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Abstract

Pretrained character-level and byte-level lan-
guage models have been shown to be com-
petitive with popular subword models across
a range of Natural Language Processing tasks.
However, there has been little research on
their effectiveness for neural machine transla-
tion (NMT), particularly within the popular
pretrain-then-finetune paradigm. This work
performs an extensive comparison across mul-
tiple languages and experimental conditions of
character- and subword-level pretrained mod-
els (ByT5 and mT5, respectively) on NMT.
We show the effectiveness of character-level
modeling in translation, particularly in cases
where fine-tuning data is limited. In our anal-
ysis, we show how character models’ gains in
translation quality are reflected in better trans-
lations of orthographically similar words and
rare words. While evaluating the importance
of source texts in driving model predictions,
we highlight word-level patterns within ByT5,
suggesting an ability to modulate word-level
and character-level information during gener-
ation. We conclude by assessing the efficiency
tradeoff of byte models, suggesting their us-
age in non-time-critical scenarios to boost
translation quality.

1 Introduction

Character-level and byte-level models1 have been
a source of interest in Natural Language Pro-
cessing (NLP) for many years, with the promise
of tokenization-free systems able to process and
generate text on a finer granularity. However,

1Byte models are often referred to under the broader
category of character models in literature, however there
are subtle differences. In this work, we exeriment only with
byte-level models. We distinguish the two when we consider
the differences to be notable, but otherwise continue to refer
to byte models as character models.

these systems have failed to become the domi-
nant paradigm over subword-level models, de-
spite comparable performances. This is likely
because of the additional time and compute re-
sources required, due to the longer input sequences
used in character-based approaches. There are
cases where character models have been shown
to outperform subword models. However, these
instances may be seen as niche (e.g., tasks that
specifically require character information) or un-
realistic (e.g., using data corrupted with synthetic
noise [Xue et al., 2022]).

Additionally, previous studies presented only
limited evaluations of these systems for popular
tasks where character-level information could lead
to major performance benefits. In this work, we
conduct a comprehensive comparison of charac-
ter and subword pretrained models on machine
translation (MT). Despite the popularity of NMT,
pretrained character models have not yet been
thoroughly assessed for this task, with recent re-
search on character models for MT focusing on
models trained from scratch (Libovický et al.,
2022; Edman et al., 2022). We posit that these
approaches can only reliably assess translation
performance for high-resource languages, where
the beneficial effects of multilingual pretraining
were found to be less impactful (Liu et al., 2020).

Character models can leverage more fine-
grained information, which could be helpful in
many challenging NMT settings, such as low-
resource translation. To validate this, we fine-tune
the character model ByT5 (Xue et al., 2022) and
its subword counterpart mT5 (Xue et al., 2021) for
translation, for a variety of languages and settings.
Among our findings, those standing out are:

(1) ByT5 generates higher quality translations
than mT5 in general, especially when re-
sources are limited.
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Figure 1: ByT5’s overall source vs. target contribu-
tion for the German→English translation: ‘‘I study in-
ternational relations.’’ $: end-of-sentence token. Peaks
in source importance at the beginning of each word
suggest word-level modeling.

(2) ByT5 shows better cross-lingual generaliza-
tion than mT5 on average, and especially for
high resource languages or low resource lan-
guages that are related to high resource ones.

(3) Fine-tuning with many examples causes
ByT5’s translations in the zero-shot setting
to degrade faster than mT5.

(4) ByT5 shows a cohesive word-level source
importance pattern, suggesting a capacity to
capture relationships beyond the character
level (as shown in Figure 1).

(5) When ByT5 outperforms mT5, ByT5 is also
better at translating orthographically similar
words and rare words.

Our findings support the idea that in several
realistic circumstances, and particularly for low-
resource scenarios, character models are superior
in terms of translation quality over their widely
used subword counterparts. In our analysis, we
further show how these gains in quality connect
to specific word properties, such as orthographic
similarity and frequency.

2 Related Work

Character-level models have long been of inter-
est for use in machine translation, dating back to
when statistical models were the dominant para-
digm (Tiedemann and Nakov, 2013). At that time,
character models were already competitive with
word-level models, especially when training data
was limited to <100k sentence pairs. Durrani et al.
(2010) also showed that character models were
particularly adept at translating closely related

languages such as Hindi and Urdu. We note that,
at the time, subword tokenizers such as BPE
(Sennrich et al., 2016) were not yet commonly
used.

Neural approaches to character-level MT were
first based on RNNs (Costa-jussà and Fonollosa,
2016; Lee et al., 2017), with extensive work be-
ing done to compare character models to subword
models (now equipped with BPE). For NMT, it
was shown that character models using an RNN
architecture (with and without a CNN for process-
ing characters) perform equally to or better than
subword models (Larriba Flor, 2017; Lee et al.,
2017; Sennrich, 2017; Cherry et al., 2018). Their
better translation performance could be attributed
to their ability to handle complex morphology,
rare or unseen words, and noisy input (Jozefowicz
et al., 2016; Kim et al., 2016; Belinkov and Bisk,
2017; Lee et al., 2017; Singh, 2017; Durrani et al.,
2019). However the inefficiency of character mod-
els was already apparent, as they were slower
than subword models by a considerable margin
(Chung et al., 2016). Work had also been done
in comparing byte and character level models,
with little differences found, however these were
mostly experimenting with Latin-scripted lan-
guages (Costa-jussà et al., 2017).

More recent work has looked at Transformers
on the character and byte-level. Xue et al. (2022)
created ByT5 and compared it to its subword coun-
terpart, mT5 (Xue et al., 2021), which are also the
models we focus on in this work. Their compar-
isons were however focused on either multilingual
classification tasks or English-based generative
tasks, but no multilingual generative tasks or ma-
chine translation.

Previous work analyzed character-level Trans-
formers trained from scratch for NMT, not using
the T5-based models. Libovický et al. (2022)
looked at ‘‘vanilla’’ character models (those with-
out any compression of the sequence length prior
to the computation in the Transformer), as well as
the methods of Lee et al. (2017), Tay et al. (2022),
and Clark et al. (2022) for compressing sequence
length. They conclude that these character-level
models do not provide any benefits over subword
models while being less efficient. There are two
factors to note with these conclusions. Firstly,
their experiments show similar performance, but
they only experiment on high-resourced languages.
Given prior work in RNNs mentioned above, this
does not appear to be the application that would
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benefit most from character-level models. Sec-
ondly, they introduce a two-step decoder to
achieve character-level decoding from subword-
level hidden states, however as Edman et al.
(2022) points out, this decoder does not scale
well to higher-resourced scenarios. This two-step
decoder adds an additional layer of complexity
to evaluating such models, as an ablation of the
model’s granularity and the model’s decoding pro-
cess would be necessary to fully understand the
performance of each model. Added to the fact that
there are no pretrained models using this sequence
length compression that are comparable to mT5
and ByT5 in terms of data used for pretraining
or model scale, we do not experiment with the
models which compress the sequence length in
our work.

In the context of low-resource MT, Edman
et al. (2022) showed that character-level mod-
els can outperform subword models on the low-
resource pair Xhosa–Zulu. Li et al. (2021) showed
that character-level models create higher-quality
translations in synthetic low-resource settings
of English→{German, Finnish} with a corpus
size of 50k parallel sentences. Carrión-Ponz and
Casacuberta (2022) showed that quasi-character
models (subword models with a small vocabulary
of size 350) produce higher-quality translations
than subwords with a more standard vocabulary
size of 32 thousand when data is limited for a
number of European languages, finding consis-
tent improvements across several domains.

There are two major caveats with this previous
work that should be considered, however. First,
previous work using character models for MT fo-
cused on training models from scratch, as this is
a long-standing practice in the MT field. How-
ever, this practice could be especially harmful for
low-resource languages, where the paradigm of
fine-tuning a pretrained, multilingual model was
shown to be effective (Liu et al., 2020).

The second caveat is that previous evaluations
of cross-lingual transfer were also limited by a
relatively small model size (<70M parameters).
In contrast, this work evaluates models up to 1.2B
parameters. With an order of magnitude more pa-
rameters, we investigate the presence of emergent
properties of larger character and subword-based
NMT models, following the evidence from other
generative tasks.

Within the realm of the extensive previous
work done on character models, this work serves

to give an updated overview on the performance
of character versus subword models for NMT.
To our knowledge, we provide the first of such
overviews using multilingual, Transformer-based
models of up to 1.2B parameters. We fine-tune a
total of 162 models (varying languages, amount
of training data, model size, and model type),
and test on 200 languages to thoroughly com-
pare the performance of character and subword
models. We also perform an attribution analysis
to gain a deeper understanding of the differences
between the two granularities of character-level
and subword-level, which to our knowledge, has
not yet been researched.

3 Method

As our experiments are aimed to provide a fair
comparison of character and subword pretrained
models for translation, we first justify our model
choice, followed by our training scheme, and
lastly our choice of metric for evaluation.

3.1 Models

With many character-level models available (El
Boukkouri et al., 2020; Tay et al., 2022), we opt to
compare ByT5 to its subword counterpart mT5.
These models are, to our knowledge, the most
comparable due to their similar training setup and
parameter count. We note that although the pa-
rameter counts between mT5 and ByT5 models
are similar, Xue et al. opted to increase the width
(i.e., hidden dimension size) of the ByT5 models
to compensate for it using fewer parameters for
embedding bytes. This is most noticeable in the
small models, with 85% of mT5’s parameters
being used for embeddings, compared to 0.3% for
ByT5 (Xue et al., 2022). As this disparity lessens
with increasing model size, we consider this dif-
ference to be a meaningful factor in explaining
results correlating negatively with model size. As
such, most of our experiments use the small
(300M),base (582M), andlarge (1.23B) ByT5
and mT5 models, or focus only on the large
models, where the disparity is lowest.

3.2 Training

We fine-tune mT5 and ByT5 models using the
same prompt used in Raffel et al. (2020):

Translate <S> to <T>: <src>
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where <S> is the source language, <T> is the
target language, and <src> is the source text. We
primarily use WMT’s NewsCommentary v162

datasets for fine-tuning. We consider 5 levels of
‘‘resourcedness’’ for fine-tuning, using {0.4, 2,
10, 50, 250} thousand sentence pairs. We also
use the WMT14 German–English dataset to test
higher-resource settings of 1.25 and 4.5 million
sentence pairs (i.e., the entire dataset).3 Our hy-
perparameter choices for training can be found
in Appendix A. For development and testing, we
use the FLoRes-200 dataset (NLLB Team et al.,
2022).

As for training language pairs, we train on
{German, Russian}↔English and {Portuguese,
English}→Spanish. We choose these language
pairs as they are all within NewsCommentary,
guaranteeing a similar quality, and accounting for
varying degrees of language similarity.

We additionally test the models’ ability to retain
cross-lingual information with the FLoRes-200
dataset (NLLB Team et al., 2022), whose wide
variety of languages allows us to further isolate
important language characteristics. To test the
models’ zero-shot capabilities, we simply swap
out <S> and <src> for a new language, keeping
the target language the same. No further training
is performed, making the setting zero-shot.

3.3 Evaluation
We considered several translation quality metrics,
opting eventually for chrF++ (Popović, 2017),
which is formulated as a combination of both
character-level and word-level F-scores, weighted
to maximize correlation with human judgment.
Note that this differs from the original chrF,
which only factors in character-level scores. Com-
bining both word-level and character-level scores
means neither ByT5 nor mT5 should be favored
by chrF++.

We also considered modern neural metrics such
as COMET (Rei et al., 2020, 2022), which are
known to correlate better with sentence-level hu-
man judgments (Freitag et al., 2022). However, the
fact that COMET itself is a subword model, and
has been mostly trained to evaluate the outputs of
subword models, makes it unclear how the metric
performs for character models. As such, we resort

2https://data.statmt.org/news
-commentary/v16/.

3By default, we use NewsCommentary. Any use of
WMT14 is specified.

to the more transparent chrF++. Nevertheless, we
provide COMET scores for the direct translation
results (Section 4), using the wmt22-comet-da
model (i.e., COMET-22). We also include BLEU
scores in Appendix B, the trends of which are
highly similar to the trends seen for chrF++.

4 Direct Translation Results

Our direct translation setup evaluates models on
the same language pairs for which they are fine-
tuned. Since character models generally outper-
form subword models, especially when training
data is scarce (as noted in Section 2), we vary the
amount of fine-tuning data, confirming these find-
ings for {German, Russian}↔English translation.

Varying the amount of fine-tuning data reveals
the largest difference in the translation quality of
character and subword models. Figure 2 shows
that ByT5 outperforms mT5 in all resource levels
according to chrF++, and is competitive with
mT5 according to COMET. When resources are
limited, the quality gap between ByT5 and mT5
also tends to increase. We see that model size
also plays a role, with the large model having
the largest quality gap of up to 10 chrF++ points
when only 400 sentences are available. This goes
against our assumption that, given the differences
in architecture being largest between the small
models, we would see the largest difference in
performance from them (see Section 3.1).

Table 1 shows the performance of the large
models on the German→English WMT14 data-
set, accounting for higher-resource settings. The
results according to chrF++ show that ByT5 con-
tinues to outperform mT5 by a significant margin,
while COMET finds no significant difference.
While we expect that the chrF++ performance of
the two models will eventually converge given
enough data, we were not able to observe it even
in our highest-resource setup of 4.5M sentence
pairs.

5 Zero-shot Results

Our zero-shot evaluation examines how well the
models retain information from similar languages
seen in pretraining or fine-tuning or how well they
generalize to unseen languages when fine-tuned
on a specific language pair. As such, we consider
zero-shot translation as translating from a source
language that has not been fine-tuned on, using
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Figure 2: Translation quality using chrF++ (left) and COMET (right) of mT5 and ByT5 when fine-tuned and
tested on German↔English and Russian↔English. Stars indicate a significant difference (p < 0.05) in a paired
t-test between the two respective models.

# of Training Examples
250k 1.25M 4.5M

chrF++
mT5 54.72 58.38 61.51
ByT5 56.83 59.78 62.73

COMET
mT5 0.843 0.857 0.867
ByT5 0.841 0.856 0.874

Table 1: Scores on chrF++ and COMET for mT5-
large and ByT5-large fine-tuned on WMT14
German→English. Underlined scores are signifi-
cantly better (p < 0.05).

our scheme described in Section 3.2. This can
have important implications on best practices
for low-resource model training, as cross-lingual
transfer learning is a common technique for ob-
taining a good initialization for less-resourced
language pairs.

We first look at the general translation quality
across all languages in FLoRes-200, and study
patterns in performance with respect to geography
and language resourced-ness. We then investi-
gate a degradation in zero-shot quality which we
observe when ByT5 is trained for too long.

5.1 General Performance

Figure 3 shows the average translation quality
of {German, Russian}↔English fine-tuned mod-
els tested on all 204 languages from the FLoRes-
200 dataset (X→English).

Figure 3: Zero-shot translation quality of models fine-
tuned on German↔English and Russian↔English,
tested on X→English for all languages in FLoRes-200
(averaged results). Stars indicate a significant differ-
ence (p < 0.05) in a paired t-test between the two
respective models, over all language sets combined.

Overall, we see that ByT5 continues to outper-
form mT5 for lower resource scenarios. However,
its zero-shot performance drastically decreases in
several cases above 10k training examples, while
mT5 continues to perform well up to 250k ex-
amples, with only a slight dip in performance
comparatively or no dip at all. We further investi-
gate the large degradation of ByT5 in Section 5.3,
but first, we take a closer look at language-specific
results on German→English with 10k training
examples.
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Figure 4: Map of all languages in FLoRes-200, colored
according to whichlargemodel performed better (red
‘‘�’’ if ByT5, cyan ‘‘�’’ if mT5) when fine-tuned on
10k German→English examples.

In Figure 4, we see the performance differ-
ence of ByT5 and mT5 for each source language,
plotted in their respective geographic locations.4

While ByT5 performs well overall, we notice an
apparent weakness when zero-shot translating lan-
guages from West and Central Africa. Many of
these languages are considered low-resource lan-
guages, however there are several languages also
considered low-resource on which ByT5 performs
well. Therefore, we break down the necessary
components of a language for ByT5 to perform
well next.

5.2 Language Resourcedness
As we have seen in Section 4, the amount of
data used for fine-tuning plays a major role in the
quality of translations. Similarly, we would expect
whether the model has seen a particular language
in pre-training to play a role as well.

If we only use the presence of a language in
the pretraining dataset to predict whether ByT5
outperforms mT5, we get an accuracy of 62% on
the FLoRes-200 languages, using our German→
English model. For our other language pairs, we
get 71%, 45%, and 50% for models fine-tuned
on English→German, Russian→English, and
English→Russian, respectively. So presence in
pretraining alone is not a reliable predictor of
performance.

However this does not tell the full story, as
many low-resource languages are related to high-
resource languages, which the models, particu-
larly ByT5, are capable of exploiting. Specifically,
we categorize each language into one of three
categories:

• High Resource: The language is in the pre-
training data.

4Locations sourced from: https://glottolog.org
/glottolog/language.

• Low Resource – Related: The language is
in the same language subgrouping (as de-
termined by NLLB Team et al. [2022]) and
same script as a language in pre-training.

• Low Resource – Unrelated: All other lan-
guages.

As an example, Acehnese (ace) is written in
both Arabic and Latin scripts. For Latin, we con-
sider it ‘‘Low Resource – Related’’ because it is
related to the high-resource Indonesian (both be-
ing Malayo-Polynesian languages), which is also
written in Latin script. However for Arabic, we
consider it ‘‘Low Resource – Unrelated’’ because
there are no Malayo-Polynesian languages writ-
ten in Arabic script in the pretraining data.

Requiring both language subgrouping and
script to be the same performs much better as a
predictor than using only one of the two. It is also
intuitive: Related languages typically share many
similar words, but this will not result in shared
embeddings if they are written in different scripts.

In Figure 5, we see that, for the most part,
languages in the first 2 categories tend to be lan-
guages where ByT5 outperforms mT5, meanwhile
the reverse is true for the third category. Using
this rule, we can correctly predict which model
will perform better for 89% of the languages when
fine-tuning on German→English.5

While not a perfect predictor, the efficacy of
this simple rule shows there is a clear trend that
ByT5 can better leverage information from other
languages it has seen to inform its translation of
low-resource languages. The reasoning for why
mT5 performs better on unrelated low-resource
languages is somewhat unclear. One possible ex-
planation is that mT5’s sparse embeddings allow
for a more robust encoding for languages where
false friends are more abundant, seeing as mT5
would contain less positive bias towards semantic
similarity given orthographic similarity. In fact,
from the perspective of a character model, ‘‘false
friends’’ do not necessarily need to be words, but
could also be simply character n-grams. Neverthe-
less, many of the languages in the third category
include West and Central African languages, cor-
responding to the pattern we see in Figure 4. These
languages mostly use the Latin script, increasing

5Similarly, we get an accuracy of 74%, 79%, and 81%
for our models fine-tuned on English→German, Russian→
English, and English→Russian, respectively.
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Figure 5: Average chrF++ difference for all lan-
guages in FLoRes-200, split into 3 resource categories.
We use our large models fine-tuned on 10k
German→English sentences. Asterisks indicate lan-
guages which achieved a lower quality of less than 25
chrF++ for both mT5 and ByT5.

the likelihood of false friends with the original
source language (German). It should be noted
however that a majority of the languages in which
mT5 performs better are also those where nei-
ther mT5 or ByT5 showed performance above
25 chrF++ (which is roughly equivalent to a
BLEU score of 5). As such, we recommend fur-
ther work before drawing conclusions based on
these languages.

5.3 Zero-shot Degradation
To understand the dip in quality we see
from ByT5-large fine-tuned on 250k examples
(Figure 3), we begin by showing that freezing cer-
tain parts of the model can mitigate this weak-
ness. Based on our discoveries, we then examine
whether writing script is an explaining factor in
how much a specific language degrades in quality.

Does Freezing Encoder Layers Prevent Cross-
Lingual Forgetting? We experiment with freez-
ing various parts of the model after 2000 steps
(the number of steps it takes for the models fine-
tuned on 10k sentences to converge), and continu-
ing to train on only part of the model. We proceed
to test the models on their original source lan-
guage (in this case German), as well as the 204
languages from the test set. Results are shown
in Table 2, including a comparison to the best-
performing unfrozen models.

Here we can see that, for ByT5, freezing
anywhere from the first quarter of the encoder
layers up to everything except cross-attentions is
effective at preventing the loss of generality that
comes with extra training. Ingle et al. (2022) saw
a similar pattern in the few-shot setting, where
freezing the first 25%-50% layers of RoBERTa
improved performance over freezing nothing.6

This also shows that the issue is not with the
variety of the training data, but specifically the
number of training steps taken.

As we see a relatively steep incline in zero-shot
translation quality from 0% to 25% of the en-
coder layers frozen, and then a relatively stable
quality afterwards, it seems the majority of
language-specific operations are occurring in the
first 25% of the layers of the encoder in ByT5.
On the other hand, mT5 appears to exhibit this
language abstraction solely based on its sparser

6Gheini et al. (2021) also similarly found that only freez-
ing cross-attentions is effective in preserving translation
quality, but did not test freezing only the encoder.
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Trained Zero-shot

Frozen ByT5 mT5 ByT5 mT5

Embeds 59.1 58.7 26.1 36.3
Enc12.5% 59.0 58.1 30.7 34.8
Enc25% 58.7 57.9 37.2 35.5
Enc50% 57.2 32.7 38.1 19.1
Enc100% 57.3 31.1 37.6 19.3
¬ X-Attn 57.4 30.5 37.9 17.9

10k 55.6 55.1 37.7 36.2
250k 59.3 58.1 23.4 34.4

Table 2: chrF++ on Flores-200 for trained
language pair (‘‘Trained’’, i.e., German) and
all remaining languages (‘‘Zero-shot’’, aver-
aged) using large models fine-tuned on 250k
German→English examples. Top: Performances
by freezing some model components (‘‘Encn%’’:
freeze the first n% of encoder layers; ‘‘¬
X-Attn’’: freeze all parameters except cross-
attentions.) Bottom: Performance of unfrozen
models trained for 10k and 250k steps (i.e., the
step counts with the best performing models for
zero-shot and trained settings).

embeddings, as it does not suffer the same level of
zero-shot quality decrease when not frozen. How-
ever, when freezing layers of mT5 beyond the
embeddings, we see a steep decrease in translation
quality both on the trained language and zero-shot
languages. This implies that mT5 needs to adjust
a much larger portion of its parameters in order to
translate with higher quality, whereas ByT5 only
needs to adjust at most its cross attentions.

In light of minimal gains from further training
on zero-shot, early stopping using a left-out set of
low-resource language examples seems ideal.

Does Writing Script Affect Degradation? The
fact that freezing the encoder preserves the qual-
ity on zero-shot languages narrows the failure
point of ByT5 down to the source side. Since a
major difference between character and subword
models is their respective dense and sparse to-
ken embeddings, we examine the impact of each
language’s writing script on the degradation of
translation quality. We expect that, for example,
with our German→English models, other Latin-
scripted languages will be more severely im-
pacted, due to their high degree of embedding
overlap. We expect those embeddings (and sub-

Figure 6: Effect of language script on chrF++ degra-
dation when fine-tuning for longer (250k (solid) vs.
10k (solid + striped) examples).

sequent encodings) to become specialized to Ger-
man only, meanwhile non-Latin encodings should
remain relatively unchanged.

Figure 6 shows the degradation factor of
Latin versus Non-Latin-scripted languages for our
ByT5-large English↔German and English→
Russian models and Latin, Cyrillic, and all
other multi-byte scripts for our Russian→English
models.7

For the first 3 subfigures, we can see that Latin-
scripted languages degrade more than the non-
Latin languages. This is expected, seeing as ByT5
shares embeddings (and presumably encodings)
for all Latin languages. So, for example, when
it is specifying for German→English, any Latin-
scripted languages unrelated to German should
be particularly negatively affected. Meanwhile
other scripts share fewer bytes, and thus would be
less affected.

For Russian→English, we do not see the same
trend with Cyrillic, but rather other scripts are
heavily affected. We suspect this is for two rea-
sons. Firstly, the Cyrillic languages are much more
concentrated around Russia than Latin languages
are around Europe, so the Cyrillic languages tend
to be either more closely related to, and par-
tially mutually intelligible with, Russian (e.g.,
Ukrainian), or have several loan words from Rus-
sian (e.g., Kazakh). Meanwhile the other non-
Latin, non-Cyrillic scripts are heavily affected
because they are also multi-byte scripts. These
scripts share a large portion of bytes with Cyrillic
and each other due to how UTF-8 encodes multi-
byte characters. For example, the ‘‘ ’’ in Cyril-
lic is encoded in bytes as [208, 152], while the
Devanagari ‘‘ ’’ is [224, 164, 152]. Both share
the final byte as both are the 25th character within
their respective code blocks.

7We remove all languages which have a score of 25
chrF++ or less on 10k, since these languages score so low
that degradation from more training is not relevant.
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As such, we find that multi-byte scripts may
suffer from zero-shot translation degradation due
to vocabulary overlap with the original source-side
script, assuming this source-side script is another
multi-byte script.

Since we observe a loss of generality only when
at least 50k sentences are used for fine-tuning,
the following sections mostly focus on results
from models using between 0.4k and 10k fine-
tuning examples.

6 Attribution Analysis

In translation studies, words are widely recog
nized as the minimal unit of translation (Hatim and
Munday, 2004). It is therefore natural to assume
that a source-to-target word or subword mapping
might be easier to create than a character-level
one, except perhaps for closely related languages
where many words translate into orthographically
similar cognate words. Therefore, it seems that
(sub)word models are naturally more suited to-
wards machine translation, but our results from
the previous sections appear to contradict that.
This naturally leads us to investigate whether and
how character models can learn to incorporate
word-level information to improve their transla-
tion capabilities.

A common way to quantify the influence of
inputs in driving model predictions is by means
of feature attribution methods (Madsen et al.,
2022), which have previously been applied in the
MT domain to highlight word alignments, coref-
erence resolution capabilities, and model training
dynamics (Ding et al., 2019; He et al., 2019;
Voita et al., 2021b inter alia). For our analysis,
we study source versus target character contribu-
tions in ByT5 models using gradients (Simonyan
et al., 2014), which were recently shown to be
more faithful than other advanced approaches for
language tasks (Bastings et al., 2022). One can
take gradients with respect to the probability of a
predicted token and propagate them back to the
model’s inputs in order to quantify the importance
of input tokens to the resulting prediction. Our
analysis is inspired by Voita et al. (2021a), where
a similar analysis was conducted on subword
MT models to highlight a ‘‘language modeling
regime’’ where high importance is given to the
target prefix while disregarding source tokens.

In our study, we compute gradients for each
input token (i.e., a character) with respect to the

Figure 7: Left: Average ByT5-large source impor-
tance across byte positions within a sentence. Values
are smoothed using a 10-point rolling window. Right:
Average ByT5-large source importance across bytes
within a word, normalized by sentence position (left
plot) to account for the effect of decreasing source
importance.

next token’s prediction probability at every gen-
eration step using the Inseq library (Sarti et al.,
2023). For every generated token, gradient vectors
are aggregated at the character level using the L2
norm of the gradient vector to gauge the influence
of the source and target context on the model’s
predictions.8

We verify our hypothesis that character-level
NMT models might implicitly operate at a word
level by comparing source-side and target-side
contributions across different model sizes and
language pairs. In this context, a character-by-
character translation would be characterized by
relatively uniform source attributions across all
generated characters, while a word-by-word trans-
lation would imply a higher source contribution
of the characters marking the beginning of a new
word, followed by a shift of importance towards
the target prefix indicating that completing the
word requires limited access to source-side infor-
mation. Figure 1 provides an example of source
and target contributions, showing a marked in-
crease in source importance at the beginning of
each word.

How is Word-level Information Used in Char-
acter Models? Figure 7 (left) confirms the de-
cline in source importance throughout generation
observed by Voita et al. (2021a) for several ByT5
models. In the left plot, we compute the average
source importance with respect to the charac-
ter’s position in the sentence. While progressing
through the generation, we observe that the model

8We normalize the total source + target contribution to 1
to obtain relative contributions, similar to Voita et al. (2021a).
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relies less on the source side and more on the tar-
get side for its next-byte predictions. This aligns
with Voita et al.’s (2021a) findings for subword-
level MT models, with the intuitive explanation
that a longer generated context can provide more
cues for the model to produce a coherent output
without the need to attend to source-side tokens.

In the right plot, instead, we compute the rela-
tive average source importance for byte positions
within words. Since bytes occurring later in a
word also occur later in a sentence, we would ex-
pect source importance to drop later in a word as
a consequence of the trend seen in the left plot.
To disentangle the effect of the in-word byte po-
sition from the sentence-level one, we normalize
the source importance scores by their average for
their corresponding position in the sentence (i.e.,
we divide every in-word score by the respective
in-sentence average from the left plot). As a re-
sult, we would expect stable relative source im-
portance close to 100% across all in-word byte
positions if the position of characters inside the
word did not affect source importance. Instead,
we observe a rapid decline of source importance
within the word across all languages, implying an
increase in target-side importance for non-word-
initial generated characters. Upon manual inspec-
tion of the importance patterns, we note that the
target-side importance is focused mainly on the
previous characters belonging to the same word,
suggesting the usage of word-level information to
facilitate translation.

Interestingly, for English→Russian we observe
an oscillatory importance pattern peaking on
even-numbered positions. The observed trend re-
flects the UTF-8 Cyrillic encoding using 2 bytes
per character,9 with peaks at first-byte boundaries
pointing to the model’s ability to discriminate
characters and bytes in languages using multi-byte
characters. We also note that relative source attri-
butions seem to converge to 100% around the third
character for Latin script languages and around the
sixth in-word character for Russian. These results
indicate that similar importance patterns might
emerge across different languages in character
models despite separate fine-tuning procedures.

How Does Resourcedness Affect Word-level
Modeling? In Figure 8, we examine how the

9The first identifies the character subset, and the second
specifies the character.

Figure 8: Left: Source contribution across word’s char-
acters for a ByT5-large fine-tuned on deu→eng
translation with different # of fine-tuning exam-
ples (0.4k to 250k). Right: Source contributions for
same-language (deu→eng) and zero-shot cross-lingual
translation using the same 250k ex. model.

relative source importance changes when more
training data becomes available, and its differ-
ence between trained and zero-shot languages.
The left plot shows that a larger amount of train-
ing examples contributes to sharpening the source
contribution around the first few bytes in a word
while decreasing source importance for the fol-
lowing bytes. These results support our intuition
that memorized co-occurrences between source
and target words, which are captured more eas-
ily when given more training examples, enable
confident generation with less reliance on the
source text. From the right plot, we also note
how this trend does not automatically extend
to related languages when performing zero-shot
translation, with source importance patterns for
{Dutch, Limburgish}→English translation using
a German→English model presenting a smooth
trend comparable to the 0.4k German→English
one in the left plot. This suggests that memorized
co-occurrences lowering source-side dependence
do not generalize to related languages even when
translation quality does.

7 Effect of Word Similarity
and Frequency

Character models have previously been shown to
have a more robust vocabulary and are thus able
to form useful biases for translating orthograph-
ically similar words, as well as rare words (Lee
et al., 2017). We revisit these findings to see if
they hold with larger, multilingually pretrained
Transformers.

Can Character Models Exploit Word
Similarity? We proceed to investigate whether
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Figure 9: Word-level accuracy deltas for large mod-
els at different orthographic similarity levels, trained
on different numbers of examples (0.4k, 2k, 10k).

character models can operate on character level
when desirable. To this end, we focus our analysis
on orthographically similar words (OSWs), start-
ing from the assumption that a character model
can easily exploit their similarity by learning to
copy matching substrings. We start by assessing
whether character models show improved perfor-
mances for OSW translation. We use AWESoME
(Dou and Neubig, 2021) to align source, reference,
and hypothesis sentences and calculate word-level
translation accuracy. Our definition of OSWs is
based on the inverse normalized-Levenshtein dis-
tance of the source and reference words, varying
the threshold from 0% to 100%, for example,
German gesundheit and Dutch gezondheid have a
similarity of 70% since they differ in three letters.

Figure 9 shows the accuracy difference for
the large ByT5 and mT5 models trained for
German→English and Portuguese→Spanish on
words grouped at different levels of orthographic
similarity. We observe that, as words become
more similar, the accuracy delta also increases in
favor of ByT5, especially when less fine-tuning
data is used. These results indicate that character
models can learn OSW translations more rapidly
and effectively than their subword counterparts.

We proceed by examining the source contri-
butions of OSWs and non-OSWs using ByT5,
and how those change according to the number
of examples used for fine-tuning. We restrict our
analysis to >70% similarity for OSWs, and <30%
similarity for non-OSWs. We consider only the
source importance over characters belonging to
the same word, in order to investigate the pres-
ence of copying patterns for OSWs. As shown in
Figure 10, the importance of source text grows
with the amount of fine-tuning data when translat-
ing OSWs in the German→English setting (same
direction as training), suggesting an improved
ability of the model in copying information from

Figure 10: Relative source importance for ByT5
large fine-tuned on German→English translation for
OWSs (>70% sim.) and non-OSWs (<30% sim.) in
same-language and zero-shot settings, given different
numbers of fine-tuning examples.

the source. Conversely, we observe a declining
trend for the zero-shot Dutch→English direction,
converging to the source importance of Lim-
burgish, which was not present in the model’s
pretraining data. This could indicate that the Dutch
knowledge acquired during pretraining is progres-
sively lost when fine-tuning on increasingly more
German data, supporting the results of Figure 3.
For non-OSWs, we find a relative source impor-
tance of 94% ± 4% across all three directions
and all amounts of training examples, indicating
that the observed copying behavior is restricted to
highly similar words only.

To further confirm this copying behavior is
indeed distinct between a subword and character
model, we create a synthetic control test set by
replacing all proper noun pairs (word pairs tagged
as proper nouns in both source and reference
target sentences10) with random strings of Latin
alphabet characters matching the original words’
length. This is done for our German→English
large models, modifying the German→English
test set from FLoRes200. Table 3 reports subword
and character models’ accuracies in copying the
random strings from the source input into the
generated output.

We observe that for the subword-level mT5
model, the copying mechanism is learned pro-
gressively during fine-tuning. Meanwhile, the
ByT5 model instead achieves superior copying
performances with very little supervision, achiev-
ing 91% accuracy with only 400 training exam-
ples. We also observe that mT5’s performance
on chrF++ improves with increasing examples,

10POS tags obtained via NLTK’s PerceptronTagger.
Roughly 6% of the test set’s words are tagged as proper
nouns.
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# of Training Examples
400 2k 10k 50k 250k

Acc (%)
mT5 25 57 69 61 71
ByT5 91 90 90 89 92

chrF++
mT5 33 49 53 55 58
ByT5 51 54 56 57 59

chrF++ mT5 41 51 55 56 58
(orig.) ByT5 51 54 56 57 59

Table 3: Per-word copying accuracies and
sentence-level chrF++ scores of large
German→English models on the control test set
(top, middle), and chrF++ scores on the original
test set (bottom).

while ByT5’s performance remains relatively un-
affected. Comparing this to the chrF++ scores on
the original test set, we see that ByT5’s scores
are unchanged, while mT5’s scores drop by up to
8 points when the test set is modified.

While our control set only targets proper nouns,
this copying behavior may be far more perva-
sive, as it could be present in any loan words, re-
gardless of part-of-speech. The large difference in
scores, particularly on the models fine-tuned on
only 400 examples, seems to show a major dif-
ference in the default behavior of the two models.

Can Character Models Translate Rare Words
More Accurately? Prior work has shown char-
acter models achieving better translation accu-
racy of rare words (Lee et al., 2017; Singh, 2017),
so we expect the same to be true for large, pre-
trained, Transformers as well. We adopt the same
word-level translation accuracy method as earlier
in the section, but instead binning words based
on their frequency in the English fine-tuning data.
We evaluate word-level accuracy of ByT5 versus
mT5-large when fine-tuned on 10k German→
English sentence pairs. We additionally distin-
guish between accuracy using the original source
language and accuracy using zero-shot languages.

As shown in Figure 11, ByT5 has a higher
per-word translation accuracy across all frequen-
cies for the zero-shot languages, and all but the
most frequent words for German. Generally, as the
frequency of the word increases, model disparity
decreases. This is expected based on previous
work (Singh, 2017). The disparity is higher for
zero-shot languages overall, which indicates a

Figure 11: Word-level accuracy delta on the origi-
nal source (German) and zero-shot (X→English, av-
eraged) languages, using large German→English
models with 10k training pairs. Bins based on fre-
quencies in English fine-tuning data.

Training Inference
Model samples/s epochs samples/s

mT5-small 2.50 38.11 52.91
ByT5-small 0.43 29.24 8.90

mT5-base 1.15 22.87 20.77
ByT5-base 0.24 18.16 3.96

mT5-large 0.48 19.58 6.23
ByT5-large 0.12 16.25 1.17

Table 4: The training and inference speeds for
German→English experiments. Epochs reported
are using the models fine-tuned on 10 thousand
pairs, using early stopping. The best result per
model size and column is shown in bold.

higher level of robustness to changes in vocabu-
lary from ByT5, a phenomenon also previously
observed (Belinkov and Bisk, 2017).

8 Efficiency

Although we have shown that the translation qual-
ity of character models is competitive or better
than subword models, another important aspect is
the efficiency of character models. While the lack
of efficiency of character-level Transformer mod-
els is well-documented (Libovický et al., 2022;
Tay et al., 2022; Edman et al., 2022), we have yet
to see their efficiency on larger (300M+ parame-
ters) Transformers for NMT, and so we provide
our findings for completeness. We report model
training and inference times for 1 NVIDIA V100
32GB GPU in Table 4.

Both training and inference speeds in sam-
ples per second are considerably slower for the
character models (4-5 times slower for training,
5-6 times slower for inference). The number of
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epochs needed to converge is lower for character
models, but not enough to counteract the slow-
ness of training.

The slower speed comes largely from the in-
crease in sequence length. While we tried to bal-
ance the size of the batches such that each model
sees the same amount of text per batch, achieving
this required the character models to accumu-
late gradients for 4 times as many iterations as
the subword models. Thus, if training or inference
speed is a concern, subword models are likely
the superior choice, particularly for high-resource
languages. In the low-resource setting, there is
a significant trade-off between accuracy and
speed when choosing between character and sub-
word models.

It should be noted that there are several alter-
natives to vanilla character or byte-level models
which offer a speedup, typically by compressing
the sequence length before the bulk of the compu-
tation is done in the Transformer (El Boukkouri
et al., 2020; Clark et al., 2022; Yu et al., 2023,
inter alia). None of these methods claim faster
processing over a standard subword-level model,
however, so there would still be a trade-off be-
tween accuracy and speed when applying these
methods, albeit to a lesser extent.

9 Conclusion

Subword-level models are currently the dominant
paradigm for machine translation. However, this
work showed that character models could pro-
duce competitive or even superior results in many
circumstances. First, character models obtain an
overall better translation quality on trained lan-
guage pairs. Moreover, we highlighted how the
gain in translation quality from using character
models is particularly marked when fine-tuning
data is scarce. Finally, we showed how character
models have superior cross-lingual transferabil-
ity, especially with languages seen in pretraining,
or those that are similar to a language seen in
pretraining.

Following the results of our analyses, we can
attribute this superior quality to a character mod-
el’s ability to implicitly account for the appropri-
ate input granularity given the context, translating
at times in a word-by-word fashion, or character-
by-character when needed. This ultimately results
in better accuracy when translating orthographi-
cally similar and rare words.

The quality increase is however not without a
trade-off. Indeed, character models are at least 4
times slower in training and inference, making
them suboptimal for many real-world situations.
We posit that further work into speeding up gen-
eration models (Stern et al., 2018; Edman et al.,
2022; Santilli et al., 2023, inter alia), as well as
more thorough evaluations of neural metrics for
character models, would greatly benefit this area
of research. Nevertheless, we can conclude that
in less time-sensitive, or low-resource settings,
character-level translations are worth the wait.
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Lavie, and André F. T. Martins. 2022. Results
of WMT22 metrics shared task: Stop using
BLEU – neural metrics are better and more ro-
bust. In Proceedings of the Seventh Conference
on Machine Translation (WMT), pages 46–68,
Abu Dhabi, United Arab Emirates (Hybrid).
Association for Computational Linguistics.

Mozhdeh Gheini, Xiang Ren, and Jonathan
May. 2021. Cross-attention is all you need:
Adapting pretrained Transformers for ma-
chine translation. In Proceedings of the 2021
Conference on Empirical Methods in Natu-
ral Language Processing, pages 1754–1765,
Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/2021
.emnlp-main.132

B. Hatim and J. Munday. 2004. Transla-
tion: An Advanced Resource Book. Routledge.
https://doi.org/10.4324/9780203501887

Shilin He, Zhaopeng Tu, Xing Wang, Longyue
Wang, Michael Lyu, and Shuming Shi. 2019.
Towards understanding neural machine trans-
lation with word importance. In Proceedings
of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the
9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP),
pages 953–962, Hong Kong, China. Associa-
tion for Computational Linguistics. https://
doi.org/10.18653/v1/D19-1088

Digvijay Ingle, Rishabh Tripathi, Ayush Kumar,
Kevin Patel, and Jithendra Vepa. 2022.
Investigating the characteristics of a trans-
former in a few-shot setup: Does freezing lay-
ers in RoBERTa help? In Proceedings of
the Fifth BlackboxNLP Workshop on Analyz-
ing and Interpreting Neural Networks for
NLP, pages 238–248, Abu Dhabi, United Arab
Emirates (Hybrid). Association for Computa-
tional Linguistics. https://doi.org/10
.18653/v1/2022.blackboxnlp-1.19

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster,
Noam Shazeer, and Yonghui Wu. 2016. Ex-
ploring the limits of language modeling. arXiv
preprint arXiv:1602.02410.

Yoon Kim, Yacine Jernite, David Sontag, and
Alexander Rush. 2016. Character-aware neu-
ral language models. In Proceedings of the
AAAI Conference on Artificial Intelligence,
volume 30. https://doi.org/10.1609
/aaai.v30i1.10362

Antonio Manuel Larriba Flor. 2017. Traducción
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Cross, Onur Çelebi, Maha Elbayad, Kenneth
Heafield, et al. 2022. No language left behind:
Scaling human-centered machine translation.
ArXiv, abs/2207.04672. https://doi.org
/10.48550/arXiv.2207.04672
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A Hyperparameters

We train models using the AdaFactor (Shazeer
and Stern, 2018) optimizer with 4000 warmup
batches and a final constant learning rate of 1e-4.
We batch by # of tokens (20k for ByT5, 5k for
mT5) to provide each model with a roughly equiv-
alent amount of context, as we estimate roughly
4 bytes per mT5 token during initial testing. We
use early stopping with a patience of 5, based on
a set number of steps, varying with the amount of
data used. The step sizes were {50, 100, 250, 500,
1000} batches for {0.4k, 2k, 10k, 50k, 250k} total
training examples, respectively. Similarly, we set

Figure 12: BLEU scores of mT5 and ByT5 on
German↔English and Russian↔English. Stars indi-
cate significant difference (p < 0.05) in a paired t-test
between the two respective models.
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a maximum number of epochs to {6250, 1250,
250, 50, 10}. All of our experiments on WMT14
data used the same step sizes and max epochs as
our experiments using 250k training examples.

B Additional scores

Figure 12 shows our main results in terms of
BLEU. We can see that the trends of the BLEU

scores are very similar to those of the chrF++
scores, and generally favor ByT5.

We also provide Table 5, which shows the raw
chrF++ scores that are used to create Figures 4
and 5.

All individual scores used to create the figures
in this work (which totals over 24 thousand val-
ues), as well as the models weights and models
outputs, are provided.11

11https://github.com/Leukas/CharLevelMT.
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Language Script mT5 ByT5 Language Script mT5 ByT5 Language Script mT5 ByT5 Language Script mT5 ByT5

Acehnese Arabic 13.7 12.4 Faroese Latin 43.0 45.1 Lombard Latin 42.2 46.1 Samoan Latin 40.6 40.6
Acehnese Latin 32.2 33.4 Fijian Latin 27.5 26.5 Latgalian Latin 32.4 37.3 Shona Latin 35.4 36.4
Mesopotamian Arabic Arabic 40.4 43.0 Finnish Latin 43.2 45.8 Luxembourgish Latin 52.2 55.3 Sindhi Arabic 37.1 39.3
Ta’izzi-Adeni Arabic Arabic 41.3 44.3 Fon Latin 13.0 12.2 Luba-Kasai Latin 25.6 25.8 Somali Latin 35.2 36.8
Tunisian Arabic Arabic 37.2 39.9 French Latin 53.8 55.9 Ganda Latin 27.3 27.7 Southern Sotho Latin 39.4 42.4
Afrikaans Latin 60.7 62.5 Friulian Latin 44.5 46.9 Luo Latin 20.8 19.7 Spanish Latin 48.1 48.8
South Levantine Arabic Arabic 42.2 45.1 Nigerian Fulfulde Latin 19.1 17.4 Mizo Latin 24.3 25.3 Tosk Albanian Latin 49.8 51.6
Akan Latin 24.8 24.8 Scottish Gaelic Latin 39.5 42.8 Standard Latvian Latin 45.4 47.3 Sardinian Latin 47.9 51.3
Amharic Ge’ez 35.0 34.6 Irish Latin 45.3 48.1 Magahi Devanagari 39.2 43.1 Serbian Cyrillic 50.1 52.8
North Levantine Arabic Arabic 39.7 43.4 Galician Latin 52.6 54.2 Maithili Devanagari 37.8 41.2 Swati Latin 32.4 35.4
Modern Standard Arabic Arabic 43.7 46.4 Guarani Latin 22.0 22.6 Malayalam Malayalam 36.6 41.5 Sundanese Latin 44.9 46.0
Modern Standard Arabic Latin 21.8 18.1 Gujarati Gujarati 40.1 44.4 Marathi Devanagari 37.6 41.4 Swedish Latin 56.2 57.1
Najdi Arabic Arabic 42.7 46.1 Haitian Creole Latin 46.4 48.2 Minangkabau Arabic 12.6 12.2 Swahili Latin 44.8 46.7
Moroccan Arabic Arabic 34.6 37.4 Hausa Latin 38.7 40.3 Minangkabau Latin 33.4 37.0 Silesian Latin 41.2 44.1
Egyptian Arabic Arabic 39.0 41.9 Hebrew Hebrew 46.2 48.5 Macedonian Cyrillic 50.6 53.2 Tamil Tamil 35.9 38.4
Assamese Bengali 32.5 35.6 Hindi Devanagari 42.1 45.6 Plateau Malagasy Latin 39.7 41.0 Tatar Cyrillic 38.1 41.0
Asturian Latin 47.8 49.9 Chhattisgarhi Devanagari 38.0 41.5 Maltese Latin 52.3 56.2 Telugu Telugu 38.3 42.4
Awadhi Devanagari 37.9 41.5 Croatian Latin 44.4 45.2 Meitei Bengali 13.8 13.4 Tajik Cyrillic 41.4 43.0
Central Aymara Latin 15.1 14.6 Hungarian Latin 44.6 46.3 Halh Mongolian Cyrillic 34.1 38.4 Tagalog Latin 50.9 52.2
South Azerbaijani Arabic 27.8 28.5 Armenian Armenian 44.1 45.5 Mossi Latin 15.7 14.5 Thai Thai 40.6 41.5
North Azerbaijani Latin 35.1 37.6 Igbo Latin 35.3 35.9 Maori Latin 36.3 36.9 Tigrinya Ge’ez 29.3 27.5
Bashkir Cyrillic 34.7 38.0 Ilocano Latin 39.8 40.5 Burmese Myanmar 33.5 33.6 Tamasheq Latin 18.1 16.8
Bambara Latin 20.7 17.8 Indonesian Latin 49.7 51.3 Dutch Latin 48.9 49.6 Tamasheq Tifinagh 8.1 2.0
Balinese Latin 39.1 40.2 Icelandic Latin 44.2 45.0 Norwegian Nynorsk Latin 53.8 55.4 Tok Pisin Latin 37.7 37.2
Belarusian Cyrillic 39.7 41.6 Italian Latin 49.7 50.8 Norwegian Bokmål Latin 53.5 54.7 Tswana Latin 33.8 36.1
Bemba Latin 28.0 29.5 Javanese Latin 44.7 46.1 Nepali Devanagari 40.2 44.2 Tsonga Latin 27.9 28.8
Bengali Bengali 38.1 41.7 Japanese Japanese 34.5 36.7 Northern Sotho Latin 37.2 40.5 Turkmen Latin 28.2 31.1
Bhojpuri Devanagari 34.3 37.4 Kabyle Latin 16.2 13.7 Nuer Latin 12.9 11.4 Tumbuka Latin 32.0 33.2
Banjar Arabic 12.3 10.5 Jingpho Latin 15.7 15.9 Nyanja Latin 36.2 37.8 Turkish Latin 40.9 44.6
Banjar Latin 36.5 38.7 Kamba Latin 21.5 21.6 Occitan Latin 54.0 57.4 Twi Latin 27.3 26.8
Standard Tibetan Tibetan 12.3 10.9 Kannada Kannada 36.8 40.7 West Central Oromo Latin 23.1 24.7 Central Atlas Tamazight Tifinagh 15.9 4.6
Bosnian Latin 46.8 48.4 Kashmiri Arabic 24.5 26.4 Odia Oriya 29.0 40.9 Uyghur Arabic 20.9 19.3
Buginese Latin 26.7 27.1 Kashmiri Devanagari 20.9 22.5 Pangasinan Latin 34.5 35.3 Ukrainian Cyrillic 48.5 50.2
Bulgarian Cyrillic 50.4 52.7 Georgian Georgian 39.5 41.4 Eastern Panjabi Gurmukhi 40.0 44.6 Umbundu Latin 20.8 19.9
Catalan Latin 54.5 56.3 Central Kanuri Arabic 9.5 11.4 Papiamento Latin 47.7 52.4 Urdu Arabic 39.3 41.8
Cebuano Latin 50.9 52.2 Central Kanuri Latin 18.3 18.2 Western Persian Latin 43.4 45.8 Northern Uzbek Latin 38.6 41.8
Czech Latin 49.5 51.2 Kazakh Cyrillic 38.0 42.6 Polish Latin 44.3 45.0 Venetian Latin 45.6 48.7
Chokwe Latin 20.4 19.3 Kabiyè Latin 12.7 11.9 Portuguese Arabic 56.5 58.1 Vietnamese Latin 44.3 44.8
Central Kurdish Arabic 33.9 35.7 Kabuverdianu Latin 39.2 45.5 Dari Arabic 43.5 45.3 Waray Latin 49.8 52.3
Crimean Tatar Latin 32.1 36.7 Khmer Khmer 42.1 41.1 Southern Pashto Arabic 39.0 40.8 Wolof Latin 19.7 17.3
Welsh Latin 49.6 49.1 Kikuyu Latin 21.7 20.5 Ayacucho Quechua Latin 21.0 21.9 Xhosa Latin 40.8 42.3
Danish Latin 57.4 58.2 Kinyarwanda Latin 37.1 38.3 Romanian Latin 52.2 54.3 Eastern Yiddish Hebrew 51.0 52.0
German Latin 55.1 55.7 Kyrgyz Cyrillic 34.1 37.6 Rundi Latin 32.4 33.5 Yoruba Latin 26.3 28.3
Southwestern Dinka Latin 17.3 15.7 Kimbundu Latin 22.2 22.2 Russian Cyrillic 46.8 48.4 Yue Chinese Han (Traditional) 36.8 35.8
Dyula Latin 17.2 16.0 Northern Kurdish Latin 37.6 39.7 Sango Latin 23.5 24.5 Chinese Han (Simplified) 3.9 3.9
Dzongkha Tibetan 3.5 10.0 Kikongo Latin 25.3 25.3 Sanskrit Devanagari 28.6 29.4 Chinese Han (Traditional) 35.3 35.0
Greek Greek 46.8 48.1 Korean Hangul 34.9 36.8 Santali Ol Chiki 0.4 8.4 Standard Malay Latin 49.4 50.7
English Latin 93.9 99.6 Lao Lao 43.7 43.8 Sicilian Latin 44.9 49.1 Zulu Latin 40.8 42.1
Esperanto Latin 52.4 55.0 Ligurian Latin 44.2 48.7 Shan Myanmar 28.1 15.3
Estonian Latin 45.0 47.1 Limburgish Latin 44.0 48.2 Sinhala Sinhala 35.5 37.8
Basque Latin 40.3 43.5 Lingala Latin 27.5 27.0 Slovak Latin 48.7 50.8
Ewe Latin 22.8 22.2 Lithuanian Latin 42.7 45.1 Slovenian Latin 46.4 47.7

Table 5: chrF++ scores of large mT5 and ByT5 models fine-tuned on 10k German→English examples.
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