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Abstract

Large language models (LLMs) have demon-
strated impressive capabilities in general sce-
narios, exhibiting a level of aptitude that
approaches, in some aspects even surpasses,
human-level intelligence. Among their numer-
ous skills, the translation abilities of LLMs
have received considerable attention. Compared
to typical machine translation that focuses solely
on source-to-target mapping, LLM-based trans-
lation can potentially mimic the human trans-
lation process, which might take preparatory
steps to ensure high-quality translation. This
work explores this possibility by proposing the
MAPS framework, which stands for Multi-
Aspect Prompting and Selection. Specifically,
we enable LLMs first to analyze the given
source sentence and induce three aspects of
translation-related knowledge (keywords, top-
ics, and relevant demonstrations) to guide the
final translation process. Moreover, we em-
ploy a selection mechanism based on quality
estimation to filter out noisy and unhelpful
knowledge. Both automatic (3 LLMs × 11 di-
rections × 2 automatic metrics) and human
evaluation (preference study and MQM) dem-
onstrate the effectiveness of MAPS. Further
analysis shows that by mimicking the human
translation process, MAPS reduces various
translation errors such as hallucination, ambi-
guity, mistranslation, awkward style, untrans-
lated text, and omission. Source code is available
at https://github.com/zwhe99/MAPS-mt.

∗ Zhiwei and Tian contributed equally and are co-first
authors. Work was done when Zhiwei and Tian were intern-
ing at Tencent AI Lab.

† Rui Wang and Zhaopeng Tu are co-corresponding
authors.

1 Introduction

Large language models (LLMs) have recently
demonstrated remarkable general capabilities
across a wide range of tasks, making substantial
strides in the field of artificial general intelligence.
These capabilities have led to LLMs exhibiting a
certain degree of human-level intelligence, par-
ticularly in the areas of language understanding
and generation (Liang et al., 2022; Bubeck et al.,
2023; Wu et al., 2023; Moghaddam and Honey,
2023). Among numerous tasks, translation has
emerged as a prominent area where LLMs have
shown impressive capacity and competence (Jiao
et al., 2023b; Agrawal et al., 2023; Zhang et al.,
2023a; Vilar et al., 2022; Moslem et al., 2023;
Pilault et al., 2023; Garcia et al., 2023; Hendy
et al., 2023; Zhu et al., 2023b; Jiao et al., 2023a;
Wang et al., 2023b; Karpinska and Iyyer, 2023;
Peng et al., 2023; Lyu et al., 2023; Bawden and
Yvon, 2023; Lu et al., 2023). This progress above
harkens back to the long-term aspirations and
dreams of earlier machine translation research in
the 1960s (Bar-Hillel, 1960; Macklovitch, 1995):
Can LLMs employ a translation process similar
to human translators?

Figure 1 illustrates the difference between the
processes of machine and human translation.
While conventional machine translation is typi-
cally a direct source-to-target mapping process,
professional human translators tend to take
preparatory steps when working with the given
source text, including gathering and meticulously
analyzing information such as keywords, topics,
and relevant example sentences (Baker, 2018;
Koehn, 2009; Bowker, 2002; Hatim and Munday,
2004). These steps are critical for ensuring high-
quality translations that accurately capture the
nuances of the source material. Although recent
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Figure 1: The difference between machine and human translation in an English→Chinese example. Typical neural
machine translation is a source-to-target mapping process, while human translators can take complex steps to
ensure the quality and accuracy of the translation.

advances in LLM research indicate that current
LLMs are approaching human-like general intelli-
gence (Bubeck et al., 2023; Park et al., 2023), the
extent to which LLMs can emulate such strategies
remains underexplored.

The primary focus of this paper is to explore
whether LLMs can imitate the translation strate-
gies employed by human translators. Specifically,
we aim to investigate whether LLMs can effec-
tively preprocess the source text and leverage the
relevant knowledge to improve their translations.

To this end, we propose a method called MAPS,
which stands for Multi-Aspect Prompting and
Selection. MAPS prompts the LLMs to analyze
the source sentence and elicit translation-related
knowledge in three aspects: keywords, topics, and
relevant demonstrations. This knowledge then
guides the LLM toward generating more accurate
translations. To further enhance translation qual-
ity, we also employ a post-selection process to
filter out unhelpful knowledge and select the best
translation based on reference-free quality estima-
tion (QE). We validate our approach across 11
translation directions (covering high-, medium-
and low-resource language pairs) from WMT22
(Kocmi et al., 2022) and 3 LLMs (text-davinci-
003, Alpaca, and Vicuna). Automatic evaluation
shows that MAPS achieves significant improve-
ment over other baselines in terms of COMET

and BLEURT. Further analysis emphasizes the
importance of the extracted knowledge in resolv-
ing hallucination and ambiguity in translation.
We also conduct human preference studies and
Multidimensional Quality Metrics (MQM) evalu-
ation (Burchardt, 2013) which show that MAPS
produces more favorable translations by reducing
mistranslation, awkward style, untranslated text,
and omission errors.

In contrast to other LLM-based translation
approaches, such as Dictionary-based Prompting
(Ghazvininejad et al., 2023) and In-context Learn-
ing (ICL) (Agrawal et al., 2023), MAPS focuses
on translating general scenarios without any pre-
conceived assumptions about the domain of trans-
lation. As a result, MAPS does not require the
preparation of any external ‘‘datastore’’, which
might include a meticulously constructed glossary
(Moslem et al., 2023), dictionary (Ghazvininejad
et al., 2023), or sample pool (Agrawal et al., 2023),
for specific language pairs and domains in advance.

In summary, the contributions of this work are
detailed as follows:

• Inspired by human translation strategy, we
propose the MAPS method, which mimics
the human process of analyzing the source
text to gather useful knowledge, ultimately
leading to an accurate translation.
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Figure 2: Framework of MAPS. On a high level, MAPS consists of three stages: (1) Knowledge Mining: the
LLM analyzes the source sentence and generates three aspects of knowledge useful for translation: keywords,
topics, and relevant demonstration; (2) Knowledge Integration: guided by different types of knowledge sepa-
rately, the LLM generates multiple translation candidates; (3) Knowledge Selection: the candidate deemed best
by the QE is selected as the final translation. Best viewed in color.

• We demonstrate that the three types of
translation-related knowledge (keywords,
topics, and relevant demonstrations) comple-
ment each other. The best translation perfor-
mance can be achieved by using all three
types of knowledge simultaneously.

• Our in-depth analyses of MAPS, encompass-
ing both automatic and human evaluations,
demonstrates its proficiency in resolving am-
biguities and reducing hallucinations and
other prevalent translation errors. Further-
more, we examined the inference time of
MAPS and investigated potential accelera-
tion techniques.

2 MAPS: Multi-Aspect Prompting and
Selection

In this section, we introduce the MAPS frame-
work. As depicted in Figure 2, MAPS consists of
three steps—knowledge mining, integration, and
selection. When mining the knowledge, the LLM

operates in a manner akin to a human translator,
analyzing the source text and generating back-
ground knowledge that is beneficial to translation
purposes. The acquired knowledge is integrated as
contextual guidance, enabling the LLM to produce
translation candidates. However, the generated
knowledge may contain noise (see §4.3 for fur-
ther analysis). As a result, a filtering mechanism
becomes necessary to select useful knowledge
while filtering out unhelpful or noisy ones.

2.1 Knowledge Mining
Akin to the initial understanding and interpretation
phase that human translators take (Gile, 2009), the
knowledge mining step requires the LLM first to
analyze the source text and elicit three aspects of
knowledge generally beneficial to translation:

Keywords are essential words or phrases that
convey the core meaning of a text and act as
focal points for understanding the main idea.
Accurate translation of keywords is crucial for
conveying the intended meaning and ensuring
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faithfulness (Baker, 2018; Koehn, 2009). Addi-
tionally, identifying and maintaining a list of key-
words guarantees that specific terms are translated
consistently across different parts of the text.

Topic refers to the overall subject or theme
being discussed. A keen awareness of the topic
helps translators sidestep potential issues arising
from ambiguity, such as mistranslations or mis-
interpretations (Bowker, 2002). It is important
to highlight that topics are generally more spe-
cific than the broader domains that have been
widely discussed within the machine translation
community. For example, while the news domain
encompasses a wide range of subjects, subcate-
gories like political news and entertainment news
should adopt different registers and tones.

Demonstrations, or example sentences, illus-
trate how comparable sentences can be translated
accurately. They assist the translators in iden-
tifying appropriate equivalents within the target
language, enabling translators to produce natural
and fluent translations to native speakers (Hatim
and Munday, 2004).

As shown in Step 1 of Figure 2, given the
source sentence, we prompt the LLM to elicit key-
word pairs, topics, and relevant demonstrations.1

2.2 Knowledge Integration

Just as human translators weave their understand-
ing of the source text into their translations (Pym,
2014), knowledge integration embeds the acquired
knowledge into the context (Step 2 in Figure 2)
and enables the LLM to utilize this information
to generate multiple translation candidates. We
obtain four candidates, which the LLM generates
without guidance from any external knowledge.

2.3 Knowledge Selection

Knowledge selection resembles the final decision-
making phase in human translation, where the best
translation of the source text is chosen based on
the context. Although keywords, topics, and rele-
vant demonstrations generally benefit translation,
not all the LLM-generated knowledge is helpful.
For example, LLMs may generate trivial or noisy
content that might distract the translation process
(Shi et al., 2023; Agrawal et al., 2023). Our quan-
titative experiments in §4.3 support this hypothe-

1To ensure a uniform response format, we manually con-
structed 5-shot exemplars for each kind of knowledge.

sis. Therefore, we employ a filtering mechanism
to select the most useful knowledge and filter out
the unhelpful or noisy ones. Specifically, we adopt
quality estimation (QE) to select the best candi-
date as the final output (Step 3 in Figure 2). The
selection method is flexible, and both an exter-
nally trained QE model and the LLM itself served
as QE are effective in our experiments.

3 Experiments

3.1 Experimental Setup

Models. We adopt three LLMs, encompassing
both closed- and open-source models.
• text-davinci-003: A strong yet closed-source

LLM developed by OpenAI, which employs ad-
vanced Reinforcement Learning with Human Feed-
back (RLHF) techniques (Ouyang et al., 2022).
We query it via the official API.
• Alpaca (Taori et al., 2023): An open-source

and instruction-following LLM fine-tuned on
LLaMA model (Touvron et al., 2023a) with 52K
Self-Instruct (Wang et al., 2022b) data.
• Vicuna (Chiang et al., 2023): An open-source

and instruction-following LLM fine-tuned on
LLaMA-2 (Touvron et al., 2023b) with user-
shared conversations collected from ShareGPT
(ShareGPT, 2023).

For both Alpaca and Vicuna, we use the 7B
version and perform inference on a single NVIDIA
V100 32GB GPU.

Comparative Methods. For a rigorous com-
parison, we consider several variants, including
single-candidate and multi-candidate methods.
Within single-candidate methods, we consider:

• Baseline: Standard zero-shot translation with
temperature set to 0 (default value in this
work).

• 5-Shot (Hendy et al., 2023): Five high-
quality labeled examples from the training
data are prepended to the test input, which
performs best overall in Hendy et al. (2023);
meanwhile, increasing the number of ex-
amples will not result in meaningful im-
provement. This method requires meticulous
construction of training data for each transla-
tion direction, including collecting, cleaning,
and sorting by quality.
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Within multi-candidate methods, we consider:

• Rerank: Using the same prompt as the Base-
line, but with the temperature set to 0.3 (fol-
lowing Moslem et al., 2023). We randomly
sample three times and add Baseline to form
four candidates. The best candidate is se-
lected through QE. It can be considered as a
pure reranking method without any guidance
from extracted knowledge (Fernandes et al.,
2022).

• MAPS: Our proposed method described in
Section 2. Three translation candidates are
generated with guidance from three aspects
of knowledge. Combined with the Baseline,
the best one is selected using QE.

Knowledge Selection Methods.

• LLM-SCQ: Composing a single choice
question (SCQ) that asks the LLM to choose
the best candidate on its own.

• COMET-QE: A trained QE scorer that as-
signs a numerical score to each candidate.
Selection is based on the highest score.

• COMET (oracle): A reference-based scorer
that assigns a numerical score to each can-
didate. It can be considered as the oracle
QE method, representing the upper bound of
selection.

Test Data. To avoid data leakage issues
(Bubeck et al., 2023; Garcia et al., 2023; Zhu et al.,
2023b), we use the latest WMT22 test set, cover-
ing 11 translation directions at different resource
levels (English ⇔ Chinese, English ⇔ German,
English ⇔ Japanese, German ⇔ French, Ukrai-
nian ⇔ Czech and English ⇒ Croatian). WMT22
moves away from testing only on the news do-
main like in previous years and shifts to focus on
the general scenario covering news, social, con-
versational, and e-commerce (Kocmi et al., 2022).

Metrics. We adopt COMET (Rei et al., 2022a)
and BLEURT (Sellam et al., 2020) as the main
metrics. These neural-based learned metrics show
superiority over string-based metrics like BLEU
(Kocmi et al., 2021; Bawden and Yvon, 2023)
and have been adopted broadly by LLM-based
translation literature (Moslem et al., 2023; Hendy
et al., 2023; Garcia et al., 2023; Pilault et al.,
2023). We use wmt22-comet-da and BLEURT-20
checkpoints for these two metrics.

3.2 Results

For consistency, we are solely interested in com-
paring different methods under the same LLM.
As presented in Table 1, MAPS is broadly ef-
fective and exhibits a higher upper bound. To be
detailed, we have the following observations:
• The effectiveness of MAPS has been val-

idated across a wide range of settings. Across
11 language pairs, 3 LLMs, and 2 metrics, MAPS
consistently outperforms Rerank and Baseline.
After employing MAPS COMET-QE, text-davinci-003
surpasses the best submissions in WMT22 in 5 out
of the 11 translation directions. This suggests that
LLMs can enhance translation quality by em-
ulating the human strategy of analyzing before
translating.
• MAPS outperforms Rerank consistently

when the knowledge selection method is held
constant. This indicates that the improvements
brought by MAPS stem from three types of
translation-related knowledge: keywords, topics,
and relevant demonstrations. We delve into the
utilization of different types of knowledge and
ablation study in §4.2.
• Different knowledge selection methods can

affect the final performance, and MAPS ex-
hibits a higher upper bound for selection. When
using LLM-SCQ, the performance of MAPS is
on par with 5-Shot (MAPS LLM-SCQ ≈ 5-Shot);
when using COMET-QE, MAPS consistently out-
performs 5-Shot (MAPS COMET-QE > 5-Shot).
More importantly, MAPS shows higher upper
bounds for selection than Rerank (MAPS COMET >
Rerank COMET), implying that superior knowledge
selection methods like a better QE model (Rei
et al., 2022b), AutoMQM (Fernandes et al., 2023)
or ranking strategy (Fernandes et al., 2022) can
further improve MAPS.

4 Analysis

In this section, we conduct analyses to under-
stand the MAPS framework. If not otherwise
specified, MAPS COMET-QE, text-davinci-003, and
WMT22 En-Zh are default tested method, model
and language pair, respectively.

4.1 Human Evaluation

Preference Study. We perform human prefer-
ence studies on En⇔Zh test sets. For each test
sample, our annotators (professional translators)
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Table 1: Translation performance on WMT22. Bold entries: denote statistically significant differences
with p < 0.05 in the paired t-test compared to Baseline, 5-Shot and Rerank (with the same knowledge
selection method). ⇑̄: indicates the upper bound of selection, using COMET, a reference-based metric,
as the selection method.

were presented with a source sentence and two
translations. They were then tasked with selecting
the superior translation or determining that nei-
ther translation was better than the other. Figure 3
shows the results of human preference studies, and
MAPS is generally more preferred by humans.

MQM Evaluation. To understand which as-
pects of translation that MAPS improves, we

carried out MQM evaluations (Burchardt, 2013).
MQM requires the annotators to identify the er-
rors in translation and label the category and
severity level for each error. Based on the weights
of the different error types, the MQM ends up
with a penalty score. We followed the assessment
method in Freitag et al. (2021), including guide-
lines to annotators, error category, severity level
and error weighting. We employed professional
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Figure 3: Human preference study, comparing MAPS
with Base and Rerank. ‘‘003’’ denotes text-davinci-
003.

Method En-Zh Zh-En

Base 1.94 2.96
Rerank 1.79 2.84
MAPS 1.59 2.60

Table 2: Averaged MQM Score (↓).

translators who had MQM experience as the an-
notators. We evaluated the first 1K samples on
the Chinese⇔English test sets for cost reasons.
Table 2 shows that MAPS outperforms Base and
Rerank significantly. In terms of error categories,
the improvements brought about by MAPS are
mainly in the reduction of mistranslation, awk-
ward style, untranslated text, and omission errors,
as presented in Figure 4.

4.2 Utilization of Knowledge

Although Table 1 reports the overall performance
of MAPS, the utilization of the three aspects of
knowledge remains unclear. For instance, it is
uncertain whether the majority of samples rely
on relevant demonstrations rather than keywords
and topics to guide the translation process. To
provide further insight, we illustrate the utiliza-
tion of three types of knowledge in Figure 5. We
additionally present the performance differences
among these three aspects of knowledge when ap-
plied to different subsets, relative to the baseline.
Figure 5 reveals a relatively balanced utilization

Figure 4: Selected MQM penalty scores (before aver-
age) under different error categories.

Figure 5: Utilization of keyword, topic, and relevant
demonstration in MAPS.

among them. This implies that the three types of
knowledge complement each other well within
the MAPS framework. The ablation study pre-
sented in Table 3 further demonstrates the effec-
tiveness of each type of knowledge. Replacing
any knowledge-guided translation with random
sampling leads to performance degradation.
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Method COMET BLEURT

Rerank 87.0 71.8
MAPS 87.6 72.6
- w/o Keyword 87.1↓0.5 72.1↓0.5
- w/o Topic 87.2↓0.4 72.4↓0.2
- w/o Demo 86.9↓0.7 72.0↓0.6

Table 3: Ablation study. We replace the
knowledge-guided translation with random sam-
pling translation in MAPS and report average
values of four experiments. ‘‘↓’’: statistically sig-
nificant difference with p < 0.05.

In Figure 5, we also note that the three types of
knowledge cause different degrees of performance
degradation when applied to the Base subset. We
conjecture that the knowledge elicited from the
LLM is not always helpful and may even be noisy.
This finding motivates the knowledge selection
step and is discussed in detail in §4.3.

4.3 Noise in Elicited Knowledge

The quality of extracted knowledge is essential for
guiding translation. We use keywords as an ex-
ample to evaluate the quality of LLM-generated
knowledge. We design two metrics to charac-
terize the quality of keyword pairs. We denote
D = {(si, ti, hi,Ki)} as the set of test samples,
where si, ti, hi are source, target and hypothesis
guided by the keyword pairs, respectively. Ki =
{(swij , twij)} denotes the LLM-generated key-
word pairs for the ith sample, where (swij , twij)
is the jth keyword pair. The precisions of
LLM-generated keyword pairs concerning the
source or target are defined as:2

Psrc =

∑
i

∑
j 1(swij ⊆ si)
∑

i |Ki|
, (1)

Ptgt =

∑
i

∑
j 1(twij ⊆ ti)
∑

i |Ki|
, (2)

where 1(·) denotes the indicator function. Psrc

and Ptgt reflect the proportion of LLM-generated
keyword pairs that do exist in the source and target,
respectively. Similarly, to evaluate how well the

2For simplicity’s sake, we use subset notation to repre-
sent substring relationship.

En-Zh Zh-En

Psrc Ptgt R Psrc Ptgt R

98.8 55.8 97.1 99.2 41.8 89.5

Table 4: Quality of LLM-generated keyword pairs.

Method COMET BLEURT Accuracy

Rerank 81.5 70.2 61.5
MAPS 82.2 70.6 65.5

Table 5: Results on lexical ambiguity test set.

model follows the given keyword pairs, we define
the recall of keywords in the LLM hypothesis:

R =

∑
i

∑
j 1(twij ⊆ hi)
∑

i |Ki|
. (3)

The statistical results in Table 4 show that: (1)
although most LLM-generated keywords appear
in the source sentences, only about half of them
appear in the target sentences (55.8% for En-Zh;
41.8% for Zh-En); (2) the LLM strictly follows the
given keyword pairs when performing translations
(97.1% for En-Zh; 89.5% for Zh-En).

Combining the above two observations, we can
conclude that the LLM-generated knowledge con-
tains a certain degree of noise (at least content
that is not consistent with the reference), which
can easily mislead the translation process. This
explains why incorporating that knowledge in the
‘‘Base’’ part of Figure 5 brings negative effects.
Hence, knowledge selection is a crucial step in the
MAPS framework to reduce the impact of noise.

4.4 MAPS Helps Ambiguity Resolution

Ambiguity resolution has long been one of the
most challenging problems in machine translation.
To evaluate the ambiguity resolution capability
of machine translator, He et al. (2020) provide a
lexical ambiguity test set for Chinese→English.
The hard part of this test set involves Chinese
sentences which are difficult to translate correctly
unless the translator resolves their ambiguities.
Our test results in Table 5 show the superiority
of MAPS in ambiguity resolution, where the ‘‘ac-
curacy’’ indicates the percentage of successfully
disambiguated sentences (evaluated by human).

236



Method Δ% hallucinations

Baseline –

Rerank COMET-QE −3%
MAPS COMET-QE −8%

⇑̄ Rerank COMET −6%
⇑̄ MAPS COMET −12%

Table 6: Δ% of token-level hallucinations. ⇑̄:
indicates the upper bound of selection, using
COMET, a reference-based metric, as the selec-
tion method.

4.5 MAPS Reduces LLMs’ Hallucinations
Hallucination issue in natural language generation
(NLG) refers to the phenomenon where the con-
tent generated by the model is nonsensical or un-
faithful to the provided source content (Ji et al.,
2023; Filippova, 2020; Maynez et al., 2020; Parikh
et al., 2020; Zhou et al., 2021; He et al., 2022).
This has been one of the key challenges in LLMs
(Zhang et al., 2023c). In this section, we an-
alyze the phenomenon of hallucination through
automatic and human evaluation.

In automatic evaluation, we use the halluci-
nation detector provided by Zhou et al. (2021)
to identify token-level hallucination in Alpaca’s
translation on Chinese→English test set. The de-
tector assigns a binary label to each generated
token. In Table 6, MAPS outperforms Rerank and
demonstrates a higher upper bound.

In human evaluation, we employed professional
human translators to label the hallucination er-
rors in both MAPS and Rerank. We sampled
500 sentences from each of the English⇔Chinese
test sets and evaluated text-davinci-003, Alpaca,
and Vicuna. The human annotators were required
to decide whether the translation belongs to the
hallucination error following the definition from
Guerreiro et al. (2023b). The results from Figure 6
show that MAPS outperforms Rerank by a notable
margin in resolving hallucination.

We conjecture that one of the key differences
between MAPS and Rerank is that MAPS is en-
abled to correct the probability distribution of
the next token prediction, while Rerank is not.
If a hallucinatory token occupies a high proba-
bility mass (Wang et al., 2022a), it is difficult
for Rerank to avoid selecting this token by diverse
sampling. In contrast, MAPS, providing additional

Figure 6: Ratio of hallucinations. Human annotators
were tasked with labeling whether the generated trans-
lation is a hallucination error. ‘‘003’’ denotes text-
davinci-003 and it has almost no hallucination errors.

translation-related knowledge in the prompt, en-
ables the model to redistribute the probability of
the next token, thus offering more possibilities to
avoid choosing the hallucinatory token.

4.6 Three-in-One Prompting

So far, we have discussed the case where the
LLM uses the three types of knowledge sepa-
rately. An immediate question is how the LLM
would perform if the three types of knowledge
were integrated into one prompt. We call this
method three-in-one prompting and present results
in Table 7.

Within single-candidate methods (Baseline vs.
Three-in-One), three-in-one prompting brings pos-
itive results overall, which means that the LLM
can use three types of knowledge simultaneously.
However, the degree of improvement varies sig-
nificantly under different language pairs, with
notable absence of effect in De-En translation. Re-
garding multi-candidate methods (MAPS COMET-QE

vs. MAPS+
COMET-QE), incorporating three-in-one

prompting into MAPS yields only marginal im-
provements (≤0.2). Considering that the candidate
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Table 7: Three-in-one prompting. Three-in-One:
three types of knowledge are integrated into one
prompt. MAPS+

COMET-QE: adding candidate pro-
duced by Three-in-One into MAPS COMET-QE. The
subscripts indicate relative improvements from
three-in-one prompting.

set generated by the three-in-one prompting over-
laps significantly with the candidate sets gener-
ated individually by the three types of knowledge,
this result is as expected.

5 Related Work

5.1 LLMs for Translation

Research evaluating the translation capabilities
of LLMs falls into two main lines. The first line
involves issues specific to LLMs, including the
impact of demonstration selection in ICL (Vilar
et al., 2022; Zhang et al., 2023a; Garcia et al.,
2023) and prompt templates (Zhang et al., 2023a;
Jiao et al., 2023b) on translation performance. The
second line focuses on comprehensive evalua-
tions of LLMs under various translation scenar-
ios, covering multilingual (Jiao et al., 2023b; Zhu
et al., 2023b; Hendy et al., 2023), document-level
(Hendy et al., 2023; Wang et al., 2023b; Karpinska
and Iyyer, 2023), low-resource translation (Jiao
et al., 2023b; Garcia et al., 2023; Zhu et al., 2023b;

Bawden and Yvon, 2023), robustness (Jiao et al.,
2023b), hallucination (Guerreiro et al., 2023a),
and domain adaptation (Hendy et al., 2023; Wang
et al., 2023a). Our work evaluates the translation
capabilities of LLMs across eleven translation
directions, varying from same-family (En⇔De),
distant (En⇔Ja, En⇔Zh), and non-English-centric
(De⇔Fr) and low-resource (Cs⇔Uk, En⇒Hr)
language pairs. Zhu et al. (2023b) emphasizes the
risk of data leakage. Therefore, we adopt the
latest WMT22 test sets. Our work also quantita-
tively evaluates ambiguity resolution and token-
/sentence-hallucination in LLM-based translation.

Jiao et al. (2023a) incorporate human evalua-
tion into instruction data for training, resulting in
translations that are preferred by humans during
interactive chat sessions. In contrast, our work
takes a different approach by mimicking the
human translation process and achieves higher-
quality translations without training.

Agrawal et al. (2023) propose an algorithm
based on n-gram recall for demonstration selec-
tion. Given the ground-truth context, Pilault et al.
(2023) introduce an interactive-chain prompting
method for ambiguity resolution. Moslem et al.
(2023) suggest prompting the LLMs with terminol-
ogy hints extracted from the selected demonstra-
tions or a compiled glossary for domain-specific
translation such as COVID-19. Concurrently,
Ghazvininejad et al. (2023) and Lu et al. (2023)
use external dictionaries to augment prompts
for low-resource and domain-specific translation.
While our work can be viewed as a form of
‘‘prompting strategy’’, it differs from this line of
research in that it does not rely on any external
‘‘datastore’’, such as sample pools, dictionaries,
or ground-truth context, which should be curated
carefully for specified language pairs or domains.
In contrast, we consider the LLM itself as a
‘‘datastore’’ containing broad knowledge that can
assist its translation process.

5.2 Chain-of-Thought Prompting

Wei et al. (2022) explore how chain-of-thought
(CoT) prompting improves the ability of LLMs
to perform complex reasoning such as arithmetic
reasoning, commonsense reasoning, and symbolic
reasoning. By guiding LLMs through generating
intermediate reasoning chains prior to reaching
a final solution, CoT prompting has propelled
the multi-step reasoning abilities of LLMs to an
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extraordinary level, as substantiated by previous
research (Wei et al., 2022; Wang et al., 2023c).
CoT prompting manifests through two distinct
paradigms, namely, zero-shot CoT (Kojima et al.,
2023; Yang et al., 2023) and few-shot CoT (Wei
et al., 2023; Zhang et al., 2023b). Zero-shot CoT
simply appends a trigger prompt such as Let’s
think step by step after the test question, with
the motivation to harness the step-by-step reason-
ing capacities of LLMs in a zero-shot manner.
Few-shot CoT operates by utilizing a few input-
output demonstrations, each of which comprises a
question, a reasoning chain, and the correspond-
ing answer. These demonstrations are seamlessly
integrated before the test question, resulting in a
prompted input that is subsequently processed by
an LLM to deduce the answer.

So far, most CoT prompting studies focus on
complex reasoning problems. Although there are
a few preliminary attempts to extend CoT prompt-
ing techniques to machine translation tasks, Peng
et al. (2023) find that straightforwardly applying
CoT to translation tasks resulted in word-by-word
translations, which is less than satisfactory. Fol-
lowing this line, our work can also be viewed
as a form of CoT prompting for translation as it
dissects the translation process into distinct steps,
which is the first successful attempt of CoT in
translation tasks to the best of our knowledge.
Notably, our work has successfully achieved im-
proved translation performance by inducing three
aspects of translation-related knowledge includ-
ing keywords, topics, and relevant demonstrations
to guide the final translation process.

5.3 Self-Prompting

Self-prompting is a line of research that utilizes
the LLMs to prompt themselves and extract rele-
vant knowledge to aid downstream tasks (Li et al.,
2022; Wang et al., 2023d). Diverging from CoT
prompting, which focuses on providing interme-
diate reasoning steps on the output side, self-
prompting techniques dissect the input problem
into specific sub-problems on the input side and
extract the salient knowledge for the sub-problems
one by one. This extracted knowledge is then
utilized to deduce the ultimate solution.

Several studies exemplify the diversity of self-
prompting applications. Specifically, Kim et al.
(2022) and Li et al. (2022) use the LLMs to gen-
erate in-context exemplars for text classification

and open-domain question answering, respec-
tively. Yu et al. (2023) generate diverse documents
from the LLMs to improve knowledge-intensive
tasks. Wang et al. (2023d) compel LLMs to first
extract the core elements for news texts, such as
entity, date, event, and result. Then, the extracted
elements are used to generate summaries. Fur-
ther innovations emerge in multimedia contexts.
Zhu et al. (2023a) and Chen et al. (2023) em-
power LLMs to pose inquiries regarding provided
images and videos to enrich the caption. Remark-
ably, MAPS extends the domain of self-prompting
into machine translation for the first time.

6 Conclusion

This work introduces MAPS, a method that
enables LLMs to mimic human translation strat-
egy for achieving high-quality translation. MAPS
allows LLMs to take preparatory steps be-
fore translation. Specifically, LLMs analyze the
given source text and generate three aspects of
translation-related knowledge: keywords, topics,
and relevant demonstrations. Using a filtering
mechanism based on quality estimation, the se-
lected knowledge guides the LLMs’ translation
process. In experiments with text-davinci-003, Al-
paca, and Vicuna, MAPS yields significant and
consistent improvements across eleven translation
directions from WMT22 and exhibits a higher
upper bound of candidate selection. Human eval-
uations show that MAPS provides more favorable
translations by reducing mistranslation, awkward
style, untranslated text, and omission errors. Fur-
ther analyses show that MAPS effectively resolves
ambiguities and hallucinations in translation. Fu-
ture work includes designing more aspects of
translation-related knowledge and better filtering
mechanisms to improve the translation capabili-
ties of LLMs further. Another interesting direction
is to explore the human-like translation strategy in
training LLMs (e.g., instruction tuning).

7 Discussion

7.1 Inference Time

Since MAPS consists of three sequential stages,
the main limitation of MAPS lies in inference
time. As shown in Figure 7, when processing seri-
ally, the inference times of Three-in-One, Rerank,
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Figure 7: Durations of different processing stages for
Baseline, Three-in-One prompting (TIO), Rerank, and
MAPS. The results represent the average of five in-
dependent trials. Experiments were conducted using a
T4-8C GPU, with each trial consisting of 50 sentences.
‘‘Serial’’ and ‘‘Para.’’ denote serial and parallel pro-
cessing of multiple types of knowledge and candidates,
respectively.

and MAPS are 3×, 11×, and 14× the Baseline,
respectively.

Given that all three methods involve process-
ing multiple types of knowledge or candidates
without any dependencies between them, a prac-
tical approach for acceleration is to parallel
processing, which drastically reduces the running
times (↓29% for Three-in-One; ↓73% for Rerank;
↓66% for MAPS) to an acceptable level.

The additional overhead from MAPS is mainly
in the knowledge mining phase, where the LLM
generates three types of knowledge separately.
One possible acceleration is to have the LLM
generate three types of knowledge in a single call.
By controlling the format of the output, e.g., JSON,
we can extract each type of knowledge. However,
the LLM is not guaranteed to output valid JSON
content, which may lead to degradation of the final
translation performance (see Table 8).

In addition, the running time of the QE scor-
ing can be reduced by techniques such as model
quantization or compression.

7.2 Is MAPS Overfitting Evaluation
Metrics?

In this work, we rely on COMET and BLEURT
for automatic evaluation for their strong alignment
with human evaluation, as highlighted by Freitag
et al. (2022). We also use COMET-QE as one of
the knowledge selection methods, whose training
data has overlap with evaluation metrics. This

Method En-Zh Zh-En

CT BT JSON E. CT BT JSON E.

MAPS 87.6 72.6 — 82.6 70.8 —
MAPS JSON 87.7 72.6 0.1% 82.1↓ 70.3↓ 2.0%

Table 8: MAPSJSON: generating three types of
knowledge in one JSON object. CT: COMET; BT:
BLEURT. JSON E.: percentage of model output
that is not in valid JSON format. Times taken for
knowledge mining using MAPS and MAPSJSON

are 3.7 and 2.3 seconds per sentence, respectively.

Table 9: Case study of Chinese-to-English
translation for ‘‘ ’’. COMET-QE
assigns higher scores to translations with hal-
lucination and off-target errors compared to an
error-free translation. Conversely, COMET and
BLEURT award lower scores to these erroneous
translations. Error spans are .

leads to a pertinent question: Is MAPS merely
overfitting to COMET and BLEURT?

To ensure reliable evaluations, we integrated
human assessments into all our experiments, in-
cluding: MQM evaluation (§4.1), human prefer-
ence studies (§4.1), ambiguity resolution (§4.4),
and analysis of hallucination (§4.5). These evalua-
tions substantiate MAPS’s effectiveness from the
viewpoint of human translators.

Furthermore, we demonstrate that MAPS re-
mains effective even in the absence of COMET-
QE. As shown in Table 1, by formulating
single-choice questions, the LLM itself can select
the best translation candidates (Rerank LLM-SCQ

and MAPS LLM-SCQ).
From a data perspective, all three models

above were trained using datasets from WMT.
However, they use the data in different ways.
COMET-QE is reference-free and does not uti-
lize reference data during training or inference.
On the contrary, COMET and BLEURT are
reference-based, with both training and inference
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processes relying on reference data. This differ-
ence allows COMET and BLEURT to penalize
translation errors against a reference, a function
that COMET-QE lacks due to its reference-free
design (see Table 9).

Overall, MAPS is widely effective by employ-
ing human strategy for translation.
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José G. C. de Souza, Perez Ogayo, Graham
Neubig, and Andre Martins. 2022. Quality-
aware decoding for neural machine translation.
In Proceedings of the 2022 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 1396–1412, Seattle, United
States. Association for Computational Lin-
guistics. https://doi.org/10.18653/v1
/2022.naacl-main.100

Katja Filippova. 2020. Controlled hallucina-
tions: Learning to generate faithfully from

241

https://doi.org/10.18653/v1/2023.findings-acl.564
https://doi.org/10.18653/v1/2023.findings-acl.564
https://doi.org/10.18653/v1/2023.findings-acl.564
https://doi.org/10.4324/9781315619187
https://doi.org/10.4324/9781315619187
https://doi.org/10.48550/arXiv.2303.01911
https://doi.org/10.48550/arXiv.2303.01911
https://doi.org/10.1353/book6554
https://doi.org/10.1353/book6554
https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.48550/arXiv.2304.04227
https://doi.org/10.48550/arXiv.2304.04227
https://doi.org/10.18653/v1/2023.wmt-1.100
https://doi.org/10.18653/v1/2023.wmt-1.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100


noisy data. In Findings of the Association
for Computational Linguistics: EMNLP 2020,
pages 864–870, Online. Association for Com-
putational Linguistics. https://doi.org/10
.18653/v1/2020.findings-emnlp.76

Markus Freitag, George Foster, David Grangier,
Viresh Ratnakar, Qijun Tan, and Wolfgang
Macherey. 2021. Experts, errors, and con-
text: A large-scale study of human evaluation
for machine translation. Transactions of the
Association for Computational Linguistics,
9:1460–1474. https://doi.org/10.1162
/tacl a 00437

Markus Freitag, Ricardo Rei, Nitika Mathur,
Chi-kiu Lo, Craig Stewart, Eleftherios
Avramidis, Tom Kocmi, George Foster, Alon
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Maroti, José G. C. de Souza, Taisiya Glushkova,
Duarte Alves, Luisa Coheur, Alon Lavie, and
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