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Abstract

We conduct a large-scale fine-grained compar-
ative analysis of machine translations (MTs)
against human translations (HTs) through the
lens of morphosyntactic divergence. Across
three language pairs and two types of di-
vergence defined as the structural difference
between the source and the target, MT is
consistently more conservative than HT, with
less morphosyntactic diversity, more conver-
gent patterns, and more one-to-one alignments.
Through analysis on different decoding algo-
rithms, we attribute this discrepancy to the
use of beam search that biases MT towards
more convergent patterns. This bias is most
amplified when the convergent pattern ap-
pears around 50% of the time in training data.
Lastly, we show that for a majority of mor-
phosyntactic divergences, their presence in HT
is correlated with decreased MT performance,
presenting a greater challenge for MT systems.

1 Introduction

Translation divergences occur when the transla-
tions differ structurally from the source sentences,
typically as a result of either inherent crosslingual
differences or idiosyncratic preferences of trans-
lators. These divergences happen naturally in the
translation process and can be readily found in hu-
man translations (HTs), including those used for
training machine translation (MT) systems (see
the table in Figure 1 for some examples). Their
existence in HT has long been regarded as a key
challenge for MT (Dorr, 1994) and more recent
empirical studies have demonstrated the abun-
dance of translation divergences in HT (Deng
and Xue, 2017; Nikolaev et al., 2020).

In contrast to HT, MT outputs tend to be
less diverse and more literal (i.e., absence of
translation divergence), exhibiting the features of
translationese (Gellerstam, 1986). This qualita-
tive difference between HT and MT has inspired
a rich body of work attempting to narrow the gap,

such as automatic detection of machine trans-
lated texts in the training data (Kurokawa et al.,
2009; Lembersky et al., 2012; Aharoni et al.,
2014; Riley et al., 2020; Freitag et al., 2022),
training MT systems on more diverse translations
(Khayrallah et al., 2020; Bao et al., 2023), and
carefully reordering the examples to reduce the
degree of divergence between the source and the
target (Wang et al., 2007; Zhang and Zong, 2016;
Zhou et al., 2019). The challenges that translation
divergences present do not just concern training
MT systems, but also their evaluation (Koppel and
Ordan 2011; Freitag et al., 2020).

Nonetheless, even as we gain deepened under-
standing of how to address these challenges, it
remains unclear how quantitatively different MT
and HT are in terms of divergences.1 Control
verbs,2 for instance, provide a great case study
to showcase this difference. There is much un-
certainty when translating them from English to
French, and human translators employ a wide va-
riety of constructions including many divergent
patterns (Figure 1). In comparison, MT is much
more likely to preserve the source structure, with
the convergent pattern constituting about 20%
more of all translations of control verbs. This dif-
ference exemplifies MT’s undesirable tendency to
produce translationese that is too literal and lacks
structural diversity (Freitag et al., 2019; Bizzoni
et al., 2020).

In this work, we seek to systematically inves-
tigate this difference by conducting a large-scale
fine-grained comparative analysis on the distribu-
tion of translation divergences for HT and MT, all

1We use the term MT to mean the version of MT tested
in this project’s experiments: bilingual encoder-decoder
Transformer-base networks with beam search decoding (see
Models in Section 3).

2https://en.wikipedia.org/wiki/Control
(linguistics). They are coded as xcomp in Universal

Dependencies (see https://universaldependencies.org
/u/dep/all.html#xcomp-open-clausal-complement).
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Figure 1: Top table: Examples of divergences in HT for
En→Fr WMT15 training data (Bojar et al., 2015), with
relevant fragments of the source/target shown in the
first/second rows. The English control constructions
are bolded including both the finite root verb and the
controlled word, while the French phrases of interest
are underlined. Bottom figure: Percentages of target
patterns for HT and MT, with obligatory control finite
verbs as the source pattern. o2o:conv: one-to-one
convergent patterns where the target phrase uses a
similar control construction to the source; o2o:div:
one-to-one divergent patterns where the target differs
structurally from the source; null: no target word is
aligned; others: other less frequent patterns (e.g.,
one-to-many alignments). The percentages of all four
categories sum up to 100%.

through the lens of morphosyntax. More specif-
ically, we aim to answer the following research
questions: 1) How are MT and HT quantitatively
different in terms of morphosyntactic divergence?
2) How do we explain or understand this differ-
ence? 3) How do translation divergences in HT
affect MT quality? In other words, do MT systems
have more difficulty translating source sentences
that exhibit divergences in HT?

Through extensive analyses based on three lan-
guage pairs and two types of morphosyntactic
divergence using the annotational framework of
Universal Dependencies (Nivre et al., 2016), we
make the following empirical observations:

1. MT is more conservative than HT, with less
morphosyntactic diversity, more convergent
patterns, and more one-to-one alignments.

2. MT is morphosyntactically less similar to HT
for less frequent source patterns.

3. The distributional difference can be largely
attributed to the use of beam search, which is
biased towards convergent patterns. This bias
is most amplified when the convergent target
patterns appear around 50% of the time out
of all translations of the same source pattern
in the training data.

4. A majority of the most frequent divergent
patterns are correlated with decreased MT
performance. This correlation cannot be fully
explained by the lower frequencies of the
relevant divergences.

To the best of our knowledge, this is the first
work to present the comparative perspective of
HT vs MT in such fine granularity covering thou-
sands of morphosyntactic constructions. In the
remaining sections, we first briefly describe re-
lated work in Section 2. The experimental setup is
described in detail in Section 3. We demonstrate
the quantitative difference between MT and HT in
Section 4, and seek to understand this discrepancy
in Section 5. Lastly, we explore the correlation be-
tween the presence of divergences in HT with MT
performance in Section 6 and make conclusions
in Section 7.

2 Related Work

Translation Divergence Systematic and theo-
retical treatment of translation divergences started
in the early 1990s, focusing on European lan-
guages (Dorr, 1992, 1993, 1994). Later work has
expanded into more languages, and focused on
the automatic detection of divergences (Gupta and
Chatterjee, 2001, 2003; Sinha et al., 2005; Mishra
and Mishra, 2009; Saboor and Khan, 2010) or
their empirical distributions in human translations
(Wong et al., 2017; Deng and Xue, 2017; Wein and
Schneider, 2021). Relatedly, Carpuat et al. (2017),
Vyas et al. (2018), and Briakou and Carpuat (2020)
focused on identifying semantic divergences that
manifest in translations not entirely semantically
equivalent to the original sources.

The closest work to ours is from Nikolaev et al.
(2020), who proposed to investigate fine-grained
crosslingual morphosyntactic divergence based on
Universal Dependencies. They augmented a sub-
set of the Parallel Universal Dependencies (PUD)
corpus (Zeman et al., 2017) with human-annotated
word alignments for five language pairs and fo-
cused exclusively on content words. While our
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work shares a similar conceptional and method-
ological foundation to theirs, our goal is to conduct
a comparative analysis between HT and MT. In
addition, we rely on a dependency parser and
a word aligner (see Section 3 for more details)
to reach a sufficiently large scale to enable the
investigation of more fine-grained divergences.

Diverse Machine Translation MT systems tend
to produce less diverse outputs in general (Gimpel
et al., 2013; Ott et al., 2018), which is particularly
harmful for back translation (Edunov et al., 2018;
Soto et al., 2020; Burchell et al., 2022). To address
this issue, various techniques have been proposed
in the literature, including modified decoding al-
gorithms (Li et al., 2016; Sun et al., 2020; Li et al.,
2021), mixtures of experts (Shen et al., 2019),
Bayesian models (Wu et al., 2020), additional
codes (syntax or latent) (Shu et al., 2019; Lachaux
et al., 2020), and training with simulated multi-
reference corpora (Lin et al., 2022). In all afore-
mentioned works, the emphasis is on the lack of
diversity in MT outputs rather than comparing
them systematically against HT. Notable excep-
tions include Roberts et al. (2020), who investi-
gated the distributional differences between MT
and HT in terms of n-grams, sentence length,
punctuation, and copy rates. Marchisio et al.
(2022) compared translations from supervised MT
and unsupervised MT and noted their systematic
style differences based on similarity and mono-
tonicity in their POS sequences. In contrast, our
work goes beyond surface features and focuses on
fine-grained morphosyntactic divergences.

Algorithmic Bias Another closely related line
of work studies algorithmic biases of current NLP
systems, with particular emphasis on gender and
racial biases (Bolukbasi et al., 2016; Caliskan
et al., 2017; Zhao et al., 2017; Garg et al., 2018).
Specifically for MT, researchers have focused
on lexical diversity by comparing HT against
post-editese (Toral, 2019) or MT outputs di-
rectly (Vanmassenhove et al., 2019); Bizzoni et al.
(2020) have compared HT, MT, and simultaneous
interpreting in terms of translationese using POS
perplexity and dependency length. Most related to
our work, Vanmassenhove et al. (2021) have con-
ducted an extensive comparison between HT and
MT based on a suite of lexical and morphological
diversity metrics. While our study reaches a sim-
ilar conclusion that MT is less diverse than HT,

Figure 2: An illustration of the two types of
morphosyntactic divergence. See Section 3 for details.

we explore morphosyntactic patterns on a more
fine-grained level, and also reveal the bias of
MT (and more specifically beam search) towards
convergent structures.

3 Experimental Setup

Types of Morphosyntactic Divergence In this
study, we experiment with two types of transla-
tion patterns based on the annotational scheme of
Universal Dependencies:

(A) Word-based: POS tags for the aligned word
pair. We additionally include their parent and
child syntactic dependencies for more granu-
larity. Order of the children dependencies is
ignored.

(B) Arc-based: The source dependency arc, and
the target path between the aligned words of
the arc’s head and tail. Directionality of the
target dependencies is ignored. We addition-
ally include the POS tags of both the head
and the tail for more granularity.

These types are largely based on the proposal
of Nikolaev et al. (2020), with modifications to
accommodate more granularity. With either type,
the translation pattern is a convergence if the
source and the target sides have the same struc-
ture (word-based or arc-based), and otherwise a
divergence. Notationally, we use tildes to con-
nect the various parts of the pattern in a fixed
order. For instance, for the control verb ‘‘cau-
tioned’’ in Figure 2, its word-based divergence
has root˜VERB˜nsubj+xcomp on the source
side, where VERB corresponds to its POS tag,
root its parent dependency, and nsubj and
xcomp its two child dependencies. Similarly, we
have root˜VERB˜nsubj+obl+xcomp on the
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Language pair Source Target

En→De 17 055 15 040
En→Zh 14 816 19 471
En→Fr 18 321 12 212

Table 1: Number of distinct source or target pat-
terns found in the analysis set (1M sentences from
WMT).

target side. With regard to an arc-based diver-
gence, for the source arc between the words
‘‘cautioned’’ and ‘‘readers’’, we denote it as
VERB˜nsubj˜NOUN, where nsubj is the depen-
dency relation of the arc, and VERB and NOUN the
POS tags of the head and the tail, respectively.
Similarly, we denote the aligned target pattern as
VERB˜obl˜NOUN.

Data We conduct experiments for three lan-
guage pairs using WMT datasets (Bojar et al.,
2015; Barrault et al., 2019): En→Zh (WMT19),
En→Fr (WMT15), and En→De (WMT19). All
training datasets are lightly filtered based on
length, length ratio, and language ID, and dedu-
plicated. For each language pair, one million
sentences are held out from the training split
to form an analysis subset. All analyses in our
study are based on this subset to eliminate poten-
tial confounding effects from domain mismatch.
Table 1 shows the number of distinct source or
target patterns found in the analysis set for each
language pair.

Models We train a bilingual Transformer base
model (Vaswani et al., 2017) for each language
pair using the T5X framework (Roberts et al.,
2022). All models are trained with Adafactor
optimizer (Shazeer and Stern, 2018) for 2M steps
with 0.1 dropout rate, 1024 batch size, and 0.1
label smoothing. We use an inverse square root
learning rate schedule with a base rate of 2.0. As
summarized in Table 2 part (i), all models achieve
similar BLEU scores3 on the development set as
reported in the literature with a comparable setup.

Annotations We rely on two automatic tools
to conduct a large-scale analysis: a dependency
parser and a word aligner. More specifically, the

3All reported BLEU scores for our models are obtained
through SacreBLEU (Post, 2018).

(i) TRANSLATION

Target Dev dataset BLEU Reported

Fr newstest2014 39.9 38.1†

De newstest2018 46.3 46.4‡

Zh newstest2018 34.4 34.8††

(ii) DEPENDENCY PARSING

Language Dataset UPOS UAS LAS

En EWT 95.56 89.55 96.67
Fr GSD 97.77 93.20 90.90
De GSD 94.80 87.87 83.25
Zh GSD 94.58 86.41 80.70

(iii) WORD ALIGNMENT

Target Precision Recall F1

Fr 85.6 81.7 83.6
Zh 85.5 81.9 83.7
† Vaswani et al. (2017)
‡ Ng et al. (2019)
††Bawden et al. (2019)

Table 2: Performance for (i) MT (ii) dependency pars-
ing and (iii) word alignment. No human annotations
for En→De are provided by Nikolaev et al. (2020).

dependency parser is an implementation of Dozat
and Manning, (2017) based on mBERT (Devlin
et al., 2019). The neural word aligner is based
on AMBER (Hu et al., 2021) and fine-tuned on
human-annotated alignments. We follow Nikolaev
et al. (2020) to keep the content words4 and their
dependencies and alignments only, and focus on
one-to-one alignments unless otherwise noted.

As reported in Table 2 parts (ii) and (iii), we val-
idate that both tools have high accuracy on public
datasets: UD test sets for parsing and human-
annotated PUD datasets (Nikolaev et al., 2020)
for word alignment. The automatic annotations
are available to the public here: https://github
.com/google-research-datasets/Crosslingual
-Morphosyntactic-Divergence-dataset.

4Content words are words with semantic content, used in
various ‘‘contentful’’ positions such as subjects, objects, and
adjectival modifiers. We identify content words by matching
their parent dependencies against a manually selected set, as
defined in footnote 10 of the original paper (Nikolaev et al.,
2020). This criterion kept around 40%-50% of all the tokens
for all three language pairs in our experiments. Please see
Appendix B for a more detailed analysis.
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Figure 3: Plot of convergence rate vs entropy for the
most frequent word-based source patterns in En→Fr
human translations, three of which are highlighted in
black: (1) amod˜ADJ˜leaf (high convergence rate,
low entropy): the most common cases of adjectival
modifiers; (2) acl˜VERB˜nsubj (low convergence
rate, high entropy): object relative clauses without a
relative pronoun, or subject relative clauses. The high
entropy reflects a major difference between English and
French, where the relative pronoun que is obligatory
in French but not in English. (3) amod˜PROPN˜leaf
(low convergence rate, low entropy): adjectives as part
of a proper nouns. Adjectives in official institutions and
titles are typically capitalized and annotated as PROPN
in English (e.g., Secretary General) but lowercased and
annotated as ADJ in French (e.g., secrétaire général).

4 Comparative Analysis of MT vs HT

We proceed to conduct a comparative analysis of
MT vs HT based on the fine-grained morphosyn-
tactic patterns defined in the previous section.
For any given source pattern p according to the
word-based or arc-based definition as detailed in
the previous section, we study the distribution
of its aligned target patterns, i.e., PrHT(· | p)
and PrMT(· | p), along two major dimensions:
diversity/uncertainty as measured by entropy of
the target pattern, and convergence/divergence
rate. Figure 3 shows that there is considerable
variance in how the most frequent source patterns
in HT are distributed along these two axes, and
that each dimension captures a different property
of the distribution.

Through analyses on both the aggregate level
and the individual pattern level, we conclude that
MT is more conservative than HT, with less mor-
phosyntactic diversity, more convergent patterns,
and more one-to-one alignments. We also observe
that MT tends to be less similar to HT for the
less frequent source patterns. The analyses in this
section are based on the held-out subset consisting

Target Word-based Arc-based

HT MT Δ% HT MT Δ%
(i) DIVERSITY

Fr 2.23 1.84 −17.6 2.24 1.75 −22.2
De 2.23 1.90 −15.0 2.38 1.96 −17.8
Zh 2.95 2.77 −5.9 3.79 3.46 −8.6

(ii) CONVERGENCE RATE

Fr 37.9 44.7 18.1 46.3 53.2 15.0
De 45.8 51.8 13.7 51.8 57.8 11.7
Zh 21.2 22.6 6.9 23.4 25.2 7.4

Table 3: Aggregate diversity scores and conver-
gence rates. The Δ% columns show the relative
change in percentage from HT to MT.

of one million sentence pairs. We refer readers to
Appendix A for similar results on a subset that is
further filtered using LaBSE crosslingual embed-
dings (Feng et al., 2022) with a remarkably similar
trend, which we include to show that it does not
change our conclusions when we test on data
that has been filtered to improve its cross-lingual
equivalence.

4.1 MT is Less Morphosyntactically Diverse
Than HT

Preliminaries We define diversity score as the
conditional entropy of target patterns given source
patterns, which reflects the aggregate level of
uncertainty when translating a morphosyntactic
pattern. More formally, let P and Q denote the
categorical random variables for source patterns
and their aligned target patterns, respectively. The
aggregate diversity score is defined as

H(Q | P ) =
∑

p

Pr(p) ·H(Q | P = p), (1)

where p is any specific source pattern that occurs
in the corpus.

In addition, for any given source pattern p, we
define a source pattern-specific diversity score as
the entropy of the target patterns aligned to that
source pattern p. This score corresponds to the
term H(Q | P = p) in Equation (1).

Aggregate Finding As summarized in Table 3
part (i), MT is less morphosyntactically diverse
than HT in aggregate, across three language pairs
and two types of divergence. The relative re-
duction in diversity for MT compared to HT
ranges from 5.9% for En→Zh (2.77 vs 2.95 with

359



Figure 4: Stacked histogram of the relative differences
in source pattern-specific diversity score.

word-based patterns) to 22.2% for En→Fr (1.75
vs 2.24 with arc-based patterns). Interestingly,
En→Zh has noticeably higher diversity scores
than En→Fr and En→De but lower overall reduc-
tion. This may be attributed to the larger linguistic
difference between Chinese and English.5

Finding by Source Pattern On the level of
individual source patterns, we observe that the re-
duction of diversity among their aligned target
patterns is across-the-board but unevenly dis-
tributed. Figure 4 plots a stacked histogram of
the relative differences in diversity score (MT vs
HT) for the most frequent source patterns with
at least 1000 occurrences, and it shows that the
vast majority of them see a drop of diversity (i.e.,
negative difference). This reduction varies from
pattern to pattern, ranging from 0% to 60%.

4.2 MT is More Convergent Than HT

Preliminaries We tally divergences and con-
vergences according to the two types detailed in
Section 3. We then define the convergence or di-
vergence rate as the percentage of convergent or
divergent patterns out of all translation patterns.
Similar to diversity, we can compute convergence/
divergence rates for both the entire corpus in ag-
gregate and individual source patterns. For the
latter case, we tally all the aligned target patterns
for a specific source pattern and calculate the rates
accordingly.

5Note that, however, our setup is not entirely comparable
across language pairs since the data is not multi-way parallel.

Figure 5: Stacked histogram of the absolute differences
in source pattern-specific convergence rate.

Aggregate Finding As summarized in Table 3
part (ii), we observe a consistent increase of con-
vergence rate for all three language pairs and
two types of divergence. This increase is most
pronounced for En→Fr and En→De, whereas
En→Zh has a less noticeable although still con-
sistent increase and starts with a much lower
convergence rate for HT: the highest rate for
En→Zh is 23.4%, whereas En→De can reach
57.8%.

Finding by Source Pattern On a more gran-
ular level, we again notice a consistent increase
of convergent patterns for MT among the top
source patterns (Figure 5). For the vast major-
ity of top source patterns, MT has produced
more convergent translations than HT, and this
discrepancy ranges from a negligible amount
(˜0%) for most patterns to more than 20%.
This discrepancy is distributed differently for the
three languages: En→Fr and En→De have seen
more patterns with increased convergence rate
while En→Zh has most patterns barely changed
and clustered around 0%. As we later show in
Figure 9, this trend is unsurprising given the much
lower convergence rates for En→Zh in general.

4.3 MT Looks Less Like HT For Less
Frequent Patterns

Preliminaries Both diversity score and conver-
gence rate are properties of translations produced
by one system, either MT or HT. To directly
measure the distributional difference between
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Figure 6: Wasserstein distance with a unit cost matrix
between PrMT(· | p) and PrHT(· | p) for any given
source pattern p. Patterns are binned by frequency on
a log scale, and both the means (lines) and the 95%
confidence intervals (shaded areas) are shown. The
plot shows a negative correlation between WD and the
source pattern frequency.

MT and HT, we resort to Wasserstein distance
(WD) between the two conditional distributions6

PrMT(· | p) and PrHT(· | p) using a unit cost
matrix.7 This metric can be intuitively interpreted
as the minimal amount of probability mass that
has to be moved from PrMT(· | p) to match
PrHT(· | p), with an upper bound of 1 (i.e., sum of
all probability mass).8

Finding As Figure 6 shows, there is a negative
correlation between WD and the source pattern
frequency: MT matches HT more closely for the
more frequent source patterns while having dif-
ficulty in reproducing the HT distribution for the
less frequent ones. This trend persists for all tested
settings, and points to a potential weakness of MT
systems when it comes to learning the distributions
of the less common structures.

4.4 Beyond One-to-one Alignments

Preliminaries One-to-one alignments consti-
tute a majority of all detected alignments, but they

6Recall that we treat both source patterns and target
patterns as categorical random variables where every unique
source or target pattern is treated as a distinct value that the
random variables can take.

7In which diagonal/off-diagonal entries are 0/1.
8We note that other metrics such as KL-divergence can

also be used to measure distributional difference, but we
eventually chose WD for its interpretability.

Figure 7: Distribution for all types of alignments.
Percentages are defined relative to the total number of
source content words. o2o: one-to-one; src2null:
deletions; null2tgt: insertions; other: other types
such as one-to-many.

fail to account for translation patterns involving
deletions and insertions. To investigate the quan-
titative differences between HT and MT on those
special patterns, we conduct additional analyses
on the distribution of all categories of alignments
based on the word-based definition. Besides dele-
tions (src2null) and insertions (null2tgt),
the remaining alignments are collapsed into the
other category (e.g., one-to-many mapping).

Finding Figure 7 summarizes the distribution
of all alignment categories,9 which demonstrates
a significant and consistent difference between
HT and MT. More specifically, MT produces
fewer deletions (green), fewer insertions (red),
and more one-to-one translations (blue). En→Fr
again exhibits the biggest discrepancy with 9.6%
less deletions (10.8% vs 20.4%) and 14.8% less
insertions (13.0% vs 26.8%), both around 50%
relative reduction. This trend contributes to the
overall conservative nature of MT predictions,
favoring one-to-one alignments at the expense of
the other (more uncertain) categories.

9The percentages are computed in terms of source words.
By definition, src2null, o2o, and other add up to
100%. Since null2tgt alignments do not have aligned
source words, their percentages indicate how many target
content words are inserted for each content word on the
source side.
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Figure 8: Convergence rates (y-axis) and diversity
scores (x-axis) on the aggregate level for translations
through different sampling methods and HT. Sampling
methods consistently obtain higher diversity score and
lower convergence rate than beam search.

5 Understanding the Discrepancy

In this section, we seek to understand the source
of discrepancy between HT and MT as demon-
strated in the previous section. By investigating
different decoding algorithms, we attribute this
discrepancy to the use of beam search, echoing
the thesis laid out by previous work (Edunov et al.,
2018; Eikema and Aziz, 2020). More specifically
in our experiments, we show that beam search is
biased towards less diverse and more convergent
translations, even when the learned model distri-
bution actually resembles HT. This bias is most
prominent when the convergent patterns appear
around 50% of the time in training data. More-
over, frequencies of convergent patterns in MT
are increased even when they are uncommon in
HT, suggesting perhaps a more inherent structural
bias in current MT architectures.

Decoding Algorithms Besides beam search, we
additionally obtain translations through two sam-
pling methods. More specifically, to make fair
comparison with single-reference HT, we sample
one translation using ancestral sampling or nu-
cleus sampling with p = 0.95 (Holtzman et al.,
2020) for each source sentence.

Beam Search is Biased Against Diversity and
Divergence As Figure 8 illustrates, for all three
language pairs and two types of divergence,

Figure 9: Plot of difference in convergence rate (beam
search vs HT) against convergence rate of HT. The
plot is similar when comparing beam search against
ancestral sampling.

translations obtained through beam search are
significantly less diverse and more convergent
compared to either sampling method. Indeed,
ancestral sampling consistently produces higher
diversity scores and lower convergence rates
than even HT.10 Since ancestral sampling is an
unbiased estimator of the model distribution,
this suggests that on the aggregate distribu-
tion level, the model learns to be as least as
morphosyntactically diverse and divergent as HT.

A further breakdown of most frequent11 indi-
vidual source patterns reveals that beam search’s
bias towards convergent translations is a func-
tion of the relative frequencies of the convergent
patterns. As Figure 9 demonstrates, the increase
of convergence rate for beam search compared
to ancestral sampling seems to be quadratically
correlated with the convergence rate for ancestral
sampling: Peak difference is reached at around

10We hypothesize that the increased diversity score and
the higher divergence rate for ancestral sampling compared
to HT are attributable to the use of label smoothing during
training. Roberts et al. (2020) have also demonstrated the
effect of label smoothing on various diversity diagnostics.

11With at least 1000 occurrences.
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40%–50%. This suggests that beam search favors
the convergent pattern more when the pattern ap-
pears around 50% of the time in training data. This
could be because the model has seen the pattern
enough to assign it substantial probability mass,
but there is still enough uncertainty that humans
will frequently choose other patterns.

We additionally note that convergence rate in-
creases for the overwhelming majority of the most
frequent source patterns even when the conver-
gence patterns are uncommon in HT. This strongly
suggests an inherent bias of beam search towards
convergent patterns,12 and that this bias is distinct
from the typical bias amplification due to data ex-
posure, e.g., ‘‘cooking’’ is more likely to co-occur
with ‘‘women’’ than ‘‘men’’ in the training data
(Zhao et al., 2017). We suspect that this bias
towards convergence is due to the architectural
design of MT systems, but we leave the subject
matter for future work.

6 Divergence and MT Quality

In our final analysis, we investigate how the
presence of morphosyntactic divergence in HT
might affect MT quality. In contrast to the pre-
vious sections analyzing conditional distributions
given a source pattern, we focus instead on in-
dividual divergences/convergences. The potential
connection between divergence and MT qual-
ity is motivated by second-language acquisition
research that describes language inference from
their first languages (i.e., negative transfer) as
one source of difficulty for learners (Gass et al.,
2020), which can happen when the two languages
diverge structurally. Do MT systems have similar
problems with divergences?

Preliminaries To answer this question, we con-
duct an analysis on the presence (or absence) of
a word-based morphosyntactic divergence in HT
and the corresponding MT quality as measured
by BLEU (Papineni et al., 2002) and BLEURT
(Sellam et al., 2020). The basic idea is to con-
struct two contrastive groups of source sentences
(called the experiment group and the control
group) and compare the MT performance on each
group. The HT references of the experiment group
contain a given divergent pattern, corresponding
to sentences that are perhaps more challenging

12We do not observe a similar trend when comparing
ancestral sampling against HT.

Figure 10: Kernel density estimation for the difference
in BLEU or BLEURT scores between the experiment
group and the control group. Negative values indicate
that the experiment group has lower score than the
control group.

to translate, whereas those of the control group
do not.

More specifically, for a given divergence with
source pattern p and target pattern q (p �= q),
its control group consists of source sentences for
which HT translates every source p into target
p (i.e., a convergent pattern), and its experiment
group consists of source sentences for which HT
translates every source p into p except for one that
is translated into q. For an simplified example,
if we are interested the divergence that translates
nouns into verbs, the corresponding control group
contains source sentences for which HT translates
every noun into a noun, whereas its experiment
group contains source sentences for which exactly
one noun is translated into a verb and the rest of
nouns into nouns.

We then collect the MT outputs for both
groups and compute the differences in BLEU and
BLEURT. This procedure is repeated for every
divergence pattern for which both groups have at
least 100 sentences.

Findings We treat each difference in BLEU or
BLEURT as one data point and plot their esti-
mated probability density function. As illustrated
in Figure 10, divergences are more often associ-
ated with significantly lower BLEU scores (i.e.,
negative differences), with a fairly large amount of
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Target Metric Pearson Kendall τ

Zh BLEURT −0.072 0.32 0.030 0.54

BLEU −0.080 0.27 −0.026 0.59

Fr BLEURT 0.319 1.4e-16 0.240 1.0e-19

BLEU 0.206 1.6e-7 0.161 1.2e-9

De BLEURT 0.289 1.4e-11 0.253 3.6e-18

BLEU 0.159 2.5e-4 0.171 4.4e-9

Table 4: Correlation between the difference in
BLEURT score and ratio of frequencies (i.e.,
the number of training examples with diver-
gences over that with convergences). p-values
are displayed in gray.

variance. Trends for BLEURT scores are similar,
but with En→De showing less drastic differ-
ences compared to BLEU.13 On the other hand, a
substantial number of divergent patterns have ei-
ther virtual no change or an increase of BLEU
or BLEURT scores. This suggests that being a
divergence pattern in itself is not associated with
decreased MT performance.

What could explain this variance? Why are
some divergent patterns associated with worse
MT performance while others aren’t? One ob-
vious hypothesis is that these patterns are seen
less frequently during training. However, a closer
inspection seems to suggest that frequency of
divergent patterns alone is not an adequate pre-
dictor. More specifically, we use the absolute or
relative frequency14 of the divergent pattern, with
or without taking a log of the number, and cor-
relate it with BLEU or BLEURT scores. Even
with the best option (log of relative frequency)
presented in Table 4, there is only weak cor-
relation (Pearson or Kendall τ ) for En→Fr and
En→De, and no correlation for En→Zh. It is
unclear what aspects of divergent patterns make
them more difficult to translate, or whether they
are merely co-occurring with those elements that
are the true cause of difficulty. We leave it to fu-
ture work to investigate the underlying cause.

13We also note that n-gram overlap-based metrics such
as BLEU are more likely to penalize diverse translations
(Freitag et al., 2019).

14Here, relative frequency is defined as the ratio of the
number of training examples with the divergence over that
with the convergence. It is a way to counterbalance the fact
that some extremely common source patterns will have a lot
more frequent divergences.

7 Conclusion

We conduct a large-scale fine-grained compara-
tive investigation between HT and MT outputs,
through the lens of morphosyntactic divergence.
Based on extensive analyses on three language
pairs, we demonstrate that MT is less morphosyn-
tactic diverse and more convergent than HT. We
further attribute to this difference to the use of
beam search that biases MT outputs towards less
diverse and less divergent patterns. Finally, we
show that the presence of divergent patterns in HT
has overall an adverse effect on MT quality.

In future work, we are interested in apply-
ing the same analysis to large language model
(LLM)-based MT systems. Recent studies have
noted that LLM-based systems tend to produce
less literal translations, compared to the tradi-
tional encoder-decoder models (Vilar et al., 2023;
Raunak et al., 2023). It would be interested to see
whether and to what extent the LLM translations
might differ from those produced by traditional
models when viewed from a morphological lens.
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Strnadová, Esha Banerjee, Ruli Manurung,
Antonio Stella, Atsuko Shimada, Sookyoung
Kwak, Gustavo Mendonça, Tatiana Lando,
Rattima Nitisaroj, and Josie Li. 2017. CoNLL
2017 shared task: Multilingual parsing from raw
text to Universal Dependencies. In Proceedings
of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependen-
cies, pages 1–19, Vancouver, Canada. Associa-
tion for Computational Linguistics. https://
doi.org/10.18653/v1/K17-3001

Jiajun Zhang and Chengqing Zong. 2016. Ex-
ploiting source-side monolingual data in neural
machine translation. In Proceedings of the 2016
Conference on Empirical Methods in Natu-
ral Language Processing, pages 1535–1545,
Austin, Texas. Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/D16-1160

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente
Ordonez, and Kai-Wei Chang. 2017. Men
also like shopping: Reducing gender bias
amplification using corpus-level constraints.
In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language
Processing, pages 2979–2989, Copenhagen,
Denmark. Association for Computational Lin-

Target Word-based Arc-based

HT MT Δ% HT MT Δ%

(i) DIVERSITY

Fr 2.22 1.85 −16.8 2.25 1.77 −21.6
De 2.24 1.95 −12.9 2.39 2.01 −16.0
Zh 2.92 2.76 −5.5 3.78 3.47 −8.3

(ii) CONVERGENCE RATE

Fr 37.4 43.8 17.1 45.4 52.0 14.5
De 44.4 49.4 11.3 49.6 54.7 10.3
Zh 20.9 22.0 5.4 23.0 24.5 6.6

Table 5: Aggregate diversity scores and conver-
gence rates for the LaBSE-filtered subset. TheΔ%
columns show the relative change in percentage
from HT to MT.

guistics. https://doi.org/10.18653/v1
/D17-1323

Chunting Zhou, Xuezhe Ma, Junjie Hu, and
Graham Neubig. 2019. Handling syntactic
divergence in low-resource machine transla-
tion. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language
Processing and the 9th International Joint
Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 1388–1394,
Hong Kong, China. Association for Compu-
tational Linguistics.https://doi.org/10
.18653/v1/D19-1143

A Analysis Subset Filtered Using
LaBSE Embeddings

The main results of the paper are obtained on
a held-out subset of the WMT data. To remove
some of the noise due to the automatic extrac-
tion pipeline that produced the WMT data, we
resort to LaBSE embeddings (Feng et al., 2022)
to further filter the original held-out subset. More
specifically, we use the LaBSE model to derive
the crosslingual embeddings for the source and the
target of any sentence pair, and sort all pairs based
on the cosine distance between the source and
the target embeddings. The top half (i.e., lowest
distance) is kept for analysis, resulting in 500K
sentence pairs for each language pair.

Table 5 summarizes the aggregate diversity
scores and convergence rates. The relative changes
are slightly smaller than those in Table 3, but the
overall trend is remarkably similar: For both word-
based and arc-based divergences, MT produces
less diverse outputs with more convergent patterns.
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B Percentage of Content Words and
Their Alignments

Table 6 summarizes the percentage of content
words and their alignments based on the held-out
analysis subset. We only keep the alignments for

the main results if both the source token and the
target token are content words. The statistics show
that around 40%–50% of the tokens (either on the
source or the target side) are considered content
words, and a similar percentage of alignments pass
our criterion.

Lang Source content words Target content words Alignments

Fr 13.7M / 28.7M = 47.9% 14.8M / 33.7M = 44.0% 11.3M / 27.2M = 41.7%
De 10.2M / 21.3M = 48.1% 8.8M / 20.1M = 43.8% 7.9M / 18.5M = 42.9%
Zh 12.6M / 26.2M = 48.2% 12.8M / 24.5M = 52.4% 10.1M / 22.3M = 45.3%

Table 6: Percentage of content words and their alignments for the held-out analysis subset.
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