
Large Language Models Enable Few-Shot Clustering

Vijay Viswanathan1, Kiril Gashteovski2, 3,
Carolin Lawrence2, Tongshuang Wu1, Graham Neubig1

1Carnegie Mellon University, USA, 2NEC Laboratories Europe, Germany
3Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius Uni. of Skopje, Germany

Abstract

Unlike traditional unsupervised clustering,
semi-supervised clustering allows users to pro-
vide meaningful structure to the data, which
helps the clustering algorithm to match the
user’s intent. Existing approaches to semi-
supervised clustering require a significant
amount of feedback from an expert to improve
the clusters. In this paper, we ask whether a
large language model (LLM) can amplify an
expert’s guidance to enable query-efficient,
few-shot semi-supervised text clustering. We
show that LLMs are surprisingly effective at
improving clustering. We explore three stages
where LLMs can be incorporated into clus-
tering: before clustering (improving input
features), during clustering (by providing con-
straints to the clusterer), and after clustering
(using LLMs post-correction). We find that in-
corporating LLMs in the first two stages rou-
tinely provides significant improvements in
cluster quality, and that LLMs enable a user to
make trade-offs between cost and accuracy to
produce desired clusters. We release our code
and LLM prompts for the public to use.1

1 Introduction

Unsupervised clustering aims to do an impossi-
ble task: Organize data in a way that satisfies a
user’s needs without any specification of what
those needs are. Clustering, by its nature, is fun-
damentally an underspecified problem. According
to Caruana (2013), this underspecification makes
clustering ‘‘probably approximately useless.’’

Semi-supervised clustering, on the other hand,
aims to solve this problem by enabling the do-
main expert to guide the clustering algorithm (Bae
et al., 2020) by providing feedback. Prior work
has introduced different types of interaction be-
tween an expert and a clustering algorithm, such
as hand-picked seed points (Basu et al., 2002) or
pairwise constraints between points (Basu et al.,

1https://github.com/viswavi/few-shot-clustering.

2004). These interfaces have all been shown to
give experts control of the final clusters. How-
ever, for large, real-world datasets with a large
number of possible clusters, the feedback cost re-
quired by interactive clustering algorithms can be
immense.

Building on a body of recent work that uses
large language models (LLMs) as noisy simu-
lations of human decision-making (Fu et al.,
2023; Horton, 2023; Park et al., 2023),
we propose a different approach for semi-
supervised text clustering, illustrated in Figure 1.
In particular, we answer the following re-
search question: Can an expert provide a few
demonstrations of their desired interaction (e.g.,
pairwise constraints) to a large language model,
then let the LLM direct the clustering algorithm?

We explore three places in the text clustering
process where an LLM could be leveraged: before
clustering, during clustering, and after cluster-
ing. We leverage an LLM before clustering by
augmenting the textual representation. For each
example, we generate keyphrases with an LLM,
encode these keyphrases, and add them to the base
representation. We incorporate an LLM during
clustering by adding cluster constraints. Adopting
a classical algorithm for semi-supervised clus-
tering, we use an LLM as a pairwise constraint
pseudo-oracle. We finally explore using an LLM
after clustering by correcting low-confidence
cluster assignments using the pairwise constraint
pseudo-oracle. In every case, the interaction be-
tween a user and the clustering algorithm is en-
abled by a prompt written by the user and provided
to a large language model.

We test these three methods on five datasets
across three tasks: canonicalizing entities, clus-
tering queries by intent, and grouping tweets by
topic. We find that, compared to traditional K-
Means clustering on document embeddings, using
an LLM to enrich each document’s representa-
tion empirically improves cluster quality on every

321

Transactions of the Association for Computational Linguistics, vol. 12, pp. 321–333, 2024. https://doi.org/10.1162/tacl a 00648
Action Editor: Noah Smith. Submission batch: 8/2023; Revision batch: 12/2023; Published 4/2024.

c© 2024 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

https://github.com/viswavi/few-shot-clustering
https://doi.org/10.1162/tacl_a_00648

Figure 1: In traditional semi-supervised clustering, a
user provides a large amount of feedback to the clus-
terer. In our approach, the user prompts an LLM with
a small amount of feedback. The LLM then generates
a large amount of pseudo-feedback for the clusterer.

metric for all datasets we consider. Using an LLM
as a pairwise constraint pseudo-oracle can also
be highly effective when the LLM is capable of
providing pairwise similarity judgements but re-
quires a larger number of LLM queries to be ef-
fective. However, LLM post-correction provides
limited upside. Importantly, LLMs can also ap-
proach the performance of traditional semi-
supervised clustering with a human oracle at a
fraction of the cost.

Our work stands out from recent deep-learning-
based text clustering methods (Zhang et al.,
2021, 2023) in its simplicity. Two of our three
methods—using an LLM to expand documents’
representation or using an LLM to correct clus-
tering outputs—can be added as a plug-in to any
text clustering algorithm using any set of text fea-
tures.2 In our investigation of what aspect of the
LLM prompt is most responsible for the cluster-
ing behavior, we find that just using an instruction
alone (with no demonstrations) adds significant
value. This can motivate future research direc-
tions for integrating natural language instructions
with a clustering algorithm.

2 Methods to Incorporate LLMs

In this section, we describe the methods that we
use to incorporate LLMs into clustering.

2.1 Clustering via LLM
Keyphrase Expansion

Before any cluster is produced, experts typically
know what aspects of each document they wish to

2On the other hand, pairwise constraint clustering re-
quires using K-Means as the underlying clustering algorithm.

Figure 2: We expand document representations by con-
catenating them with keyphrase embeddings. The key-
phrases are generated by a large language model.

capture during clustering. Instead of forcing clus-
tering algorithms to mine such key factors from
scratch, it could be valuable to globally highlight
these aspects (and thereby specify the task em-
phases) beforehand. To do so, we use an LLM
to make every document’s textual representation
task-dependent, by enriching and expanding it with
evidence relevant to the clustering need. Specifi-
cally, each document is passed through an LLM
which generates keyphrases. These keyphrases
are encoded by an embedding model, and the key-
phrase embedding is then concatenated to the
original document embedding.

We generate keyphrases using GPT-3 (specifi-
cally, gpt-3.5-turbo-0301). We provide a
short prompt to the LLM, starting with an instruc-
tion (e.g., ‘‘I am trying to cluster online banking
queries based on whether they express the same
intent. For each query, generate a comprehensive
set of keyphrases that could describe its intent,
as a JSON-formatted list.’’). The instruction is
followed by four demonstrations of keyphrases,
which resemble the example on the upper half of
Figure 2.

We then encode the generated keyphrases into
a single vector, and concatenate this vector with
the original document’s text representation. To
disentangle the knowledge from an LLM with
the benefits of a better encoder, we encode the
keyphrases using the same encoder as the original
text.3 This approach is similar to Raedt et al.
(2023), who generate keyphrases for unsupervised
intent discovery.

3An exception to this is entity clustering. There, the
BERT encoder has been specialized for clustering Wikipedia
sentences, so we use DistilBERT to support keyphrase
clustering.

322

Figure 3: We use an LLM to generate pairwise con-
straints for a given dataset, given up to four examples
of valid pairwise constraints. The pairwise constraint
K-Means (‘‘PCKMeans’’) algorithm then consumes
these ‘‘pseudo-oracle’’ constraints to produce clusters.

2.2 Pseudo-Oracle Pairwise
Constraint Clustering

Arguably, the most popular approach to semi-
supervised clustering is pairwise constraint clus-
tering, where an oracle (e.g., a domain expert)
selects pairs of points that must be linked or can-
not be linked (Wagstaff and Cardie, 2000), such
that the abstract clustering intentions of a user can
be implicitly induced from their concrete feed-
back. In other words, a user conceptually describes
which kinds of points to group together and wants
to ensure the final clusters follow this grouping.
We use this paradigm to investigate the poten-
tial of LLMs to amplify expert guidance during
clustering by using an LLM as a pseudo-oracle,
shown in Figure 3.

To select pairs to classify, we take different
strategies for entity canonicalization and for other
text clustering tasks. For text clustering, we adapt
the Explore-Consolidate algorithm (Basu et al.,
2004) to first collect a diverse set of pairs from
embedding space (to identify pairs of points that
cannot be linked), then collect points that are
nearby to already-chosen points (to find pairs of
points that must be linked). For entity canonical-
ization, where there are so many clusters that very
few pairs of points belong to the same cluster,
we simply sample the closest pairs of points in
embedding space.

We prompt an LLM with a brief domain-
specific instruction, followed by up to 4 demon-
strations of pairwise constraints obtained from
test set labels, to generate 20,000 pairwise con-
straints.4 We use these pairwise constraints to
generate clusters with the PCKMeans algorithm

4We chose this number based on our available budget
for LLM usage, after we empirically observed that pairwise
constraint K-Means using noisy pairwise constraints worked
better with an increasing number of constraints provided.

Figure 4: After performing clustering, we identify
low-confidence points. For these points, we ask an
LLM whether the current cluster assignment is cor-
rect. If the LLM responds negatively, we ask the LLM
whether this point should instead be linked to any of
the top-5 nearest clusters, and correct the clustering
accordingly.

of Basu et al. (2004). This algorithm applies
penalties for cluster assignments that violate any
constraints, weighted by a hyperparameter w.
Following Vashishth et al. (2018), we tune this
parameter on each dataset’s validation split. Due
to the potential unreliability of pseudo-oracle pair-
wise constraints, we initialize our clusters using
k-means++ (Arthur and Vassilvitskii, 2007) rather
than directly using the pairwise constraint neigh-
borhood structure as in prior work (Basu et al.,
2004).

2.3 Using an LLM to Correct a Clustering
We finally consider the setting where one has
an existing set of clusters, but wants to improve
their quality with minimal local changes. We use
the same pairwise constraint pseudo-oracle as in
Section 2.2 to achieve this (see illustration in
Figure 4).

We identify the low-confidence points by find-
ing the k points with the least margin between
the nearest and second-nearest clusters (setting
k = 500 for our experiments). We textually rep-
resent each cluster by the entity nearest to the
centroid of that cluster in embedding space. For
each low-confidence point, we first ask the LLM
whether this point is correctly linked to any of
the representative points in its currently assigned
cluster. If the LLM predicts that this point should
not be linked to the current cluster, we consider
the 4 next-closest clusters in embedding space as
candidates for reranking, sorted by proximity. To
rerank the current point, we ask the LLM whether

323

this point should be linked to the representative
points in each candidate cluster. If the LLM re-
sponds positively, then we reassign the point to
this new cluster. If the LLM responds negatively
for all alternatives, we maintain the existing cluster
assignment.

3 Tasks

3.1 Entity Canonicalization
Task. In entity canonicalization, we must group
a collection of noun phrases M = {mi}N1 into
subgroups {Cj}K1 such that m1,m2 ∈ Cj if and
only if m1 and m2 refer to the same entity. For
example, the noun phrases President Biden (m1),
Joe Biden (m2), and the 46th U.S. President (m3)
should be clustered in one group (e.g., C1). The
set of noun phrases M are usually the nodes of an
‘‘open knowledge graph’’ produced by an Open
Information Extraction (OIE) system.5 Unlike the
related task of entity linking (Bunescu and Pasca,
2006; Milne and Witten, 2008), we do not assume
that any curated knowledge graph, gazetteer, or
encyclopedia contains all the entities of interests.

Entity canonicalization is valuable for motivat-
ing the challenges of semi-supervised clustering.
Here, there are hundreds or thousands of clusters
and relatively few points per cluster, making this
a difficult clustering task.

Datasets. We experiment with two datasets:

• OPIEC59k (Shen et al., 2022) contains 22K
noun phrases (with 2,138 unique entity sur-
face forms) belonging to 490 ground truth
clusters. The noun phrases are extracted by
MinIE (Gashteovski et al., 2017, 2019), and
the ground truth entity clusters are anchor
texts from Wikipedia that link to the same
Wikipedia article.

• ReVerb45k (Vashishth et al., 2018) contains
15.5K mentions (with 12,295 unique entity
surface forms) belonging to 6,700 ground
truth clusters. The noun phrases are the output
of the ReVerb (Fader et al., 2011) system, and
the ‘‘ground truth’’ entity clusters come from
automatically linking entities to the Freebase
knowledge graph. We use the version of this
dataset from Shen et al. (2022), who manually
filtered it to remove labeling errors.

5OIE is the task of extracting surface-form (subject;
relation; object)-triples from natural language text in a
schema-free manner (Banko et al., 2007).

Canonicalization Metrics. We follow the stan-
dard metrics used by Shen et al. (2022):

• Macro Precision and Recall

– Prec: For what fraction of predicted
clusters is every element in the same
gold cluster?

– Rec: For what fraction of gold clusters
is every element in the same predicted
cluster?

• Micro Precision and Recall

– Prec: How many points are in the same
gold cluster as the majority of their
predicted cluster?

– Rec: How many points are in the same
predicted cluster as the majority of their
gold cluster?

• Pairwise Precision and Recall

– Prec: How many pairs of points pre-
dicted to be linked are truly linked by a
gold cluster?

– Rec: How many pairs of points linked
by a gold cluster are also predicted to be
linked?

We finally compute the harmonic mean of
each pair to obtain Macro F1, Micro F1, and
Pairwise F1.

3.2 Text Clustering

Task. We then consider the case of cluster-
ing short textual documents. This clustering task
has been extensively studied in the literature
(Aggarwal and Zhai, 2012).

Datasets. We use three datasets in this setting:

• Bank77 (Casanueva et al., 2020) contains
3,080 user queries for an online banking
assistant from 77 intent categories.

• CLINC (Larson et al., 2019) contains 4,500
user queries for a task-oriented dialog system
from 150 intent categories, after removing
‘‘out-of-scope’’ queries as in Zhang et al.
(2023).

• Tweet (Yin and Wang, 2016) contains 2,472
tweets from 89 categories.

Metrics. Following prior work (Zhang et al.,
2021), we compare our text clusters to the ground
truth using normalized mutual information and

324

accuracy, which are obtained by finding the best
alignment between ground truth and predicted
clusters using the Hungarian algorithm (Kuhn,
1955).

4 Baselines

4.1 K-Means on Embeddings

We build our methods on top of a baseline of
K-Means clustering (Lloyd, 1982) over encoded
data with k-means++ cluster initialization (Arthur
and Vassilvitskii, 2007). We choose the features
and number of cluster centers that we use by task,
largely following previous work. As an additional
baseline, we also include hierarchical agglomer-
ative clustering with a fixed number of clusters
(Day and Edelsbrunner, 1984).

Entity Canonicalization. Following prior work
(Vashishth et al., 2018; Shen et al., 2022), we clus-
ter individual entity mentions (e.g., ‘‘ever since
the ancient Greeks founded the city of Marseille
in 600 BC.’’) by representing unique surface
forms (e.g., ‘‘Marseille’’) globally, irrespective
of their particular mention context. After cluster-
ing unique surface forms, we compose this cluster
mapping onto the individual mentions (extracted
from individual sentences) to obtain mention-level
clusters.

We build on the ‘‘multi-view clustering’’ ap-
proach of Shen et al. (2022), and represent each
noun phrase using textual mentions from the In-
ternet and the ‘‘open’’ knowledge graph extracted
from an OIE system. They use a BERT encoder
(Devlin et al., 2019) to represent the textual con-
text where an entity occurs (called the ‘‘context
view’’), and a TransE knowledge graph encoder
(Bordes et al., 2013) to represent nodes in the open
knowledge graph (called the ‘‘fact view’’). They
improve these encoders by finetuning the BERT
encoder using weak supervision from corefer-
ent entities and improving the knowledge graph
representations using data augmentation on the
knowledge graph. These two views of each entity
are then combined to produce a representation.

In their original paper, they propose an alternat-
ing multi-view K-Means procedure where cluster
assignments that are computed in one view are
used to initialize cluster centroids in the other
view. After a certain number of iterations, if the
per-view clusterings do not agree, they perform
a ‘‘conflict resolution’’ procedure to find a final

clustering with low inertia in both views. One of
our secondary contributions is a simplification of
this algorithm. We find that by simply using their
finetuned encoders, concatenating the representa-
tions from each view, and performing K-Means
clustering with K-Means++ initialization (Arthur
and Vassilvitskii, 2007) in a shared vector space,
we can match their reported performance.

To select the number of cluster centers, follow-
ing the Log-Jump method of Shen et al. (2022),
we choose 490 and 6,687 clusters for OPIEC59k
and ReVerb45k, respectively.

Intent Clustering. For the Bank77 and CLINC
datasets, we follow Zhang et al. (2023) and encode
each user query using the Instructor encoder. We
use a simple prompt to guide the encoder: ‘‘Rep-
resent utterances for intent classification’’. Again
following previous work, we choose 150 and 77
clusters for CLINC and Bank77, respectively.

Tweet Clustering. Following Zhang et al.
(2021), we encode each tweet using a version
of DistilBERT (Sanh et al., 2019) finetuned for
sentence similarity classification6 (Reimers and
Gurevych, 2019). We use 89 clusters (Zhang
et al., 2021).

4.2 Specialized Pretrained Encoders

Zhou et al. (2022) introduced a self-supervised
pretrained encoder named Dialogue Sentence Em-
bedding (DSE). It is explicitly trained to group
together related utterances from dialogues. This
model has been reported to achieve state-of-the-art
results when used in a few-shot manner (where
at least one seed point is provided for each
cluster). Since our study focuses on the setting
where the user provides substantially less feed-
back (3-4 instances of feedback), we consider this
encoder, used in a zero-shot manner, combined
with K-Means as another baseline for short text
clustering tasks.

4.3 Clustering via Contrastive Learning

In addition to the methods described in Section 2,
we also include two other methods for text cluster-
ing: SCCL (Zhang et al., 2021) and ClusterLLM
(Zhang et al., 2023). These two methods both
finetune an encoder to obtain better text clus-
ters (in contrast to our method that can be used

6This model’s name is distilbert-base-nli-
stsb-mean-tokens on HuggingFace.

325

Dataset / Method
OPIEC59k ReVerb45k

Macro F1 Micro F1 Pair F1 Avg Macro F1 Micro F1 Pair F1 Avg

Optimal Clust. 80.3 97.0 95.5 90.9 84.8 93.5 92.1 90.1

CMVC 52.8 90.7 84.7 76.1 66.1 87.9 89.4 81.1

KMeans 53.5±0.0 91.0±0.0 85.6±0.0 76.7 69.6±0.0 89.1±0.0 89.3±0.0 82.7
Agglomerative Clustering 32.8±0.0 87.2±0.0 83.4±0.0 67.8 70.0±0.0 89.5±0.0 89.8±0.0 83.1
SCCL 56.4±0.0 88.4±0.0 78.7±0.0 74.5 – – – –

ou
rs

PCKMeans 58.7±0.0 91.5±0.0 86.1±0.0 78.7 72.0±0.0 88.5±0.0 87.0±0.0 82.5
LLM Correction 58.7 91.5 85.2 78.4 69.9 89.2 88.4 82.5
Keyph. Clust. (w/ KMeans) 60.3±0.0 92.5±0.0 87.3±0.0 80.0 72.3±0.0 90.2±0.0 90.0±0.0 84.2
Keyph. Clust. (w/ Agglom.) 47.8±0.0 90.2±0.0 86.0±0.0 74.7 67.2±0.0 88.4±0.0 88.3±0.0 81.3

Table 1: Comparing methods for integrating LLMs into entity canonicalization. CMVC: multi-view
clustering method of Shen et al. (2022). KMeans: our simplified reimplementation of the same method.
Where applicable, standard deviations are obtained by running clustering 5 times with different seeds.
We note that the standard deviations being displayed as 0.0 does not mean there was no variance; there
was a nonzero standard deviation in most settings but this was less than 0.05 for all experiments.

Dataset / Method
Bank77 CLINC Tweet

Acc NMI Acc NMI Acc NMI

SCCL (Zhang et al., 2021) – – – – 78.2 89.2
ClusterLLM (Zhang et al., 2023) 71.2 – 83.8 – – –

KMeans 65.2±0.0 83.3±0.0 80.9±0.0 92.5±0.0 59.1±0.0 80.6±0.0
Agglomerative Clustering 64.0±0.0 81.7±0.0 77.7±0.0 91.5±0.0 57.5±0.0 80.6±0.0
DSE (w/ KMeans) 49.2±0.0 71.0±0.0 62.1±0.0 85.5±0.0 50.8±0.0 78.4±0.0

ou
rs

PCKMeans 59.6±0.0 79.6±0.0 79.6±0.0 92.1±0.0 65.3±0.0 85.1±0.0
LLM Correction 64.1 81.9 77.8 91.3 59.0 81.5
Keyphrase Clust. (w/ KMeans) 65.3±0.0 82.4±0.0 79.4±0.0 92.6±0.0 62.0±0.0 83.8±0.0
Keyphrase Clust. (w/ Agglom.) 66.4±0.0 84.1±0.0 81.3±0.0 93.1±0.0 69.8±0.0 86.6±0.0

Table 2: Comparing methods for integrating LLMs into text clustering. ‘‘DSE’’ refers to Zhou et al.
(2022). We use the same base encoders as those methods in our experiments. Where applicable, standard
deviations are obtained by running clustering 5 times with different seeds.

with a frozen encoder). To compare effectively
with these approaches, we use the same base
encoders reported for SCCL and ClusterLLM in
prior works: Instructor (Su et al., 2022) for Bank77
and CLINC and DistilBERT7 (Sanh et al., 2019;
Reimers and Gurevych, 2019) for Tweet.

5 Results

5.1 Summary of Results

We summarize empirical results for entity canoni-
calization in Table 1 and text clustering in Table 2.
As discussed in Section 4, when performing entity
canonicalization, we assign mentions to the same
cluster if they contain the same entity surface

7We used a version of DistilBERT finetuned for sentence
similarity classification, following Zhang et al. (2023).

form (e.g., ‘‘Marseille’’), following prior work
(Vashishth et al., 2018; Shen et al., 2022). This
approach leads to irreducible errors for polyse-
mous noun phrases (e.g., ‘‘Marseille’’ may refer
to the athletic club Olympique de Marseille or
the city Marseille). To the best of our knowledge,
we are the first to highlight the limitations of this
‘‘surface form clustering’’ approach. We present
the optimal performance under this assumption in
Table 1, finding that the baseline of Shen et al.
(2022) is already near-optimal on some metrics,
particularly for ReVerb45k.

We find that using the LLM to expand textual
representations is the most effective, achieving
state-of-the-art results on both canonicaliza-
tion datasets and significantly outperforming a
K-Means baseline for all text clustering datasets.

326

Pairwise constraint K-Means, when provided with
20K pairwise constraints pseudo-labeled by an
LLM, achieves strong performance on 3 of 5
datasets (beating the current state-of-the-art on
OPIEC59k).

For text clustering, our methods do not match
the state-of-the-art results reported by SCCL
(Zhang et al., 2021) and ClusterLLM (Zhang
et al., 2023): both deep learning-based clustering
approaches. We posit that this difference is largely
due to these methods finetuning the encoder model
to learn better representations. However, our work
comes within 5-10 points of these state-of-the art
results on every dataset. Our proposed keyphrase
augmentation method also provide improvements
over both K-Means and agglomerative clustering
in most settings, demonstrating the modularity
of this approach. Our proposed approach en-
ables greater flexibility than the aforementioned
state-of-the-art methods by supporting fixed fea-
tures before clustering (e.g., those obtained via
an embedding generation API). This enables our
method to cluster non-textual data in addition to
text. In contrast, finetuning encoders in multiple
modalities is not supported with the aforemen-
tioned state-of-the-art methods. Moreover, unlike
SCCL, our method works well on datasets with a
very large number of clusters, as shown in Table 1.
As a downside, our methods require more queries
to the LLM than other methods like SCCL and
ClusterLLM (see details in Sec. 5.4).

Below, we conduct more in-depth analyses on
what makes each method (in-)effective.

5.2 Illustrative Examples & Key Factors

To qualitatively examine the impact of each
LLM-based modification on the clustering pro-
cess, we use the OPIEC59k dataset to compare
the clusters obtained from our various cluster-
ing strategies with the clusters obtained from the
K-Means baseline.

After aligning each clustering against the
ground-truth using the Hungarian algorithm
(Kuhn, 1955), we compute the Jaccard similarity
between each predicted cluster and its correspond-
ing ground truth cluster. Comparing the clusters
obtained through our LLM-based interventions
against baseline K-Means clusters, we identify
clusters where each intervention provides the

Method # Improved # Degraded

KMeans. 0 0

Keyphrase Clust. 168 83
PCKMeans 155 82
LLM Correction 102 51

Table 3: After aligning the output of each clus-
tering algorithm with the ground truth, we report
the number of clusters on OPIEC59k that were
improved or worsened (measured by Jaccard simi-
larity with the corresponding ground truth cluster).
Each algorithm produced 490 clusters.

Figure 5: We identify clusters that changed after en-
coding and clustering keyphrases for each entity. Note
that while we provide both the entity name and textual
context about the entity to the clusterer, here we omit
the textual context for display purposes.

greatest improvement and the clusters where the
intervention causes the greatest degradation.8

While we show one improved cluster and one
degraded cluster (relative to the K-Means base-
line), these do not occur in equal proportions.
In Table 3, we show the number of improved
and degraded clusters for each method. In
Figures 5, 6, and 7, we show examples of clusters
after keyphrase expansion, incorporating pair-
wise constraints, and LLM post correction, and
use them to provide intuitions for the key fac-
tors affecting each algorithm. On OPIEC59k, it is
clear that all our LLM-based interventions mostly
lead to improved clusters.

8We ignore clusters whose output from either algorithm
has zero overlap with the corresponding ground truth clus-
ter, since these may be due to cluster misalignment during
evaluation.

327

Figure 6: We identify clusters that changed after incor-
porating pairwise constraints and display the relevant
pairwise constraints generated by the pseudo-oracle.

Keyphrase Clustering: Providing the Right
Granularity for Disambiguation. In Figure 5,
we see that LLM-generated keyphrases can dis-
ambiguate entities effectively (e.g., generating
very different keyphrases for ‘‘Conqueror’’ and
‘‘Quest’’, while the embedding-based baseline
clustering incorrectly groups these two). In the de-
graded example, we also see that these keyphrases
may overly focus on each entity’s surface form
rather than their textual context. This suggests
room for more precise modeling and prompt en-
gineering for leveraging keyphrases for complex
documents.

PCKMeans: Incorrect and Conflicting Con-
straints Can Have Too Much Impact. As
shown in Figure 6, in the improved case, the LLM
accurately identifies relationships between some
points (e.g., ‘‘Mother’’ and ‘‘Queen Mother’’)
which were not grouped together by K-Means
clustering on embeddings. In the degraded case,
we see a case where the LLM generates conflicting
constraints, leading to false positives. While the
LLM correctly predicts that ‘‘Eugenio Pacelli’’
and ‘‘Pius XII’’ must be linked and ‘‘Pius XII’’
and ‘‘Holy See’’ cannot be linked, it incorrectly
predicts a link between ‘‘Eugenio Pacelli’’ and
‘‘Holy See’’. As a result of these conflicting
constraints, the PCKMeans algorithm incorrectly
groups additional points into the cluster. Table 4
provides the accuracy for the pairwise constraints
for some datasets, including OPIEC59k.

Figure 7: We identify clusters that changed after
post-correcting cluster assignments with an LLM.

Datasets / Metrics OPIEC59k Tweet Bank77

Data Size 2,138 4,500 3,080

Total Acc. of Pair. Constraints 86.7 96.8 81.7

of LLM Reassignmnts 109 78 108
Acc. of Reassignments 55.0 89.7 41.7

Table 4: When re-ranking the top 500 points in
each dataset, the LLM rarely disagrees from the
original clustering. When it does, it is frequently
wrong.

LLM Correction: Final, Hard Constraints Can
Lead to Over-correction. In the degraded clus-
ter in Figure 7, we see that the LLM fails to
understand the granularity of this cluster, which
should focus on The Academy Awards in general
rather than a particular award presented at that cer-
emony. Despite the overall effectiveness of LLM
correction for OPIEC59k (seen in Table 3), this
example highlights a downside of this approach:
We accept an absolute decision from the LLM for
each point.

This finality impacts the effectiveness of LLM
post-correction. In Table 1 and Table 2, the method
consistently provides small gains on datasets over
all metrics—between 0.1 and 5.2 absolute points
of improvement. In Table 4, we see that when
we provide the top 500 most-uncertain cluster
assignments to the LLM to reconsider, the LLM
only reassigns points in a small minority of cases.
Though the LLM pairwise oracle is usually accu-
rate, the LLM is disproportionately inaccurate for

328

points where the original clustering already had
low confidence.

5.3 Ablation Study: Why do LLMs Excel at
Text Expansion?

In Table 1 and Table 2, we see that Keyphrase
Clustering is our strongest approach, achieving
the best results on 3 of 5 datasets (and giving
comparable performance to the next strongest
method, pseudo-oracle PCKMeans, on the other
2 datasets). This suggests that LLMs are useful
for expanding the contents of text to facilitate
clustering.

What makes LLMs useful in this capacity?
Is it the ability to specify task-specific modeling
instructions, the ability to implicitly specify a sim-
ilarity function via demonstrations, or do LLMs
contain knowledge that smaller neural encoders
lack? We answer these questions with an ablation
study. For OPIEC59k and CLINC, we consider
the Keyphrase Clustering technique but omit ei-
ther the instruction or the demonstration examples
from the prompt. For CLINC, we also compare
with K-Means clustering on features from the In-
structor model, which allows us to specify a short
instruction to a small encoder.

Instructions and Demonstrations Have Com-
plementary Gains. Empirically, we find that
providing either instructions or demonstrations
in the prompt to the LLM enables the LLM to
improve cluster quality, but that providing both
gives the most consistent positive effect. Qualita-
tively, we observe that providing instructions but
omitting demonstrations leads to a larger set of
keyphrases with less consistency, while providing
demonstrations without any instructions leads to a
more focused group of keyphrases that sometimes
fail to reflect the desired aspect (e.g., topic vs.
intent).

Instruction-finetuned Encoders Cannot Sup-
ply Enough Knowledge Why is keyphrase
clustering using GPT-3.5 in the instruction-only
(‘‘without demonstrations’’) setting better than us-
ing Instructor (an instruction-finetuned en-
coder)? The modest scaling curve suggests that
scale is not solely responsible: GPT-3.5 likely
contains similar or more parameters than GPT-3
(175B), while Su et al.’s (2022) Instructor-
base/large/XL contain 110M, 335M parame-
ters, and 1.5B parameters, respectively.

Dataset / Method
OPIEC59k CLINC

Avg F1 Acc NMI

Keyphrase Clust. 80.0 79.4±0.0 92.6±0.0
w/o Instructions 79.1 78.4±0.0 92.7±0.0
w/o Demonstrations 79.8 78.7±0.0 91.8±0.0

Instructor-base – 74.8±0.0 90.7±0.0
Instructor-large – 77.7±0.0 91.5±0.0
Instructor-XL – 77.2±0.0 91.9±0.0
(Su et al., 2022)

Instructor-XL – 70.8±0.0 88.6±0.0
(GPT-3.5 prompt)

Table 5: We compare the effect of LLM in-
tervention without demonstrations or without in-
structions. We see that GPT-3.5-based Keyphrase
Clustering outperforms instruction-finetuned en-
coders of different sizes, even when we provide
the same prompt.

Note that we used two types of prompts:
While our prompts for GPT-3.5 are very detailed,
we used brief prompts for Instructor following
their original design (e.g., ‘‘Represent utterances
for intent classification’’). In addition, we ex-
periment with giving the GPT-3.5 prompt to
Instructor-XL (the bottom row of Table 5).
We see that Instructor-XL performs more
poorly on the prompt we give to GPT-3.5. We
speculate that today’s instruction-finetuned en-
coders are insufficient to support the detailed,
task-specific prompts that facilitate few-shot
clustering.

5.4 Using an LLM as a Pseudo-oracle is
Cost-effective

We have shown that using an LLM to guide
the clustering process can improve cluster qual-
ity. However, large language models can be
expensive; using a commercial LLM API dur-
ing clustering imposes additional costs to the
clustering process.

In Table 6, we summarize the pseudo-labeling
cost of collecting LLM feedback using our
three approaches. Among our three proposed
approaches, pseudo-labeling pairwise constraints
using an LLM (where the LLM must classify
20K pairs of points) incurs the greatest LLM API
cost (using OpenAI’s gpt-3.5-turbo-0301,
which cost $1 per million tokens when we ran our
experiments). While PCKMeans and LLM Cor-
rection both query the LLM the same number

329

Method Data Size Cost in USD
PCKMeans Correction Keyphrase

OPIEC59k 2,138 $42.03 $12.73 $2.24
ReVerb45k 12,295 $33.81 $10.24 $10.66
Bank77 3,080 $10.25 $3.38 $1.23
CLINC 4,500 $9.77 $2.80 $0.95
Tweet 2,472 $11.28 $3.72 $0.99

Table 6: We compare the pseudo-labeling costs of
different LLM-guided clustering approaches. We
used OpenAI’s gpt-3.5-turbo-0301 API in
June 2023.

of times for each dataset, Keyphrase Correc-
tion’s cost scales linearly with the size of the
dataset, making keyphrase correction infeasible
for clustering very large corpora.

As such, this clustering method may require
more LLM queries to support clustering than
SCCL (which does not use an LLM at all) or
ClusterLLM (which was shown to be effective
using 1,000 queries to an LLM). More work is
required to make our methods scale cheaply to
very large-scale document collections, but we be-
lieve that the algorithmic simplicity of our method
offers a promising starting point.

Does the improved performance justify this
cost? Can we achieve better results at a compara-
ble cost if we employed a human expert to guide
the clustering process instead of an LLM? Since
pseudo-labeling pairwise constraints requires the
greatest API cost in our experiments, we take
this approach as a case study. Given a suffi-
cient amount of pseudo-oracle feedback, we see in
Figure 8 that pairwise constraint K-Means is able
to yield an improvement in Macro F1 (suggest-
ing better purity of clusters) without dramatically
reducing Pairwise or Micro F1.

Is this cost reasonable? For the $41 spent on the
OpenAI API for OPIEC59k (as shown in Table 6),
one could hire a worker for 3.7 hours of label-
ing time, assuming an $11-per-hour wage (Hara
et al., 2017). We observe that an annotator can
label roughly 3 pairs per minute. Then, $41 in
worker wages would generate <700 human labels
at the same cost as 20K GPT-3.5 labels.

Based on the feedback curve in Figure 8, we
see that GPT-3.5 is remarkably more effective
than a true oracle pairwise constraint oracle at
this price point; unless at least 2,500 pairs labeled
by a true oracle are provided, pairwise constraint
K-Means fails to deliver any value for entity

Figure 8: Collecting more pseudo-oracle feedback for
pairwise constraint K-Means on OPIEC59k improves
the Macro F1 metric without reducing other metrics.
Compared to the same algorithm with true oracle con-
straints, we see the sensitivity of this algorithm to a
noisy oracle.

canonicalization. This suggests that if the goal
is maximizing empirical performance, querying
an LLM is more cost-effective than employing a
human labeler.

6 Related Work

Semi-supervised Clustering. Clustering with
partial supervision has been extensively stud-
ied in the literature (Bae et al., 2020). These
works include various types of interaction be-
tween an expert and a clustering algorithm, such
as initializing clusters with cluster seeds (Basu
et al., 2002), specifying pairwise constraints (Basu
et al., 2004; Zhang et al., 2019), providing fea-
ture feedback (Dasgupta and Ng, 2010), splitting
or merging clusters (Awasthi et al., 2013), or
locking one cluster and refining the rest (Coden
et al., 2017). In a simulation that used split/merge,
pairwise constraints, and lock/refine interactions
for clustering a small toy dataset, Coden et al.
(2017) showed that it took between 20 and 100
human-machine interactions to get any clustering
algorithm to obtain the desired clusters. Our work
is distinct from these prior works in that we aim
to obtain improved clusters from just a handful of
feedback instances.

Entity Canonicalization. In addition to strong
results shown for short text clustering (Yin and
Wang, 2016; Casanueva et al., 2020; Larson
et al., 2019), we achieve state-of-the-art results

330

on entity canonicalization. Entity canonicalization
is typically viewed as an unsupervised clustering
problem, but many prior works have incorpo-
rated data obtained via manual annotation, such
as the outputs of a trained entity linker (Galárraga
et al., 2014) or a manually annotated entity
gazettes (Vashishth et al., 2018; Dash et al., 2020).
In our work, following Shen et al. (2022), we
avoid reliance on any such large-scale resources
and only use the extracted open knowledge graph
and text corpus (both used universally in entity
canonicalization).

Clustering with LLMs. ClusterLLM (Zhang
et al., 2023) introduced the use of LLMs for text
clustering. It uses constrastive learning of deep
encoders to improve clusters, using an LLM to
improve the learned features. After running hier-
archical clustering, they also use triplet feedback
from the LLM9 to decide the cluster granularity
from the cluster hierarchy and generate a flat set of
clusters. Unlike our proposed work, this method
requires finetuning of the encoder and explicitly
requires the use of agglomerative clustering. In
contrast, we show that some of our proposed ap-
proaches can be modularly added to any clustering
algorithm.

7 Conclusion

We find that using LLMs in simple ways can
provide consistent improvements to the quality of
clusters for a variety of text clustering tasks. We
find that LLMs are most consistently useful as
a means of enriching document representations,
and we believe that our simple proof-of-concept
should motivate more elaborate approaches for
document expansion via LLMs.

Acknowledgments

This work was supported by a fellowship from
NEC Laboratories Europe. We are grateful to
Wiem Ben Rim, Saujas Vaduguru, and Jill
Fain Lehman for their guidance. We also thank
Chenyang Zhao for providing valuable feedback
on this work.

References

Charu C. Aggarwal and ChengXiang Zhai. 2012.
A survey of text clustering algorithms. In
9‘‘is point A more similar to point B or point C?’’.

Mining Text Data. https://doi.org/10
.1007/978-1-4614-3223-4_4

David Arthur and Sergei Vassilvitskii. 2007.
k-means++: the advantages of careful seed-
ing. In ACM-SIAM Symposium on Discrete
Algorithms.

Pranjal Awasthi, Maria-Florina Balcan, and
Konstantin Voevodski. 2013. Local algorithms
for interactive clustering. Journal of Machine
Learning Research, 18:3:1–3:35.

Juhee Bae, Tove Helldin, Maria Riveiro, Sławomir
Nowaczyk, Mohamed-Rafik Bouguelia, and
Göran Falkman. 2020. Interactive clustering: A
comprehensive review. ACM Computing Sur-
veys, 53(1):1–39. https://doi.org/10.1145
/3340960

Michele Banko, Michael J. Cafarella, Stephen
Soderland, Matthew Broadhead, and Oren
Etzioni. 2007. Open information extraction
from the web. In CACM.

Sugato Basu, Arindam Banerjee, and Raymond J.
Mooney. 2002. Semi-supervised clustering
by seeding. In International Conference on
Machine Learning.

Sugato Basu, Arindam Banerjee, and Raymond
J. Mooney. 2004. Active semi-supervision
for pairwise constrained clustering. In SDM.
https://doi.org/10.1137/1.9781611972740
.31

Antoine Bordes, Nicolas Usunier, Alberto
Garcia-Durán, Jason Weston, and Oksana
Yakhnenko. 2013. Translating embeddings for
modeling multi-relational data. In Proceedings
of the 26th International Conference on Neural
Information Processing Systems - Volume 2,
NIPS’13, pages 2787–2795, Red Hook, NY,
USA. Curran Associates Inc.

Razvan C. Bunescu and Marius Pasca. 2006. Us-
ing encyclopedic knowledge for named entity
disambiguation. In Conference of the European
Chapter of the Association for Computational
Linguistics.

Rich Caruana. 2013. Clustering: Probably approx-
imately useless? In Proceedings of the 22nd
ACM International Conference on Informa-
tion & Knowledge Management, CIKM ’13,
pages 1259–1260, New York, NY, USA. Asso-
ciation for Computing Machinery. https://
doi.org/10.1145/2505515.2514692

331

https://doi.org/10.1007/978-1-4614-3223-4_4
https://doi.org/10.1007/978-1-4614-3223-4_4
https://doi.org/10.1145/3340960
https://doi.org/10.1145/3340960
https://doi.org/10.1137/1.9781611972740.31
https://doi.org/10.1137/1.9781611972740.31
https://doi.org/10.1145/2505515.2514692
https://doi.org/10.1145/2505515.2514692

Iñigo Casanueva, Tadas Temčinas, Daniela
Gerz, Matthew Henderson, and Ivan Vulić.
2020. Efficient intent detection with dual
sentence encoders. In Proceedings of the 2nd
Workshop on Natural Language Processing
for Conversational AI, pages 38–45, Online.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/2020
.nlp4convai-1.5

Anni Coden, Marina Danilevsky, Daniel F.
Gruhl, Linda Kato, and Meena Nagarajan.
2017. A method to accelerate human in
the loop clustering. In Proceedings of the
2017 SIAM International Conference on Data
Mining. https://doi.org/10.1137/1
.9781611974973.27

Sajib Dasgupta and Vincent Ng. 2010. Which
clustering do you want? Inducing your ideal
clustering with minimal feedback. Journal of
Artificial Intelligence Research, 39:581–632.
https://doi.org/10.1613/jair.3003

Sarthak Dash, Gaetano Rossiello, Nandana
Mihindukulasooriya, Sugato Bagchi, and
A. Gliozzo. 2020. Open knowledge graphs
canonicalization using variational autoen-
coders. In Conference on Empirical Methods
in Natural Language Processing. https://
doi.org/10.18653/v1/2021.emnlp-main.811

William H. E. Day and Herbert Edelsbrunner.
1984. Efficient algorithms for agglomerative
hierarchical clustering methods. Journal of
Classification, 1:7–24. https://doi.org
/10.1007/BF01890115

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019
Conference of the North American Chapter
of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Anthony Fader, Stephen Soderland, and Oren
Etzioni. 2011. Identifying relations for open
information extraction. In Conference on
Empirical Methods in Natural Language
Processing.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and
Pengfei Liu. 2023. GPTscore: Evaluate as you
desire. ArXiv, abs/2302.04166.

Luis Galárraga, Geremy Heitz, Kevin P. Murphy,
and Fabian M. Suchanek. 2014. Canonical-
izing open knowledge bases. In Proceedings
of the 23rd ACM International Conference
on Conference on Information and Knowl-
edge Management. https://doi.org/10
.1145/2661829.2662073

Kiril Gashteovski, Rainer Gemulla, and Luciano
Del Corro. 2017. Minie: Minimizing facts
in open information extraction. In Con-
ference on Empirical Methods in Natural
Language Processing. https://doi.org
/10.18653/v1/D17-1278

Kiril Gashteovski, Sebastian Wanner, Sven
Hertling, Samuel Broscheit, and Rainer
Gemulla. 2019. Opiec: An open informa-
tion extraction corpus. In Proceedings of the
Conference on Automatic Knowledge Base
Construction (AKBC).

Kotaro Hara, Abigail Adams, Kristy Milland,
Saiph Savage, Chris Callison-Burch, and
Jeffrey P. Bigham. 2017. A data-driven analysis
of workers’ earnings on Amazon Mechani-
cal Turk. In Proceedings of the 2018 CHI
Conference on Human Factors in Comput-
ing Systems.https://doi.org/10.1145
/3173574.3174023

John J. Horton. 2023. Large language models as
simulated economic agents: What can we learn
from homo silicus? Working Paper 31122, Na-
tional Bureau of Economic Research.https://
doi.org/10.3386/w31122

Harold W. Kuhn. 1955. The Hungarian method
for the assignment problem. Naval Research
Logistics (NRL), 52.

Stefan Larson, Anish Mahendran, Joseph J.
Peper, Christopher Clarke, Andrew Lee, Parker
Hill, Jonathan K. Kummerfeld, Kevin Leach,
Michael A. Laurenzano, Lingjia Tang, and
Jason Mars. 2019. An evaluation dataset for
intent classification and out-of-scope predic-
tion. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language
Processing and the 9th International Joint
Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 1311–1316,

332

https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.1137/1.9781611974973.27
https://doi.org/10.1137/1.9781611974973.27
https://doi.org/10.1613/jair.3003
https://doi.org/10.18653/v1/2021.emnlp-main.811
https://doi.org/10.18653/v1/2021.emnlp-main.811
https://doi.org/10.1007/BF01890115
https://doi.org/10.1007/BF01890115
https://doi.org/10.1145/2661829.2662073
https://doi.org/10.1145/2661829.2662073
https://doi.org/10.18653/v1/D17-1278
https://doi.org/10.18653/v1/D17-1278
https://doi.org/10.1145/3173574.3174023
https://doi.org/10.1145/3173574.3174023
https://doi.org/10.3386/w31122
https://doi.org/10.3386/w31122

Hong Kong, China. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/D19-1131

S. Lloyd. 1982. Least squares quantization
in pcm. IEEE Transactions on Information
Theory, 28(2):129–137. https://doi.org
/10.1109/TIT.1982.1056489

David N. Milne and Ian H. Witten. 2008.
Learning to link with wikipedia. In Interna-
tional Conference on Information and Knowl-
edge Management. https://doi.org/10
.1145/1458082.1458150

Joon Sung Park, Joseph C. O’Brien, Carrie J.
Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. 2023. Generative agents:
Interactive simulacra of human behavior. arXiv
preprint arXiv:2304.03442.

Maarten De Raedt, Fréderic Godin, Thomas
Demeester, and Chris Develder. 2023. Idas: In-
tent discovery with abstractive summarization.
ArXiv, abs/2305.19783. https://doi.org
/10.18653/v1/2023.nlp4convai-1.7

Nils Reimers and Iryna Gurevych. 2019.
Sentence-bert: Sentence embeddings using
siamese bert-networks. In Proceedings of the
2019 Conference on Empirical Methods in
Natural Language Processing. Association for
Computational Linguistics. https://doi
.org/10.18653/v1/D19-1410

Victor Sanh, Lysandre Debut, Julien Chaumond,
and Thomas Wolf. 2019. Distilbert, a distilled
version of bert: Smaller, faster, cheaper and
lighter. ArXiv, abs/1910.01108.

Wei Shen, Yang Yang, and Yinan Liu. 2022.
Multi-view clustering for open knowledge
base canonicalization. In Proceedings of the
28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, KDD ’22,
pages 1578–1588, New York, NY, USA. Asso-
ciation for Computing Machinery. https://
doi.org/10.1145/3534678.3539449

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong
Wang, Yushi Hu, Mari Ostendorf, Wen-tau
Yih, Noah A. Smith, Luke Zettlemoyer,
and Tao Yu. 2022. One embedder, any
task: Instruction-finetuned text embeddings. In
arXiv.

Shikhar Vashishth, Prince Jain, and Partha
Talukdar. 2018. Cesi: Canonicalizing open
knowledge bases using embeddings and side
information. In Proceedings of the 2018 World
Wide Web Conference, pages 1317–1327.
https://doi.org/10.1145/3178876
.3186030

Kiri L. Wagstaff and Claire Cardie. 2000.
Clustering with instance-level constraints. In
Proceedings of the Seventeenth International
Conference on Machine Learning.

Jianhua Yin and Jianyong Wang. 2016. A
model-based approach for text clustering with
outlier detection. 2016 IEEE 32nd Inter-
national Conference on Data Engineering
(ICDE), pages 625–636. https://doi.org
/10.1109/ICDE.2016.7498276

Dejiao Zhang, Feng Nan, Xiaokai Wei,
Shang-Wen Li, Henghui Zhu, Kathleen
McKeown, Ramesh Nallapati, Andrew O.
Arnold, and Bing Xiang. 2021. Supporting clus-
tering with contrastive learning. In Proceedings
of the 2021 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
pages 5419–5430, Online. Association for
Computational Linguistics. https://doi.org
/10.18653/v1/2021.naacl-main.427

Hongjing Zhang, Sugato Basu, and Ian Davidson.
2019. A framework for deep constrained
clustering - algorithms and advances. In
ECML/PKDD. https://doi.org/10.1007
/978-3-030-46150-8 4

Yuwei Zhang, Zihan Wang, and Jingbo Shang.
2023. Clusterllm: Large language models as a
guide for text clustering. ArXiv, abs/2305
.14871. https://doi.org/10.18653
/v1/2023.emnlp-main.858

Zhihan Zhou, Dejiao Zhang, Wei Xiao, Nicholas
Dingwall, Xiaofei Ma, Andrew Arnold, and
Bing Xiang. 2022. Learning dialogue rep-
resentations from consecutive utterances. In
Proceedings of the 2022 Conference of the
North American Chapter of the Association
for Computational Linguistics: Human Lan-
guage Technologies, pages 754–768, Seattle,
United States. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/2022.naacl-main.55

333

https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1145/1458082.1458150
https://doi.org/10.1145/1458082.1458150
https://doi.org/10.18653/v1/2023.nlp4convai-1.7
https://doi.org/10.18653/v1/2023.nlp4convai-1.7
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1145/3534678.3539449
https://doi.org/10.1145/3534678.3539449
https://doi.org/10.1145/3178876.3186030
https://doi.org/10.1145/3178876.3186030
https://doi.org/10.1109/ICDE.2016.7498276
https://doi.org/10.1109/ICDE.2016.7498276
https://doi.org/10.18653/v1/2021.naacl-main.427
https://doi.org/10.18653/v1/2021.naacl-main.427
https://doi.org/10.1007/978-3-030-46150-8_4
https://doi.org/10.1007/978-3-030-46150-8_4
https://doi.org/10.18653/v1/2023.emnlp-main.858
https://doi.org/10.18653/v1/2023.emnlp-main.858
https://doi.org/10.18653/v1/2022.naacl-main.55
https://doi.org/10.18653/v1/2022.naacl-main.55

	Introduction
	Methods to Incorporate LLMs
	Clustering via LLM Keyphrase Expansion
	Pseudo-Oracle Pairwise Constraint Clustering
	Using an LLM to Correct a Clustering

	Tasks
	Entity Canonicalization
	Text Clustering

	Baselines
	K-Means on Embeddings
	Specialized Pretrained Encoders
	Clustering via Contrastive Learning

	Results
	Summary of Results
	Illustrative Examples & Key Factors
	Ablation Study: Why do LLMs Excel at Text Expansion?
	Using an LLM as a Pseudo-oracle is Cost-effective

	Related Work
	Conclusion

