., 2019; Sha and Lukasiewicz,
2021). In contrast, our model learns disentan-
gled representations directly from data through
closed-loop contrastive training.

6 Limitations

Controlling the Attribute’s Intensity Our
model is not designed to control the intensity
of an attribute, like generating some neutral sen-
tence instead of ‘‘pos’’ or ‘‘neg’’. If we want to
generate a neutral sentence anyway, we just need
to take the average vector of the mean value of
the ‘‘pos’’ and ‘‘neg’’, and replace the original
semantic style vector. Then, the decoder will gen-
erate a neutral sentence. However, this method
will not always be successful, because there is no
guarantee that these latent spaces are smoothly
distributed with overlapping regions, and the
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Original Vanilla Transferred VAE Transferred

My friend and I have been having good
fun queuing Mei/Winston, trololo, and
2 bottles of whisky. (Joy)

My friend and I have been anxiously
queueing Mei/Winston, trololo, and 2
bottles of whisky (fear)

My friend and I anxiously wait
in the endless, crawling queue for
Mei/Winston, trololo, and 2 bottles
of whisky. (fear)

And then you’re stuck on that medication
for life, sounds like a scary trade-off. (fear)

And then I guess you’re stuck taking
that medicine forever and ever, seems
like a real bummer of a trade-off.(sadness)

And then you’re frustratedly stuck on
that medication for life, sounds like a
grim trade-off. (sadness)

it’s hurting my heart :( why did you leave
me (sadness)

It’s sickening my heart :( why did you
abandon me. (disgust)

It’s breaking my heart :( why did you
betray and leave me in such a repulsive
manner. (disgust)

Gross. I hate using those reusable cloth
ones because they retain smells. You’ve
got cats? I know, I can smell them. (disgust)

Damn it. It infuriates me to use those
reusable fabric ones since they hold onto
scents. Throw out these cats! (anger)

Damn it. I detest using those reusable
cloth ones because they retain odors.
You’ve got cats? I know, I can detect
their stench. (anger)

I do remember this and wanted nothing
more than to kill that guy (anger)

Yeah I totally remember this and was like,
woah, my mind was blown about that
guy. (surprised)

I do recall this vividly and was utterly
astonished at that guy. (surprised)

Can’t believe [NAME] has been in the
league that long. . . (surprised)

It’s amazing that [NAME] has been in the
league that long! (joy)

It’s so thrilling that [NAME] has
already been playing in the league for
that many years! (joy)

Table 8: Examples of Ekman control in GoEmotions dataset.

TA CP LQ

Yelp

(Logeswaran et al., 2018) 86.01 3.81 3.89

(Lample et al., 2019) 82.32 3.59 4.28

(John et al., 2019)(VAE) 85.89 3.65 4.25

MTDNA (Vanilla) 84.28 3.69 4.32

MTDNA (VAE) 86.04 3.78 4.39

(Qian et al., 2022) 83.43 3.65 4.41

CLD (Vanilla) 85.42 3.70 4.32

CLD (VAE) 87.98 3.90 4.43

Amazon

(Logeswaran et al., 2018) 80.21 3.68 3.73

(Lample et al., 2019) 77.76 3.14 3.66

(John et al., 2019)(VAE) 82.23 3.27 3.75

MTDNA (Vanilla) 79.03 3.34 3.74

MTDNA (VAE) 83.28 3.52 4.08

(Qian et al., 2022) 80.75 3.21 4.10

CLD (Vanilla) 80.56 3.68 3.76

CLD (VAE) 83.96 3.75 4.32

Table 9: Human evaluation results on Yelp and
Amazon.

decoder may not have been required to generate
such texts with novel style features during train-
ing. To better control the attribute’s intensity, it
is required to design some special mechanics in a
supervised manner.

Difficult Attributes Apart from the simple text
attributes, there are also some complex attributes
like some specific author’s style of writing, which

are usually intertwined together in the latent space.
Discrete categorical style types are hard to design
for such kind of complex attributes. Whether dis-
entanglement can be used for controlling complex
attributes requires further research.

7 Conclusion

In this paper, we proposed a novel explicit
disentanglement method, called contrastive learn-
ing disentanglement (CLD), which uses contras-
tive learning as the core method. Differently from
previous works, we re-disentangle the recon-
structed sentences, and conduct contrastive learn-
ing between the disentangled vectors and the
re-disentangled vectors. To encourage the disen-
tanglement of the attributes’ latent space, we pro-
pose the re-disentangled contrastive loss Lre and
the transferred re-disentangled contrastive loss
L̃k. The latter fully imitates the attribute control
process. To encourage content preservation, we
proposed the content contrastive loss Lc, which
contains three sub-losses. These sub-losses make
the content space more distinguishable and en-
courage the content keep unchanged during at-
tribute control. Our proposed method is not only
much easier in the mathematical derivations, it
also outperforms all the compared methods in the
evaluation metrics according to our experimen-
tal results.
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R. Devon Hjelm. 2019. Unsupervised state
representation learning in Atari. In Proceed-
ings of the 33rd International Conference
on Neural Information Processing Systems,
pages 8769–8782.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2019. An effective approach to unsupervised
machine translation. In Proceedings of the 57th
Annual Meeting of the Association for Compu-
tational Linguistics, pages 194–203. https://
doi.org/10.18653/v1/P19-1019

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2018. Unsupervised neural
machine translation. In International Confer-
ence on Learning Representations. https://
doi.org/10.18653/v1/D18-1399

Philip Bachman, R. Devon Hjelm, and William
Buchwalter. 2019. Learning representations by
maximizing mutual information across views.
Advances in Neural Information Processing
Systems, 32:15535–15545.

Samuel Bowman, Luke Vilnis, Oriol Vinyals,
Andrew Dai, Rafal Jozefowicz, and Samy
Bengio. 2016. Generating sentences from a
continuous space. In Proceedings of the 20th
SIGNLL Conference on Computational Natural
Language Learning, pages 10–21. https://
doi.org/10.18653/v1/K16-1002

Mathilde Caron, Ishan Misra, Julien Mairal, Priya
Goyal, Piotr Bojanowski, and Armand Joulin.

2020. Unsupervised learning of visual features
by contrasting cluster assignments. In 34th
Conference on Neural Information Processing
Systems (NeurIPS).

Gal Chechik, Varun Sharma, Uri Shalit, and
Samy Bengio. 2010. Large scale online learning
of image similarity through ranking. Journal of
Machine Learning Research, 11(3). https://
doi.org/10.1007/978-3-642-02172-5 2

Tian Qi Chen, Xuechen Li, Roger B. Grosse, and
David K. Duvenaud. 2018. Isolating sources
of disentanglement in variational autoencoders.
In Advances in Neural Information Processing
Systems, pages 2610–2620.

Ting Chen, Simon Kornblith, Mohammad
Norouzi, and Geoffrey Hinton. 2020a. A sim-
ple framework for contrastive learning of visual
representations. In International Conference on
Machine Learning, pages 1597–1607. PMLR.

Ting Chen, Simon Kornblith, Kevin Swersky,
Mohammad Norouzi, and Geoffrey E.
Hinton. 2020b. Big self-supervised models
are strong semi-supervised learners. Advances
in Neural Information Processing Systems,
33:22243–22255.

Xi Chen, Yan Duan, Rein Houthooft, John
Schulman, Ilya Sutskever, and Pieter Abbeel.
2016. InfoGAN: Interpretable representation
learning by information maximizing generative
adversarial nets. In Advances in Neural Infor-
mation Processing Systems, pages 2172–2180.

Xinlei Chen, Haoqi Fan, Ross Girshick, and
Kaiming He. 2020c. Improved baselines with
momentum contrastive learning. arXiv preprint
arXiv:2003.04297.

Xinlei Chen, Saining Xie, and Kaiming He.
2021. An empirical study of training self-
supervised vision transformers. arXiv preprint
arXiv:2104.02057. https://doi.org/10
.1109/ICCV48922.2021.00950

Xili Dai, Shengbang Tong, Mingyang Li,
Ziyang Wu, Michael Psenka, Kwan Ho Ryan
Chan, Pengyuan Zhai, Yaodong Yu, Xiaojun
Yuan, Heung-Yeung Shum, and Yi Ma. 2022.
Ctrl: Closed-loop transcription to an ldr via
minimaxing rate reduction. Entropy, 24(4).
https://doi.org/10.3390/e24040456,
PubMed: 35455120

204

https://doi.org/10.18653/v1/P19-1019
https://doi.org/10.18653/v1/P19-1019
https://doi.org/10.18653/v1/D18-1399
https://doi.org/10.18653/v1/D18-1399
https://doi.org/10.18653/v1/K16-1002
https://doi.org/10.18653/v1/K16-1002
https://doi.org/10.1007/978-3-642-02172-5_2
https://doi.org/10.1007/978-3-642-02172-5_2
https://doi.org/10.1109/ICCV48922.2021.00950
https://doi.org/10.1109/ICCV48922.2021.00950
https://doi.org/10.3390/e24040456
https://pubmed.ncbi.nlm.nih.gov/35455120


Dorottya Demszky, Dana Movshovitz-Attias,
Jeongwoo Ko, Alan Cowen, Gaurav Nemade,
and Sujith Ravi. 2020. GoEmotions: A dataset
of fine-grained emotions. In 58th Annual
Meeting of the Association for Computational
Linguistics (ACL). https://doi.org/10
.18653/v1/2020.acl-main.372

Joseph J. Di Stefano, Allen R. Stubberud, and
Ivan Williams. 1967. Feedback and Control
Systems.

Babak Esmaeili, Hao Wu, Sarthak Jain, Alican
Bozkurt, N. Siddharth, Brooks Paige, Dana H.
Brooks, Jennifer Dy, and Jan-Willem van de
Meent. 2018. Structured disentangled represen-
tations. arXiv preprint arXiv:1804.02086.

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan
Zhao, and Yan Rui. 2018. Style transfer in text:
Exploration and evaluation. In Proceedings
of the 32th AAAI Conference on Artificial In-
telligence. https://doi.org/10.1609
/aaai.v32i1.11330

Daniel Gordon, Kiana Ehsani, Dieter Fox, and
Ali Farhadi. 2020. Watching the world go by:
Representation learning from unlabeled videos.
arXiv preprint arXiv:2003.07990.

Michael Gutmann and Aapo Hyvärinen. 2010.
Noise-contrastive estimation: A new estimation
principle for unnormalized statistical mod-
els. In Proceedings of the 13th International
Conference on Artificial Intelligence and Statis-
tics, pages 297–304. JMLR Workshop and
Conference Proceedings.

Michael U. Gutmann and Aapo Hyvärinen. 2012.
Noise-contrastive estimation of unnormalized
statistical models, with applications to natural
image statistics. Journal of Machine Learning
Research, 13(2).

Raia Hadsell, Sumit Chopra, and Yann LeCun.
2006. Dimensionality reduction by learning
an invariant mapping. In 2006 IEEE Com-
puter Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), volume 2,
pages 1735–1742. IEEE. https://doi.org
/10.1109/CVPR.2006.100

Junxian He, Xinyi Wang, Graham Neubig, and
Taylor Berg-Kirkpatrick. 2019. A probabilistic
formulation of unsupervised text style trans-

fer. In International Conference on Learning
Representations.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie,
and Ross Girshick. 2020. Momentum contrast
for unsupervised visual representation learning.
In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition,
pages 9729–9738. https://doi.org/10
.1109/CVPR42600.2020.00975

Irina Higgins, Loic Matthey, Arka Pal,
Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander
Lerchner. 2017. Beta-VAE: Learning basic vi-
sual concepts with a constrained variational
framework. International Conference on Learn-
ing Representations, 2(5):6.

Geoffrey E. Hinton and Richard S. Zemel. 1994.
Autoencoders, minimum description length,
and Helmholtz free energy. Advances in Neu-
ral Information Processing Systems, 6:3–10.

R. Devon Hjelm and Philip Bachman. 2020.
Representation learning with video deep in-
fomax. arXiv preprint arXiv:2007.13278.

R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-
Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. 2018.
Learning deep representations by mutual in-
formation estimation and maximization. arXiv
preprint arXiv:1808.06670.

Elad Hoffer and Nir Ailon. 2015. Deep metric
learning using triplet network. In International
Workshop on Similarity-based Pattern Recog-
nition, pages 84–92. Springer. https://doi
.org/10.1007/978-3-319-24261-3 7

Matthew D. Hoffman and Matthew J. Johnson.
2016. ELBO surgery: Yet another way to carve
up the variational evidence lower bound. In
Proceedings of the Workshop in Advances
in Approximate Bayesian Inference, NIPS,
volume 1.

Vineet John, Lili Mou, Hareesh Bahuleyan, and
Olga Vechtomova. 2019. Disentangled repre-
sentation learning for non-parallel text style
transfer. In Proceedings of the 57th Annual
Meeting of the Association for Computational
Linguistics, pages 424–434. Association for
Computational Linguistics. https://doi.org
/10.18653/v1/P19-1041

205

https://doi.org/10.18653/v1/2020.acl-main.372
https://doi.org/10.18653/v1/2020.acl-main.372
https://doi.org/10.1609/aaai.v32i1.11330
https://doi.org/10.1609/aaai.v32i1.11330
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1007/978-3-319-24261-3_7
https://doi.org/10.1007/978-3-319-24261-3_7
https://doi.org/10.18653/v1/P19-1041
https://doi.org/10.18653/v1/P19-1041


Prannay Khosla, Piotr Teterwak, Chen Wang,
Aaron Sarna, Yonglong Tian, Phillip Isola,
Aaron Maschinot, Ce Liu, and Dilip Krishnan.
2020. Supervised contrastive learning. Ad-
vances in Neural Information Processing Sys-
tems, 33.

Hyunjik Kim and Andriy Mnih. 2018. Dis-
entangling by factorising. arXiv preprint
arXiv:1802.05983.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP),
pages 1746–1751. Association for Computa-
tional Linguistics. https://doi.org/10
.3115/v1/D14-1181

Diederik P. Kingma and Max Welling. 2014.
Auto-encoding variational Bayes. Proceedings
of the International Conference on Learning
Representations.

Reinhard Kneser and Hermann Ney. 1995.
Improved backing-off for m-gram language
modeling. In 1995 International Conference
on Acoustics, Speech, and Signal Processing,
volume 1, pages 181–184. https://doi
.org/10.1109/ICASSP.1995.479394

Klaus Krippendorff. 2004. Content Analysis: An
Introduction to Its Methodology. Sage.

Kalpesh Krishna, John Wieting, and Mohit Iyyer.
2020. Reformulating unsupervised style trans-
fer as paraphrase generation. In Proceedings
of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 737–762. https://doi.org/10.18653
/v1/2020.emnlp-main.55

Abhishek Kumar, Prasanna Sattigeri, and Avinash
Balakrishnan. 2017. Variational inference of
disentangled latent concepts from unlabeled
observations. arXiv preprint arXiv:1711.00848.

Guillaume Lample, Sandeep Subramanian,
Eric Smith, Ludovic Denoyer, Marc’Aurelio
Ranzato, and Y-Lan Boureau. 2019. Multiple-
attribute text rewriting. In Proceedings of
the International Conference on Learning
Representations.

Phuc H. Le-Khac, Graham Healy, and Alan F.
Smeaton. 2020. Contrastive representation
learning: A framework and review. IEEE Ac-

cess. https://doi.org/10.1109/ACCESS
.2020.3031549

Junnan Li, Pan Zhou, Caiming Xiong, and Steven
Hoi. 2020. Prototypical contrastive learning of
unsupervised representations. In International
Conference on Learning Representations.

Lajanugen Logeswaran, Honglak Lee, and Samy
Bengio. 2018. Content preserving text gen-
eration with attribute controls. In Advances
in Neural Information Processing Systems,
pages 5103–5113.

Fuli Luo, Peng Li, Pengcheng Yang, Jie Zhou,
Yutong Tan, Baobao Chang, Zhifang Sui, and
Xu Sun. 2019. Towards Fine-grained text sen-
timent transfer. In Proceedings of the 57th
Annual Meeting of the Association for Com-
putational Linguistics. https://doi.org
/10.18653/v1/P19-1194

Guoqing Luo, Yu Tong Han, Lili Mou, and
Mauajama Firdaus. 2023. Prompt-based edit-
ing for text style transfer. arXiv preprint
arXiv:2301.11997.

Emile Mathieu, Tom Rainforth, Siddharth
Narayanaswamy, and Yee Whye Teh. 2018.
Disentangling disentanglement in variational
autoencoders. arXiv preprint arXiv:1812.02833.

Daniel Moyer, Shuyang Gao, Rob Brekelmans,
Aram Galstyan, and Greg Ver Steeg. 2018.
Invariant representations without adversarial
training. In Advances in Neural Information
Processing Systems, pages 9084–9093.

Siddharth Narayanaswamy, T. Brooks Paige,
Jan-Willem Van de Meent, Alban Desmaison,
Noah Goodman, Pushmeet Kohli, Frank Wood,
and Philip Torr. 2017. Learning disentangled
representations with semi-supervised deep gen-
erative models. In Advances in Neural Infor-
mation Processing Systems, pages 5925–5935.

Aaron van den Oord, Yazhe Li, and Oriol
Vinyals. 2018. Representation learning with
contrastive predictive coding. arXiv preprint
arXiv:1807.03748.

Jing Qian, Li Dong, Yelong Shen, Furu Wei, and
Weizhu Chen. 2022. Controllable natural lan-
guage generation with contrastive prefixes. In
Findings of the Association for Computational
Linguistics: ACL 2022, pages 2912–2924,

206

https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.1109/ICASSP.1995.479394
https://doi.org/10.1109/ICASSP.1995.479394
https://doi.org/10.18653/v1/2020.emnlp-main.55
https://doi.org/10.18653/v1/2020.emnlp-main.55
https://doi.org/10.1109/ACCESS.2020.3031549
https://doi.org/10.1109/ACCESS.2020.3031549
https://doi.org/10.18653/v1/P19-1194
https://doi.org/10.18653/v1/P19-1194


Dublin, Ireland. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/2022.findings-acl.229

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J.
Liu. 2020. Exploring the limits of transfer
learning with a unified text-to-text transformer.
The Journal of Machine Learning Research,
21(1):5485–5551.

Emily Reif, Daphne Ippolito, Ann Yuan, Andy
Coenen, Chris Callison-Burch, and Jason Wei.
2021. A recipe for arbitrary text style trans-
fer with large language models. arXiv preprint
arXiv:2109.03910. https://doi.org/10
.18653/v1/2022.acl-short.94

Pierre Sermanet, Corey Lynch, Yevgen Chebotar,
Jasmine Hsu, Eric Jang, Stefan Schaal,
Sergey Levine, and Google Brain. 2018. Time-
contrastive networks: Self-supervised learning
from video. In 2018 IEEE International Con-
ference on Robotics and Automation (ICRA),
pages 1134–1141. https://doi.org/10
.1109/ICRA.2018.8462891

Lei Sha and Thomas Lukasiewicz. 2021.
Multi-type disentanglement without adversar-
ial training. In Proceedings of the 35th AAAI
Conference on Artificial Intelligence. https://
doi.org/10.1609/aaai.v35i11.17146

Huajie Shao, Shuochao Yao, Dachun Sun,
Aston Zhang, Shengzhong Liu, Dongxin Liu,

Jun Wang, and Tarek Abdelzaher. 2020. Con-
trolVAE: Controllable variational autoencoder.
In Proceedings of the International Confer-
ence on Machine Learning, pages 8655–8664.
PMLR.

Tianxiao Shen, Tao Lei, Regina Barzilay, and
Tommi Jaakkola. 2017. Style transfer from
non-parallel text by cross-alignment. In Pro-
ceedings of the Advances in Neural Information
Processing Systems, pages 6833–6844.

Laurens van der Maaten and Geoffrey Hinton.
2008. Visualizing data using T-SNE. Journal of
Machine Learning Research, 9(86):2579–2605.

Xiaolong Wang and Abhinav Gupta. 2015. Un-
supervised learning of visual representations
using videos. In Proceedings of the IEEE In-
ternational Conference on Computer Vision,
pages 2794–2802. https://doi.org/10
.1109/ICCV.2015.320

Jiahao Xie, Xiaohang Zhan, Ziwei Liu, Yew
Soon Ong, and Chen Change Loy. 2020.
Delving into inter-image invariance for unsu-
pervised visual representations. arXiv preprint
arXiv:2008.11702.

Chengxu Zhuang, Alex Lin Zhai, and Daniel
Yamins. 2019. Local aggregation for un-
supervised learning of visual embeddings.
In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision,
pages 6002–6012. https://doi.org/10
.1109/ICCV.2019.00610

207

https://doi.org/10.18653/v1/2022.findings-acl.229
https://doi.org/10.18653/v1/2022.findings-acl.229
https://doi.org/10.18653/v1/2022.acl-short.94
https://doi.org/10.18653/v1/2022.acl-short.94
https://doi.org/10.1109/ICRA.2018.8462891
https://doi.org/10.1109/ICRA.2018.8462891
https://doi.org/10.1609/aaai.v35i11.17146
https://doi.org/10.1609/aaai.v35i11.17146
https://doi.org/10.1109/ICCV.2015.320
https://doi.org/10.1109/ICCV.2015.320
https://doi.org/10.1109/ICCV.2019.00610
https://doi.org/10.1109/ICCV.2019.00610


Appendix

A Human Evaluation Questions

A.1 Transfer Accuracy (TA)

Q: Do you think the given sentence belongs to positive sentiment or negative sentiment?

• A: Positive.

• B: Negative.

A.2 Content Preservation (CP)

Q: Do you think the generated sentence has the same content with the original sentence, although the
sentiment/tense is different?

Please choose a score according to the following description. Note that the score is not necessary to
be integer, you can give scores like 3.2 or 4.9 by your feeling.

• 5: Exactly. The contents are exactly the same.

• 4: Highly identical. Most of the content are identical.

• 3: Half. Half of the content is identical.

• 2: Almost Not the same.

• 1: Totally different.

A.3 Language Quality (LQ)

Q: How fluent do you think the generated text is? Give a score based on your feeling.
Please choose a score according to the following description. Note that the score is not necessary to

be integer, you can give scores like 3.2 or 4.9 by your feeling.

• 5: Very fluent.

• 4: Highly fluent.

• 3: Partial fluent.

• 2: Very unfluent.

• 1: Nonsense.

B Detailed Model Structure

The encoder and decoder in this paper are in the LSTM architecture. Given an input sentence X =
{x1, . . . , xn}, the representation of the sentence z is computed by:

z = LSTM(x1, . . . , xn) , (18)

where z is the output of the last LSTM cell.
In the vanilla autoencoder, z is split into a style vector and a content vector by a feed-forward layer

as follows:

[s, c] = tanh(Whz + bh) , (19)

where Wh and bh are trainable parameters.
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In the variational autoencoder, the output of the encoder is further mapped into two vectors μ and
log(σ2). The latent vector z is sampled from the Gaussian distribution N (μ, σ). The style vector and
content vector are split by Eq. (19).

After the transfer of the style vector (s changed to s′), the style vector and content vector are merged
into a new latent vector z′, which is the input to the LSTM decoder as the initial state.

C Detailed Model Settings

The encoder and decoder are set as 2-layer LSTM RNNs with input dimension of 100, and the hidden
size is 150. The hyperparameters are set to λori = 1.0, λre = 1.0, λk = 1.5, λc = 2.0, λKL = 0.01 and
τ = 100. We used Adam for optimization, and the learning rate is set to 0.001. The model is run on an
Nvidia v100 GPU.
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