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Abstract

An open-domain question answering (QA)
system usually follows a retrieve-then-read
paradigm, in which a retriever is used to re-
trieve relevant passages from a large corpus,
and then a reader generates answers based on
the retrieved passages and the original ques-
tion. In this paper, we propose a simple and
novel mutual learning framework to improve
the performance of retrieve-then-read-style
models via an intermediate module named the
knowledge selector, which we train with re-
inforcement learning. The key benefits of our
proposed intermediate module are: 1) no re-
quirement for additional annotated question-
passage pairs; 2) improvements in both
retrieval and QA performance, as well as com-
putational efficiency, compared to prior com-
petitive retrieve-then-read models; 3) with no
finetuning, improvement in the zero-shot per-
formance of large-scale pre-trained language
models, e.g., ChatGPT, by encapsulating the
input with relevant knowledge without violat-
ing the input length constraint.

1 Introduction

Recently, there has been a revival of interest in
tasks requiring large amounts of knowledge of the
world. In such real-world scenarios, an efficient
information retrieval system, capable of finding a
small subset of relevant and non-redundant infor-
mation, is needed for applications such as open-
domain question answering, in which external
knowledge (e.g., Wikidata and ConceptNet [Speer
et al., 2017]) must be integrated in order to gener-
ate correct answers. Even in the era of Large Lan-
guage Models like ChatGPT and GPT-4, which
are capable of encoding extensive knowledge into
their parameters, there are still scenarios where
retrieval is indispensable, such as when answer

∗Work done when interning at Microsoft Research.

ing questions about the most current news events.
However, hand-labeling data for training such a
retriever is expensive and time consuming, and
many datasets and applications lack such anno-
tations. Hence, an efficient framework should be
capable of learning a retriever, without supervision
from annotated query-passage pairs.

In this paper, we focus on improving both the
inference performance and efficiency of retrieve-
then-read frameworks. Retrieve-then-read frame-
works have dominated over current open-domain
question answering systems (Oguz et al., 2022;
Izacard and Grave, 2021; Cheng et al., 2021; Ma
et al., 2022b) as well as other knowledge-intensive
tasks such as fact checking (Petroni et al., 2021;
Martı́n et al., 2022) and dialogue systems (Zhang
et al., 2021). For example, CORE (Ma et al.,
2022a), a state-of-the-art open-domain question-
answering system, starts by using a dense retriever
(Karpukhin et al., 2020a) to retrieve a subset of
support passages and tables from a large knowl-
edge source, such as Wikipedia. Then, a genera-
tive encoder-decoder (reader) model produces an
answer, conditioned on the question and the re-
trieved knowledge.

Previous studies (Yu et al., 2022b; Varshney
et al., 2022) have shown that using a large num-
ber of support passages will lead to a significant
increase in memory requirement and training time
cost. According to Varshney et al. (2022), FiD
(Izacard and Grave, 2020) requires approximately
7×1012 floating-point operations (FLOPs) for in-
ference on 100 passages. This high inference cost
limits the widespread adoption of such systems
in real-world applications, which must trade-off
performance for decreased latency. In addition to
this, empirical results from previous work (Clark
and Gardner, 2018; Yang et al., 2019; Wang et al.,
2019; Lewis et al., 2020b) have suggested that,
beyond a threshold number of passages, supply-
ing the reader with additional passages yields only
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Figure 1: Architecture of our proposed mutual learning framework. In each epoch, Phase 1 and Phase 2 are ex-
ecuted alternately. During Phase 1, the parameters of the reader model remain fixed, and only the weights of the
knowledge selector are updated. Conversely, during Phase 2, the reader model’s parameters are adjusted, while
the knowledge selector’s weights remain frozen.

a minimal improvement or even decline in the
overall accuracy of the end-to-end QA systems.
These two points motivate us to explore whether
it is possible to reduce the number of required
support passages without compromising the mod-
el’s performance. To this end, we conducted two
preliminary experiments:

Preliminary Experiment 1: Given a sample
from the TQA (Joshi et al., 2017) dataset in which
each question is accompanied with 100 passages
retrieved by DPR (Karpukhin et al., 2020b), we
achieved an exact match (EM) score of 65.0%
using a Fusion-in-Decoder model (T5-base). We
then calculated the average EM scores when using
10 passages under a range of selection strategies.
Firstly, by randomly sampling 10 out of the 100
passages retrieved by DPR, the EM scored de-
creases from 65.0% to 53.3%. Selecting the top
10 passages ranked by DPR outperformed this
random sampling, however the EM score still de-
graded to 59.6%. Finally, to further substantiate
our hypothesis that retrieving more relevant pas-
sages can significantly enhance the reader’s gen-
eration performance, we employed Contriever.1

Contriever is an advanced unsupervised dense in-
formation retrieval system trained on extensive

1Contriever is available at https://github.com
/facebookresearch/contriever, which has demon-
strated its ability to achieve competitive retrieval performance
across various QA benchmarks. We use Contriever-msmarco
version due to its competitive retrieval performance.

corpora. Utilizing Contriever to select a set of 10
passages, we observed an EM score of 65.4%,2

a slight improvement against the original 100
passages. To a certain extent, it shows that the
importance of retrieved results lies more in their
quality rather than their quantity.

Preliminary Experiment 2: We randomly
chose 20 questions, each with 100 retrieved pas-
sages using DPR. We then presented three stu-
dent volunteers with the question-passage pairs,
and asked them to estimate how many passages
they would require to obtain the answer. From
their response, we observed an average of 7.5
passages required to answer the question, suggest-
ing that a large portion of retrieved passages are
redundant.

The above two preliminary results align with
our conjecture that selecting a smaller portion of
relevant support passages—instead of feeding a
large number of passages to the reader—is a viable
research direction. To this end, we propose a novel
mutual learning framework (Figure 1) that im-
proves both the quality of the retrieved passages
and the performance of the reader. The key nov-
elty of our framework is the introduction of a
‘‘knowledge selector’’ module, which interfaces
between the retriever and reader. The goal of the

2Notably, our statistical analysis reveals that for 98.4%
of the testing samples, the 10 passages selected by Contriever
are already encompassed within the original 100 passages
retrieved by DPR, although the ranking may vary slightly.
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knowledge selector is to further refine the set of
passages selected by the retriever, which we frame
as a reinforcement learning problem. We train this
system by iterating between two phases, which
train the knowledge selector and reader respec-
tively. In the first phase (Phase 1), we use policy
gradients to train the knowledge selector to select
the optimal subset of support passages, with the
goal of maximizing the prediction rewards when
passed to the reader (whose parameters are fro-
zen at this phase). Following this, in Phase 2, we
freeze the weights of the knowledge selector and
train the reader using supervised learning over
pairs of questions and K passages selected by the
knowledge selector.

We validate the effectiveness of our proposed
method on three benchmarks of knowledge-
grounded open-domain question answering: Nat-
ural Questions (NQs) (Kwiatkowski et al., 2019),
TQA (Joshi et al., 2017), and WEBQUESTIONS
(WebQ) (Berant et al., 2013). Evaluation results
on these benchmarks demonstrate that our frame-
work achieves superior performance to existing
models, thus setting a new state-of-the-art. Fur-
thermore, we carried out experiments to showcase
the generalizability of our trained knowledge se-
lection module in different retrievers and readers
in a zero-shot fashion. Our results indicate that
this module can boost the generation performance
of large-scale language models (LLMs) such as
GPT-3 and ChatGPT when used in conjunction
with retrievers. We hypothesize that this enhance-
ment is due to the module’s ability to select more
relevant external knowledge, thereby empower-
ing the LLMs to produce more precise answers.

2 Our Method

To improve both the inference efficiency and
prediction accuracy we propose a simple and
novel mutual learning framework for training
an open-domain question answering system. Our
framework inserts a knowledge selector module
between the retriever and the reader. Crucially,
this module requires no additional annotated data
and is compatible with any retrieve-then-read
models.

Specifically, given a question qi, the retriever
first selects a fixed number of passages Di from
a large knowledge source. Then, the knowledge
selector prunes Di to obtain a smaller subset
of passages pi, where pi ⊆ Di. Finally, pi is

processed by the reader, along with the ques-
tion, to generate an answer. For the retriever, we
use DPR (Karpukhin et al., 2020a), which has
been demonstrated to perform better than sparse-
representation-based methods, such as BM25
(Robertson et al., 2009), in many prior works
(Izacard and Grave, 2020, 2021). For the reader
module, we use the Fusion-in-Decoder (FiD)
model (Izacard and Grave, 2020), a sequence-to-
sequence architecture which we initialize from a
pre-trained model such as T5 (Raffel et al., 2020)
or BART (Lewis et al., 2020a).

Information retrieval has been studied for
many years and there exists an abundance of off-
the-shelf retrieval models. After reviewing pre-
vious work in open-domain question answering,
we find three main classes of retriever: 1) sparse
retrievers (e.g., BM25), where both passages and
queries are represented as sparse vectors, with
each dimension corresponding to a different term;
2) unsupervised dense retrievers (e.g., Contriever
[Izacard et al., 2021]), which are trained without
using annotated query-passage pairs; and 3) super-
vised dense retrievers (e.g., DPR), which repre-
sent a cluster of supervised dense retrieval model
directly trained on annotated datasets. Since it is
not the main focus of our work, we directly adopt
DPR as our retriever, a state-of-the-art retrieval
model.

In the following two sections, we outline the
training details of the two remaining modules:
knowledge selector (§2.1) and reader (§2.2).

2.1 Knowledge Selector Agent

A key novelty of this work is to train the knowl-
edge selector without requiring a task-specific
annotated training dataset. By framing the pas-
sage selection problem as a contextual multi-arm
bandit (Robbins, 1952), we propose training the
knowledge selector using a policy gradient strat-
egy. This avoids brute-force search over all pas-
sage combinations or task-specific heuristics.

Given a question and a passage set from the
passage retriever, the knowledge selector chooses
a fixed number of relevant passages from the
passage set. This refined passage set and the orig-
inal question are then fed to the reader model,
which produces an answer. Finally, the answer is
evaluated against the ground truth, from which
an associated loss is computed. In this setting,
the knowledge selector follows the dynamics of
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a multi-arm bandit, where the context consists of
the question and the action space is composed of
all subsets of the passage set (of a given size).
Crucially, this is not an unrestricted Markov deci-
sion process (Sutton and Barto, 2018), since there
is no temporal dependency between question-
answer pairs.

Formally, the knowledge selector πθ is built
on BERT (Devlin et al., 2019) together with a
small linear layer on top of BERT. The param-
eters of BERT are fixed and only the appended
linear is updated, i.e., θ is composed of learnable
parameters W and b. Given a question qi and
a set of candidate passages Di retrieved by the
aforementioned retriever, we want the ‘‘agent’’ to
find the K best performing passage set pi from
the candidate pool Di. The agent’s goal is that the
reader can generate an answer âi based on (qi, pi),
obtaining the maximum reward r(âi|qi, pi).

Mathematically, the agent samples the passage
set pi according to the policy

pi ∼ πθ(pi|qi), pi ⊆ Di (1)

Here, the policy πθ computes the sampling
probability for each passage d ∈ Di as

f(d|qi) =
exp [h(d) · h(qi)]∑

dj∈Di
exp [h(dj) · h(qi))]

(2)

where h(x) = W(BERT(x)) + b. The policy
then samples K passages dk ∼ f(d|qi) from this
distribution without replacement, giving the pas-
sage set pi = {d1, . . . , dK}.

In this phase, the answer âi is generated by
a fixed-parameter reader, whose input contains
the question qi and the passage set pi. More de-
tails about the reader will be illustrated in next
section (§2.2). The reward r(âi|qi, pi) is obtained
by evaluating the generated answer âi against the
ground truth answer list Ai.3 Specifically, we use
a 0–1 loss as our reward function, which is defined
as follows,

r(âi|qi, pi) =
{
1, âi ∈ Ai

0, âi �∈ Ai

(3)

Note that the proper design of reward functions,
a.k.a. reward engineering, is critical for training
efficiency in reinforcement learning (Sutton and
Barto, 2018). While different reward functions

3A question might correspond to one or multiple answers.

might further improve the performance, we leave
this as an area for future work.

We optimize the agent with the REINFORCE
policy gradient operator (Williams, 1992), maxi-
mizing the following objective function:

J (θ) = E(qi,pi)∼πθ(pi|qi)[r(âi|qi, pi)] (4)

Intuitively, we update the policy to increase the
probability of sampling the selected passages if
the predicted answer is correct, and decrease their
probability if the predicted answer is incorrect.

2.2 FiD-based Reader

The reader takes the selected passages from
knowledge selector and the question as input and
generates an answer. To make the input compat-
ible with sequence-to-sequence models like T5
(Raffel et al., 2020) and BART (Lewis et al.,
2020a), one way is to concatenate the question
with all the passages and let the self-attention
in the Transformer module do the cross-passage
reasoning. However, this can be inefficient when
the number of retrieved passages is very large
because of the quadratic computation complexity
in self-attention. To achieve both cross-passage
modeling and computation efficiency, we take as
our reader FiD model (Izacard and Grave, 2020),
which achieves state-of-the-art performance and
is widely adopted by prior work (Ma et al., 2022a;
Izacard and Grave, 2021). The underlying archi-
tecture is a sequence-to-sequence model, com-
posed of an encoder and a decoder, and initialized
from pre-trained models such as T5 or BART.

For a given question qi and a set of pas-
sages pi of size K, we concatenate question qi
with each passage, thus resulting in K question-
passage pairs. In particular, following Izacard and
Grave (2020), for each question and a passage, we
add sentinel tokens question:, title:, and
context: before the question, the passage title,
and the passage content separately. The encoder
independently processes K different question-
passage pairs. The token embeddings of all pas-
sages output from the last layer of the encoder
are concatenated as a global representation H of
dimension (

∑K
k=1 �k) × d, where �k is the length

of the k-th question-passage pair and d is the
dimension of the embeddings and hidden repre-
sentations of the model. H is then sent to the de-
coder to generate the expected answer in a regular
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autoregressive manner, alternating self-attention,
cross-attention and feed-forward modules.

By concatenating the encoder output embed-
dings, the decoder can generate outputs based on
joint modeling of multiple passages. In this way,
it means that the computation time of the model
grows linearly with the number of used passages,
instead of quadratically. Besides, processing pas-
sages jointly in the decoder allows to better ag-
gregate evidence from multiple passages.

2.3 Two-phase Training Framework

We present our two-phase mutual-learning train-
ing framework in Algorithm 1. For each epoch, it
goes through the whole training dataset twice for

optimizing the parameters of knowledge selector
πθ and reader Ψφ, respectively.

At the first phase, we adopt a reinforcement
learning (RL) approach to train our knowledge
selector. The reason for choosing an RL-based
approach contains mainly come from two con-
siderations: One is that there are no annotated
pairs of questions and the corresponding list of
support passages, so we are unable to train the
knowledge selector in a standard supervised train-
ing paradigm; another is that based on some prior
works (Izacard and Grave, 2020, 2021) showing
that the quality of the retrieved passages greatly
influences the performance of the reader, we con-
jecture that the reward calculated based on the
reader’s prediction performance can serve as a
good proxy for the relevance of support passages.

Ideally, we wold like the knowledge selector
to select the best K performing passages from
the whole external source E . In practice, however,
querying a large knowledge source is time- and
memory-consuming, Thus, we use an off-the-shelf
retrieval model to first retrieve n passages, which
are expected to contain the most relevant passages
if n is large enough (n=200). Then, we apply
our trained knowledge selector to filter out some
irrelevant passages to obtain a smaller set of pas-
sages pi, which will then be sent together with
the question qi to the reader Ψφ for generating an
answer âi. At this phase, âi generated by Ψφ is
only used to calculate the reward, which is then
used to update the parameters of πθ while keeping
all the parameters of Ψφ unchanged.

At the second phase, we train the reader Ψφ

together with our improved knowledge selector
from the first phase. ForΨφ, we use the FiD model
(Izacard and Grave, 2020), which has proven to be
a state-of-the-art architecture by many prior stud-
ies (Izacard and Grave, 2021; Ma et al., 2022a). By
processing passages independently in the encoder,
but jointly in the decoder, this architecture allows
to scale to large number of contexts, and mean-
while, the computation time of the model grows
linearly with the number of passages, instead of
quadratically.

3 Experiments

Datasets We evaluate our mutual learning
framework by performing experiments on Trivia-
QA (TQA) (Joshi et al., 2017), NaturalQuestions
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(NQ) (Kwiatkowski et al., 2019), and Web Ques-
tions (WebQ) (Berant et al., 2013) tasks:

– TQA contains a set of trivia questions with
answers that were originally scraped from
trivia and quiz-league websites. The origi-
nal split uses 78,785 examples for training,
8,837 for validating, and 11,313 for testing.

– NQ were mined from real Google search
queries with answers from Wikipedia articles
identified by human annotators. The origi-
nal split uses 79,168 examples for training,
8,757 for validating, and 3,610 for testing.

– WebQ consists of questions selected using
Google Suggest API, where the answers are
obtained via Amazon Mechanical Turk. The
original split uses 3,478 examples for train-
ing, 300 for validating, and 2,032 for testing.

We use the Wikipedia dump from Dec. 20, 2018
for support passages, splitting articles into non-
overlapping passages of 100 tokens, and applying
the same pre-processing as Chen et al. (2017).

Evaluation Metrics The model performance is
assessed in two ways. First, we report the top-k
retrieval accuracy (R@k), which is the percentage
of questions for which at least one passage of
the top-k retrieved passages contains the gold an-
swer. Additionally, we report the final end-to-end
performance of the question-answering system
composed of the retriever and reader modules.
Predicted answers are evaluated with the stan-
dard exact-match metric (EM), as introduced by
(Rajpurkar et al., 2016). An answer is considered
to be correct if it is exact match with any of
the reference answer strings after minor normal-
ization such as lowercasing, following evaluation
scripts from DrQA (Chen et al., 2017).

Unlike prior studies, we also consider
floating-point operations (FLOPs) as the metric
to evaluate computational efficiency. FLOPs are
system-independent and hence a reliable metric
for comparison. We compute these and other
FLOP values using the thop4 Python library.

3.1 Implementation Details
Off-the-shelf Retriever In this paper, unless
otherwise specified, we use the DPR retriever (the
multi-dataset version) by default, which is ob-
tained using the script provided in the DPR official

4https://github.com/Lyken17/pytorch-OpCounter.

GitHub repository.5 As described in Karpukhin
et al. (2020b), the retriever (multi-dataset en-
coder) was trained over a combined training data
of multiple datasets including NQ, TQA, and
WebQ, using the in-batch negative setting. Since
the retriever training is not the primary focus of
this paper, we kindly refer readers to the compre-
hensive details provided in the paper (Karpukhin
et al., 2020b). Additionally, for the BM25 re-
trieval method, we use the implementation from
Apache Lucene6 with default parameters, and to-
kenize questions and passages with SpaCy.7

Knowledge Selector and Reader We use the
BERT large model with parameters fixed in the
knowledge selection and the one trainable linear
layer is parameterized with W ∈ R

1024×1024 and
the bias b ∈ R

1024. Similar to DPR (Karpukhin
et al., 2020b), we use the combined training of
NQ, TQA, and WebQ to train the knowledge
selector. Namely, we only have one knowledge
selector in our evaluation stage across the three
different benchmarks. Unless otherwise specified,
the reader is initialized with the T5 base model.

Both the knowledge selector and the reader are
trained using the Adam algorithm (Kingma and
Ba, 2014) linear scheduling with warm-up and
dropout rate 0.1. The learning rate for the knowl-
edge selector and the reader is 10−5 and 10−4,
respectively. The batch size is 8. In total, we
ran 20 epochs using 8 Tesla V100 32GB, which
took about 84 GPU hours. In each epoch, we run
the two phases alternatively. The best pair of the
knowledge selector and the reader models is se-
lected based on the validation performance after
the two-phase training at each epoch.

3.2 Main Results

Following previous work (Karpukhin et al.,
2020b; Khattab et al., 2021; Izacard and Grave,
2021), we report the top-k retrieval accuracy.
Table 1 compares four different passage retrieval
schemes on three benchmark datasets, using the
top-10 accuracy. Overall, the baseline retriever,
whether employing BM25 or DPR, coupled with
our specially trained knowledge selector, con-
sistently attains superior scores compared to its

5https://github.com/facebookresearch/DPR
/blob/main/dpr/data/download data.py#L258C5
-L258C5.

6https://lucene.apache.org/.
7https://spacy.io/.
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NQ TQA WebQ

BM25 59.4 60.5 56.3
DPR 67.4 69.3 60.2
BM25 + KS 65.4 70.4 62.4
DPR + KS 71.8 74.6 68.5

Table 1: R@10 scores of four different retrieving
schemes over three benchmark datasets.

baseline performance. However, as pointed out
in Izacard and Grave (2021), the effectiveness of
this metric in assessing the retriever’s performance
remains somewhat uncertain. This is due to the
possibility of answers being present within a pas-
sage without a direct connection to the given
question. Consequently, our next focus is on pre-
senting the ultimate, end-to-end performance of
the question-answering system, which encom-
passes both the retriever and reader modules.
This is the metric that truly captures our primary
interest.

In Table 2, we report the performance of our
approach, as well as existing state-of-the-art sys-
tems on NQ, TQA, and WebQ with two different
numbers of retrieved passages. The goal of this
experiment is to validate whether the knowledge
selector can effectively retain the passages re-
quired by the reader while filtering irrelevant
passages, thus achieving the goal of improving
the inference efficiency. From the experimental
results in Table 2, we observe that models trained
under our mutual learning framework achieve
better overall performance than the previously
published SOTA methods, even when limited to
10 passages only. This validates our assumption
that it is possible to obtain a strong combination
of the retriever and the knowledge selector, with-
out requiring the supervision of annotated pairs
of questions and passages.

Improvement in Inference Efficiency We
quantify how much inference efficiency improves
in our proposed framework when compared with
the original FiD model requiring a large number
of support passages (n=100). From Figure 2, we
can find that for the NQ dataset, when the num-
ber of retrieved passages increases from 1 to 10,
the performance gains increase accordingly; how-
ever, when we continue to increase the number
of retrieved passages, the increase in the exact

match value begins to plateau. A similar trend
has also been observed in both TQA and WebQ
datasets (i.e., a significant performance gain when
increasing the number of the retrieved passages
from 1 to 5, followed by a trivial improvement
when increasing the number of retrieved passages
beyond this). From this, we make the following
three conclusions:

1. Once the number of support passages is suf-
ficient to provide the reader enough evidence
to generate the correct answer, increasing
the number of passages does not necessarily
improve model performance.

2. Our proposed model outperforming the orig-
inal FiD model highlights that excessive
external knowledge might distract the reader
from giving correct answers.

3. Crucially, as demonstrated in Figure 2 with
the red dotted line, our framework requires
only 5 support passages to achieve compa-
rable performance to with FiD models that
use 100 support passages, while requiring
significantly fewer FLOPs.

3.3 Ablation Study
In this section, we conduct ablation studies to
answer the following four questions:

• Is the two-phase mutual training necessary?

• What is the significance of the policy-
gradient method?

• How does the choice of different retrievers
impact the results?

• What is the impact of employing different
pretrained language models for the knowl-
edge selector?

Is the Two-phase Mutual Training Necessary?
In this paper, we present a novel mutual train-
ing strategy aimed at optimizing the parameters
of both the knowledge selector and the reader
through an alternating process. We hypothesize
that the knowledge selector’s primary function is
to discern the most pertinent and valuable pas-
sages, while the reader’s objective is to generate
precise answers based on the selections made by
the knowledge selector. Consequently, these two
components should be fine-tuned in a collabora-
tive manner. To further substantiate our hypoth-
esis, we conducted an ablation study where we
kept the parameters of a pre-trained reader fixed,
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Model NQ TQA WebQ
K=10 K=100 K=10 K=100 K=10 K=100

DPR (Karpukhin et al., 2020a) – 41.5 – 57.9 – 41.1
ColBERT-QA (Khattab et al., 2021) – 48.2 – 63.2 – –
ORQA (Lee et al., 2019) – 33.3 – 45.0 – 36.4
RAG-Token (Lewis et al., 2020b) – 44.1 – 55.2 – 45.5
RAG-Seq (Lewis et al., 2020b) – 44.5 – 56.8 – 45.2
REALMwiki (Guu et al., 2020) – 39.2 – – – 40.2
REALMnews (Guu et al., 2020) – 40.4 – – – 40.7
FiD (T5 base) (Izacard and Grave, 2020) 42.3 48.2 61.1 65.0 45.2 47.2
FiD (T5 large) (Izacard and Grave, 2020) 45.6 51.4 63.2 67.6 47.1 50.5
FiD-KD (T5 base) (Izacard and Grave, 2021) 49.2 50.1 68.7 69.3 49.2 51.2
FiD-KD (T5 large) (Izacard and Grave, 2021) 52.7 54.4 72.5 72.5 49.8 52.7

Ours (T5 base) 52.1 – 69.8 – 52.5 –
Ours (T5 large) 56.1 – 74.1 – 53.7 –

Table 2: EM scores of prior state-of-the-art models and our models on NQ, TQA, and WebQ. Note
that this work aims at reducing the number of retrieved passages without compromising the model’s
performance, so we do not report experimental results (K = 100) of our method because it means that
the knowledge selector is not needed.

Figure 2: Accuracy-cost curves of the proposed system
for different K on NQ, TQA, and WebQS, respectively.
The dotted red line represents the average FLOPs for
an inference under different numbers of passages.

focusing solely on the optimization of the knowl-
edge selector using the policy gradient method.
The results of this experiment are depicted in
Figure 3.

We conducted experiments using three trained
readers8 to assess whether updating only the pa-
rameters of the knowledge selector (referred to as

8FiD-KD models are initialized using the T5-small and
T5-large pretrained models, respectively, while RAG-Token
model is initialized with the BART-large pretrained model.

‘One-phase’, as illustrated in Figure 3) is suffi-
cient. It is important to note that in the one-phase
setting, all training hyperparameters, including the
base retriever, remain the same as in the two-phase
setting, with the exception of eliminating the sec-
ond phase. The results unequivocally demonstrate
that two-phase training consistently yields supe-
rior performance, with improvements of 3.7% ↑,
5.6% ↑, and 5.7% ↑, respectively, compared to
the one-phase setting. This ablation study results
provide additional validation of the efficacy of our
mutual two-phase training strategy.

Policy-gradient vs Supervised training In or-
der to train the knowledge selector through
supervised learning, it is necessary to have pairs
of questions and their corresponding passages that
contain relevant information. However, manually
creating labeled data can be a time-consuming pro-
cess, resulting in a lack of annotations for many
datasets and applications. An alternative method
is to utilize heuristics or weakly supervised learn-
ing, for example, by designating all documents
containing the answer as positive samples. Thus,
to assess the viability of this intuitive alterna-
tive approach, we employ it to construct a training
dataset for knowledge selector training, referred to
as the supervised approach. Using these ‘‘ground
truth’’ labels, we can directly train the knowledge
selector in a supervised manner.
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Figure 3: Results of employing one-phase and two-
phase training with various trained readers on the NQ
dataset. RAGt denotes the RAG-Token Model. The
number of retrieved passages is 10. In One-phase, the
reader is initialized with the relevant pre-trained model,
and its parameters remain fixed while we employ RL to
optimize the parameters of the knowledge selector. In
Two-phase, both the parameters of the initialized reader
and the knowledge selectors are updated alternatively.

NQ TQA WebQ

Supervised (T5-based, K=5) 46.1 59.2 44.8
Policy-gradient (T5-base, K=5) 49.8 63.1 47.9

Supervised (T5-base, K=10) 50.2 64.2 49.2
Policy gradient (T5-base, K=10) 52.1 69.8 52.5

Table 3: Comparsion results of the policy-gradient
based framework and the supervised approach.

Table 3 shows the experimental results of the
two approaches under two different numbers (5
and 10) of passages. We observe that our policy-
gradient-based method performs much better than
the supervised learning in both settings. Two pos-
sible reasons are: 1) Frequent answers or entities
might lead to false-positive examples. For exam-
ple, we can consider the question ‘‘which univer-
sity did Barack Obama obtain graduate from?’’
alongside the passage ‘‘...Barack Obama gave a
speech in Harvard University... ’’, which would
be considered a positive example as it contains
the answer ‘‘Harvard’’. In this case, the super-
vised training approach might suffer from the
false-positive labels during the training stage. For

NQ TQA WebQ

BM25 + Reader 44.2 59.8 45.2
DPR + Reader 45.6 63.2 47.1
BM25+KS + Reader 52.4 68.4 50.1
DPR+KS + Reader 56.1 74.1 53.7

Table 4: EM scores (%) of four different retrieve-
then-read schemes over three benchmark data-
sets. The reader is initialized with the T5 large
model. Note that both KS and Reader were trained
using the proposed method using DPR as the
retriever, and the same models are used for all
rows in the table.

our proposed framework, although it is also pos-
sible for the 0-1 reward to give a false-positive
signal when an irrelevant document included by
the knowledge selector. However, as the policy is
optimized it will naturally perform credit assign-
ment and lower the value of irrelevant documents,
since they may be excluded without lowering per-
formance. As such, an optimal policy will not
select irrelevant documents in the place of ones
that would improve answer quality, since this
action would have lower expected return. In con-
trast, the supervised approach will never learn to
exclude false positives, as its objective is defined
by the static labelling method. 2) A second limi-
tation is that for some tasks, such as fact checking
or long-form question answering, such heuristics
might not be directly applicable.

Impacts of Using Different Retrievers Our
framework maintains a versatile approach by re-
maining agnostic to the choice of the off-the-shelf
retriever. In this context, we maintain the trained
knowledge selector and the reader as constants
while experimenting with various retrieval meth-
ods. The results are presented in Table 4.

Firstly, it is evident that the inclusion of the
knowledge selector results in improved perfor-
mance compared to counterparts that do not utilize
this feature, showcasing an increase of 4.5% and
5.6%. This underlines the effectiveness of the
knowledge selector in identifying more relevant
passages, thereby enabling the reader model to
generate accurate responses. Notably, these find-
ings are consistent with those presented in Table 1,
where the employment of the knowledge selector
yields higher R@10 scores.
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NQ TQA WebQ

BERT-base (110M) 52.1 69.8 52.5

BERT-large (330M) 52.8 69.8 53.0
ALBERT (235M) 52.2 69.7 52.6
RoBERTa-base (125M) 52.0 69.7 52.1
RoBERTa-large (355M) 52.9 69.9 52.9

Table 5: Performance of different pretrained lan-
guage models (parameter sizes are shown in the
bracket) are used in the knowledge selector where
the reader we use is T5-base and the number of
passages is 10.

Exploration of Different Pretrained Language
Models for the Knowledge Selector In our pre-
vious experiments, the knowledge selector is built
on the BERT-base with its parameters fixed. In
this part, we explore whether the knowledge se-
lector can benefit from other pretrained language
models with different parameter sizes.

From Table 5, we observe that there is no signif-
icant improvement on three benchmark datasets
when using alternative pretrained language mod-
els of different sizes. For example, there is only
a 0.7 increase in the EM score when we replace
the 110M BERT-base model with 330M BERT-
large. This suggests that using BERT-base is large
enough to learn the relationship between the ques-
tion and the passages under our mutual learning
framework. In addition, one interesting phenom-
enon is that the EM score on the TQA dataset is
almost unchanged for the chosen five different
pretrained language models. One possible rea-
son is that questions in TQA do not rely heavily
on external knowledge, namely, many questions
could be answered based on the parameters of the
pretrained language models.

4 Zero-shot Transfer

Previous experimental results showed that our
mutual learning framework could improve the
model performance in the supervised fine-tuning
setting. Here, we evaluate whether the trained
knowledge selector module can also contribute
to improving the generation performance of
large-scale language models (LLMs) (e.g., GPT-3
and ChatGPT) in a zero-shot setting. In particular,
we explore three different settings: 1) without

Methods NQ TQA WebQS

*without retrieval
GPT-3 14.6 64.3 14.4
ChatGPT 20.9 67.5 18.6

*with ONE retrieved passage
GPT-3 (DPR, n=1) 22.4 67.9 34.5
GPT-3 (Ours, n=1) 24.2 69.3 36.1
ChatGPT (DPR, n=1) 24.8 70.5 36.2
ChatGPT (Ours, n=1) 26.1 72.1 37.8

*with TWO retrieved passage
GPT-3 (DPR, n=2) 26.1 69.2 36.4
GPT-3 (Ours, n=2) 28.9 71.8 39.8
ChatGPT (DPR, n=2) 29.2 71.3 40.9
ChatGPT (Ours, n=2) 32.1 73.2 42.3

Table 6: Experimental results of using GPT-3
and ChatGPT with one and two retrieved results.
The prompt we used is from P3 (Bach et al., 2022)
of the form Refer to the passage below and an-
swer the following question. Passage: {passages}
Question: {question}, where {question} and {pas-
sages} are replaced by the corresponding ques-
tion and the retrieved passages.

retrieval means that we feed the question to
LLMs directly without concatenating any other
background knowledge; 2) with ONE retrieved
passage denotes that we concatenate a passage
retrieved by different methods to the question
following the same prompt as P3 (Bach et al.,
2022); 3) similarly, with TWO retrieved passages
denotes retrieving two passages. All experimental
results are reported in Table 6. Note that due to
the length limitation, we only explore the settings
of using one retrieved passages and two retrieved
passages.

From Table 6, we observe that adding the re-
trieved passage(s) to the question as the input to
LLMs could obviously improve the generation in-
formation in both GPT-3 and ChatGPT. A similar
phenomenon has also been noticed in Yu et al.
(2022b). Besides, under the same number of re-
trieved passages, passages selected by our trained
knowledge selector contribute more to the gen-
eration performance, as reflected from the exact
match scores. To some extent, this demonstrates
that the knowledge selector trained using our mu-
tual learning framework is not model-specific,
and can be used as a standalone tool for retrieving
relevant passages in other frameworks.
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Original question FiD-with-DPR’s prediction Our prediction
Q: Who got the first nobel prize in physics? Albert A. Michelson ✗ Wilhelm Conrad Röntgen ✓

Top-3 passages ranked by DPR:
1. Albert A. Michelson was an American physicist known for his work on measuring the speed of light . . .

In 1907 he received the Nobel Prize in Physics, becoming the first American to win the Nobel Prize . . .

2. Nobel Prize in Physics The Nobel Prize in Physics is a yearly award given by the Royal Swedish Academy . . .

3. The discovery of X-rays by physicist Wilhelm Conrad Röntgen, first winner of the Nobel Prize for Physics . . .

Top-3 passages ranked by our method:
1. Wilhelm Conrad Röntgen was a German mechanical engineer and physicist, who, on 8 November 1895 . . .

range known as X-rays rays . . . an achievement that earned him the first Nobel Prize in Physics in 1901 . . .

2. The discovery of X-rays by physicist Wilhelm Conrad Röntgen, first winner of the Nobel Prize for Physics . . .

3. . . . when German physics professor Wilhelm Conrad Röntgen discovered the X-ray and noted that, while it

could pass through human tissue . . . He received the first Nobel Prize in Physics for his discovery . . .

Q: Who is the president of USA right now? George W. Bush ✗ Barack Obama ✗

Top-3 passages ranked by DPR:
1. . . . on January 20, 2009, when Barack Obama was inaugurated as the 44th President of the United States . . .

2. . . . Donald Trump was formally elected by the Electoral College on December 19, 2016 . . .

3. . . . January 20, 2001, when George W. Bush was inaugurated as the 43rd President of the United States . . .

Top-3 passages ranked by our method:
1. . . . on January 20, 2009, when Barack Obama was inaugurated as the 44th President of the United States . . .

2. Barack Obama, a Democrat and former U.S. Senator from Illinois, was first elected president . . .

3. Barack Obama is an American attorney and politician who served as the 44th President of U.S. . . .

Table 7: Case study of retrieved documents and predicted results from FiD-with-DPR (Izacard and
Grave, 2021) and our proposed framework. For the space limitation, we only illustrate the snapshots of
the top three out of the ten retrieved Wiki passages from the two different approaches, specifically.

5 Case Study

To better understand why our proposed framework
can help improve the predictive performance, we
manually pick two representative examples as case
studies. Examples where predicted results of our
framework and a strong baseline (FiD-with-DPR)
together with part of their used passages are in
Table 7. Note that for both approaches, we set
the number of retrieved passages as 10 for a fair
comparison while we only showcase top threes
retrieved passages due to the space limitation.

In the first case, we can observe that among the
three top passages ranked by DPR, only one is
relevant to the question and can provide evidence
to generate the correct answer while the other
two passages are either off-topic or even provid-
ing some incorrect information. For example, the
top-1 retrieved passage conveys a seemingly rele-
vant information about the first American winner

of the Nobel Prize for physics, which is consid-
ered as a negative factor of leading the reader to
generate an incorrect prediction with respect the
given question without emphasizing the winner’s
nationality. In contrast, in terms of the relevance
to the given question, we can notice that all the
three passages from our method are talking about
Wilhelm Conrad Röntgen, based on which the
reader correctly gives the answer as we expect.
We conjecture that the reader might be negatively
distracted by irrelevant knowledge, thus making
an incorrect predictions with respect to the given
question.

In the second case, while the comparison be-
tween the two predictions with the ground truth
answer (Donald Trump) is incorrect, the predic-
tion itself should be considered as a correct answer
for the question due to the time-dependent prop-
erty of the question. According to Zhang and Choi
(2021), the Natural Questions dataset contains a
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Query: Who is the girl in green day 21 guns? Ground truth Answer: Lisa Stelly

ChatGPT [No Passage]: Lauren German ✗

With top-1 passage by DPR: 21 Guns is a song by American punk rock band Green Day. It was
released as the second single from their eighth album . . .

ChatGPT: Lauren German ✗

With top-1 passage by our method: The 21 guns music video takes place with the band and the
album’s two protagonists Christian (Josh Boswell) and Gloria (Lisa Stelly) taking refuge . . .

ChatGPT: Lisa Stelly ✓

Table 8: Case study of predictions of ChatGPT w/o the top-1 passage from DPR or our method.

significant proportion, roughly 16.5%, of ques-
tions that have time-dependent answers. Another
observation is that when compared to the baseline
model, the retrieved passages from our approach
are more consistent, all of which are related to
Barack Obama, and we conjecture that such a
bunch of topic-relevant passages might contribute
more to the reader’s generation.

Additionally, we give an example to show that
for some knowledge-intensive tasks like open-
domain question answering, providing some nec-
essary context information relevant to the given
question can bring some gains in improving the
predictive performance for large and versatile lan-
guage models like ChatGPT. One possible reason
is that although the Wikipedia data have been
seen during the training stage of ChatGPT, it is
impossible to ‘‘remember’’ all training data in the
form of their parameters. As shown in Table 8,
with no contextual knowledge, ChatGPT gave an
incorrect answer. However, when equipped with
one passage containing the answer, ChatGPT can
make a correct prediction. Hence, providing some
necessary contextual information as a reference
might help ChatGPT generate a correct prediction
when meeting with some tough questions, thus
indirectly showing the superiority of our trained
knowledge selector over DPR.

6 Related Work

Open-domain Question Answering (ODQA) is an
important task, aiming at providing precise an-
swers in response to the user’s questions in nat-
ural language. There are two common types of
knowledge sources: One is unstructured textual

documents available on the Internet, and another
is a predefined structured data such as knowledge
graphs which are often manually constructed. In
this paper, we focus on the former, which is
considered to be a more general and challenging
task since available unstructured text to obtain
answers are fairly common and easily accessi-
ble, such as Wikipedia, news articles and science
books, etc.

Next, we review two categories of approaches
widely explored in current textual based ODQA
literature. We refer the reader to Zhu et al. (2021)
for a more exhaustive introduction to this topic.

Retrieval-free LLM-based Domain Question
Answering Systems Large language models
show impressive performance on a wide range of
tasks. Prior studies (Petroni et al., 2019; Roberts
et al., 2020; Brown et al., 2020) have shown that
a large amount of knowledge learned from large-
scale textual data can be stored in the underlying
parameters, and thus these models are capable of
answering questions without access to any exter-
nal knowledge. For example, ChatGPT is able to
correctly generate the answer given only a nat-
ural language question. However, although large
language models demonstrate impressive perfor-
mance on zero-shot learning abilities, their perfor-
mance still lags behind the supervised settings (Yu
et al., 2022b). Besides, some prior studies (Izacard
et al., 2022) also demonstrate that retrieval aug-
mented language models can achieve better per-
formance in knowledge-intensive tasks.

Retrieve-then-read Open Domain Question
Answering According to a detailed survey
(Yu et al., 2022b), modern ODQA architectures
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mainly follow the retriever-then-read paradigm
as well as the specific techniques adopted in each
of the components. Given a question, this model
first leverages a retriever over a large evidence
corpus to fetch a set of relevant documents that
may contain the answer. A reader is then used
to peruse the retrieved documents and predict an
answer. In this paradigm, we observe that recent
follow-up work has focused on improving either
the retriever (Sachan et al., 2022; Qu et al., 2021)
or the reader (Yu et al., 2022a; Wang et al., 2018;
Min et al., 2019). In particular, it is noteworthy
that the concept of integrating a reranker to en-
hance retrieval performance has been previously
explored in RocketQAv2 (Ren et al., 2021). How-
ever, a key distinction lies in the approach:
RocketQAv2 employs a joint training method
for both the passage retriever and the reranker,
whereas in our work, we fix the retriever’s param-
eters. Instead, our focus is solely on updating the
reranker’s parameters, thus enabling our frame-
work to consistently benefit advanced retriever
models as they become available. However, to the
best of our knowledge, only a few prior studies
have been carried out on training both the re-
triever and the reader in an end-to-end mode. Lee
et al. (2019) introduced the inverse cloze task for
pre-training retrievers, which are then fine-tuned
end-to-end on question-answering tasks. One most
related to our work is that of Izacard and Grave
(2021), which uses the internal attention scores
from the reader as synthetic labels to train the
retriever. In this work, we also explore the method
of using the reader’s feedback to optimize the
retriever without additional supervision besides
available pairs of question and answer.

7 Conclusion

In this work, we explore how to improve the pre-
diction performance and inference cost of reader
models in current open-domain question-answer
architectures. To this end, we introduce a fine-
grained knowledge selector into the retrieve-then-
read paradigm, whose goal is to construct a small
subset of passages which retain question-relevant
information. The knowledge selector is trained as
a component of our novel mutual learning frame-
work, which iteratively trains the knowledge se-
lector and the reader. We adopt a simple and novel
approach employing policy gradients to optimize
the knowledge selector, using feedback from the

reader to train it to select a small and informative
set of passages. This approach avoids brute-force
search or manually designed heuristics, without
requiring any annotated query-document pairs
for supervision. We show that iteratively train-
ing the reader and the knowledge selector leads
to better predictive performance on some public
open-domain question answering benchmarks. Fi-
nally, our approach matches the accuracy of the
top-performing Fusion-in-Decoder reader, whilst
utilizing just 18.32% of its reader inference cost
(FLOPs).
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Riedel, and Douwe Kiela. 2020b. Retrieval-
augmented generation for knowledge-intensive
nlp tasks. arXiv preprint arXiv:2005.11401.

Kaixin Ma, Hao Cheng, Xiaodong Liu,
Eric Nyberg, and Jianfeng Gao. 2022a.
Open-domain question answering via chain
of reasoning over heterogeneous knowledge.
In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, Abu Dhabi,
United Arab Emirates, December 7–11,
2022, pages 5360–5374. Association for
Computational Linguistics. https://
aclanthology.org/2022.findings
-emnlp.392

Kaixin Ma, Hao Cheng, Xiaodong Liu, Eric
Nyberg, and Jianfeng Gao. 2022b. Open do-
main question answering with a unified knowl-
edge interface. In Proceedings of the 60th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 1605–1620. https://doi.org/10
.18653/v1/2022.acl-long.113

Alejandro Martı́n, Javier Huertas-Tato, Álvaro
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