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Abstract

Mastering commonsense understanding and
reasoning is a pivotal skill essential for con-
ducting engaging conversations. While there
have been several attempts to create datasets
that facilitate commonsense inferences in dia-
logue contexts, existing datasets tend to lack
in-depth details, restate information already
present in the conversation, and often fail to
capture the multifaceted nature of common-
sense reasoning. In response to these limita-
tions, we compile a new synthetic dataset for
commonsense reasoning in dialogue contexts
using GPT, ConvoSense, that boasts greater
contextual novelty, offers a higher volume of
inferences per example, and substantially en-
riches the detail conveyed by the inferences.
Our dataset contains over 500,000 inferences
across 12,000 dialogues with 10 popular in-
ference types, which empowers the training
of generative commonsense models for dia-
logue that are superior in producing plausible
inferences with high novelty when compared
to models trained on the previous datasets. To
the best of our knowledge, ConvoSense is the
first of its kind to provide such a multitude of
novel inferences at such a large scale.

1 Introduction

Effective dialogue is accomplished by a profound
grasp of language and a thorough comprehen-
sion of the world. Such comprehension is crucial
to the construction of responses that are perti-
nent, coherent, and captivating within an ongoing
dialogue. A pivotal element of this worldview
is commonsense: self-evident information that is
universally acknowledged among humans (Clark
and Brennan, 1991).

Over time, there has been a concerted endeavor
to create datasets that facilitate commonsense rea-
soning. Early work, such as the widely recognized

ConceptNet (Speer et al., 2017), focused pre-
dominantly on physical commonsense related to
entities. Lately, efforts have shifted toward build-
ing datasets encompassing social- and event-based
commonsense, such as ATOMIC (Hwang et al.,
2021). This new wave of datasets targets complex
human concepts, including emotions, desires, and
motivations.

As human conversations largely revolve around
sharing personal experiences and life events
(Fillwock and Traum, 2018; Mitsuda et al., 2019),
it is critical for virtual agents to possess a robust
understanding of human experiences to conduct
effective dialogue. Datasets such as ATOMIC
hold promise as they provide insights directly rel-
evant to human experience; however, a drawback
lies in their lack of contextual awareness as they
hinge on isolated, concise phrases for common-
sense inferences. This limitation poses challenges
for dialogue-oriented tasks because utterances
should not be viewed in isolation but must be in-
terpreted within their context (Pan et al., 2019; Jin
et al., 2022).

Several initiatives have recently aimed to cu-
rate commonsense inferences tailored for dialogue
contexts (Gao et al., 2022; Ghosal et al., 2022;
Zhou et al., 2022a). However, a trade-off cur-
rently exists between the breadth of inference
types covered and the scope of dialogue contexts
encompassed within these existing datasets. While
some datasets cover a wide range of relations, they
are limited to a small number of dialogues (Gao
et al., 2022), whereas others capture a large num-
ber of dialogues but on a limited set of relations
(Ghosal et al., 2022).

In addition, a few challenges can be encoun-
tered in these datasets. For example, the inferences
in these datasets are often too succinct and derive
only straightforward conclusions with minimal
elaboration (Gao et al., 2022), which do not convey
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implicit commonsense. Some studies instruct an-
notators to recycle information from the ongoing
conversation, undermining the speculative nature
of inferences and detracting from the potential of
offering fresh insights to enhance dialogue under-
standing (Ghosal et al., 2022). Moreover, although
multiple plausible inferences can be drawn from a
single dialogue context, only a few datasets sup-
port this multifaceted nature (Shen et al., 2022),
impeding the development of models capable of
generating diverse inferences, and thus limiting
their utility in real applications.

We present ConvoSense, a commonsense da-
taset generated by GPT encompassing 10 popu-
lar inference types with over 500,000 inferences
across 12,000 dialogues (§4). Our dataset shows
greater contextual novelty and enhanced inference
diversity and detail while maintaining exceptional
reasonability compared to existing datasets (§3).
We also explore several strategies to build gen-
erative models producing inferences for dialogue
contexts (§5). Our experiments show that models
trained on ConvoSense excel in generating plau-
sible inferences with greater detail and novelty,
compared to ones trained on existing datasets
(§6). To the best of our knowledge, this is the
first dialogue-based commonsense dataset that not
only covers an extensive array of inference types
at large-scale but also provides a plethora of di-
verse, novel inferences tailored to each dialogue
context. Our ConvoSense dataset and inference
models can be accessed through our open-source
project: https://github.com/emorynlp
/ConvoSense.

2 Related Work

Recent work has focused on integrating common-
sense into various tasks, including story genera-
tion and explanation (Guan et al., 2020; Gabriel
et al., 2021), dialogue summarization and expla-
nation (Ghosal et al., 2021; Zhou et al., 2021; Kim
et al., 2022), and response generation (Li et al.,
2022; Sabour et al., 2022; Zhou et al., 2022b).
Many of this work relies on existing datasets,
such as ConceptNet (Li et al., 2022; Zhou et al.,
2022b) and ATOMIC (Sabour et al., 2022), which
only contain single-word or short-phrase premises
and conclusions. Although there are common-
sense datasets curated for long dialogue contexts,
they tend to be of small size (Zhou et al., 2022a),
express simple inferences (Gao et al., 2022), or

copy context from the provided utterances (Ghosal
et al., 2022).

On the other hand, GPT has recently been used
to create a variety of datasets. Kim et al. (2023)
and Zhan et al. (2023) constructed dyadic dialogue
datasets at large-scale, while West et al. (2022)
generated commonsense triples in the ATOMIC
style (Hwang et al., 2021). However, the ATOMIC-
style inferences are not necessarily suitable for
dialogue, as they struggle to handle long contexts
and often lack depth. Table 1 summarizes the in-
ference types in existing dialogue-focused com-
monsense datasets and mappings of synonymous
types among them. In particular, the following 3
datasets are used for comparisons with our work:

ComFact Gao et al. (2022) mapped dialogue ut-
terances to reasonable inferences from the exist-
ing ATOMIC2020 dataset (Hwang et al., 2021)
by using exact string matching and embedding
similarity. Subsequently, human annotators veri-
fied the relevance of the retrieved inferences.

Cicero Human participants were tasked with
composing responses to five commonsense ques-
tions (e.g., What is the event that directly causes or
could cause Target?) based on dialogue contexts
and explicitly instructed to incorporate informa-
tion from the preceding or forthcoming utterances.
The first version produced a single inference for
each example (Ghosal et al., 2022), whereas the
second version produced multiple examples of
both good and bad inferences (Shen et al., 2022).

Reflect Zhou et al. (2022a) supplied both
human-generated commonsense inferences and
following utterance responses that could be de-
rived from a specified commonsense inference.
The inferences were collected by instructing
human participants to answer a commonsense
question, while the next-utterance responses were
composed by new human participants who were
provided with the dialogue context and one of the
human-generated inferences.

3 Evaluating GPT-generated Inferences

In order to support the development of a large-
scale and high coverage commonsense dataset for
dialogue that improves upon existing works, we
hypothesize that we can leverage large language
models (LLMs) to accomplish this task in an effi-
cient and low-cost manner. From initial pilot tests
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Type Label(s) Definition(s) COM CIC REF

Subsequent
isBefore What could happen after this? [2]

* 22K 600Subsequent- What subsequent event happens or could happen following the Target? [3]

Events What might happen after? [4]

Antecedent isAfter
What could have happened before this? [2]

* 600
What might have happened before? [4]

Cause
xReason What could be the cause of this event? [2]

80 21K
Cause What is the event that directly causes or could cause Target? [3]

Prerequisite
xNeed What does X need to do before the event can happen? [1]

1K 10K
Prerequisites What is or could be the prerequisite of Target? [3]

Motivation
xIntent Why does X cause the event? [1]

800 12K
Motivation What is an emotion or basic human drive that motivates or could motivate Target? [3]

Attribute xAttr
How would X be described? [1]

400 600
How would you describe Speaker? [4]

Reaction xReact
How does X feel after the event? [1]

300 600
What is Speaker feeling now? [4]

Reactiono oReact
How do others feel after the event? [1]

70 6K 600What is the possible emotional reaction of the listener in response to target? [3]

What is Responder feeling now? [4]
Desire xWant What would X likely want to do after the event? [1] 1K
Desireo oWant What would others likely want to do after the event? [1] 100
Constituents HasSubEvent What is a substep that happens within this event? [2] 800
Obstacle HinderedBy What could obstruct the occurrence of this event? [2] 200
Effect Causes What does this event cause to happen? [2] 30
Effects xEffect What effect does the event have on X? [1] 400
Effecto oEffect What effects does the event have on others? [1] 90

Table 1: The inference types covered in existing commonsense datasets (COM/CIC/REF: the num-
bers of examples in the ComFact / combined Cicero v1 & v2 / Reflect datasets, respectively). Each
row denotes a unique type from the existing datasets using definitions from [1] Sap et al. (2019), [2]
Hwang et al. (2021), [3] Ghosal et al. (2022), and [4] Zhou et al. (2022a). Counts are truncated to the
nearest order of magnitude. * indicates the type was included but no human-verified instances of it
are present.

of both closed-source (GPT) and open-sourced
LLMs (Vicuna and Llama), we find that GPT
provides greater reliability in following specific
instructions and produces commonsense infer-
ences of overall better quality than the open-
sourced LLMs. Consequently, we choose to rely
on GPT in this work.

3.1 Prompt Engineering

Prior to crafting the full ConvoSense dataset, we
empirically assess GPT’s efficacy in generating
reasonable and novel commonsense inferences for
dialogue. To mitigate any unintended bias from
in-context examples in the GPT prompt, we adopt
a zero-shot generation framework.1 GPT prompts
are refined iteratively to achieve the optimal out-
comes. An example of the final prompt design,

1gpt-turbo-3.5-301 with a temperature setting of 1.0.

specifically tailored for the Desire inference
type, is illustrated in Table 2.

During our development process, we observe
that the inferences generated from GPT frequently
contain detailed and rich information, thus ad-
dressing one of the major limitations of existing
works. In addition, to encourage novel inferences
from GPT, we include the instruction ‘‘Your an-
swers should provide novel information that is not
explicitly shared in the conversation." as seen in
Table 2. We observe that this instruction helps in
reducing the redundancy of the generated infer-
ences to the information already explicitly shared
in the dialogue context, thus addressing a second
major limitation of existing works.

For the prompt, each inference type is paired
with a guiding question and an answer prefix, en-
suring uniformity in the generated content for the
specific type, which respectively fill the Inference
Question (Q) and Inference Answer Template (A)
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Speaker: I just finished cleaning up my kitchen and

getting the trash out.

Listener: I don’t envy you. I hate cleaning.

Speaker: I’m the oter way. I love cleaning, and then

C

seeing my nice clean kitchen afterwards.

Target: I’m the other way. I love cleaning, and then
T

seeing my nice clean kitchen afterwards.

Q Question: What does Speaker want to do next?

A Answer: As a result, Speaker wants . . .

In a list titled ‘‘Answers’’, generate several likely answers to this

question for the target expression, keeping the rest of the

conversation in mind.

Your answers should provide novel information that is not

explicitly shared in the conversation.

Table 2: A GPT prompt example for the Desire
inference type. Segments are dynamically mod-
ified based on the example and inference type,
as highlighted in the gray containers (C: dialogue
context, T: target utterance, Q: inference question,
A: inference answer template).

slots in the prompt. For every dialogue context,
a sequence of utterances in the context is placed
in the Dialogue Context (C) slot, and its final
turn gets duplicated in the Target Utterance (T)
slot. inally, the GPT output, commencing with the
header Answers and adopting a list-like format
with newline separation, is parsed to extract the
generated inferences. Table 3 details the questions
and answer prefixes employed for the fifteen iden-
tified inference types derived from the previous
studies in Table 1.

3.2 Evaluation
To evaluate the quality of GPT-generated com-
monsense inferences for dialogues, we compare
their reasonability and novelty against inferences
from human datasets. irst, we sample a uniform
distribution over inference types for each existing
dataset. For every sample, we then prompt GPT to
produce relevant inferences and randomly select
one from the generated list. Finally, two human
annotators are presented with the dialogue con-
text, inference question, and both the GPT- and
human-generated inferences and asked to catego-
rize them for reasonability and novelty. For this
evaluation, we enlist native English speakers via
the Surge AI crowdsourcing platform (https://
surgehq.ai) by paying them at a rate of $0.15
per sample with an estimated completion time of
45 seconds.

Reasonability Most prior commonsense
datasets assess their inferences based on
human-judged reasonability (Hwang et al., 2021;
Ghosal et al., 2022; Shen et al., 2022; Zhou
et al., 2022a). An inference is deemed reasonable
if it makes sense in, is relevant to, and is
consistent with the provided dialogue context. We
follow Hwang et al. (2021), in which annotators
categorize inferences into levels of the truth
likelihood: always/likely, sometimes/possible,
never/farfetched, or invalid/nonsense.

Novelty A key trait of commonsense for
dialogue is its role in enhancing dialogue com-
prehension by providing relevant contextual
information. While Ghosal et al. (2022) gauge cre-
ativity in human responses, creativity is not strictly
focused on inference novelty. In our study, anno-
tators evaluate the extent to which an inference
contributes fresh information to the conversation,
categorized as: new & detailed, new & simple, and
purely repetitive.

Since we aim to elicit the natural commonsense
understanding learned by each annotator through
their life experience in our annotation tasks, we
do not provide any training or explicit exam-
ples towards what constitutes a ‘‘reasonable’’ or
‘‘novel’’ commonsense inference to avoid artifi-
cially polluting their commonsense understanding
of the world. Instead, we provide a description
of the task with definitions of the different cate-
gories. Our instructions are intended to mitigate
bias towards trivial inference properties by pro-
viding clear definitions of the characteristics under
study and emphasizing important aspects to keep
in mind, such as ignoring grammar errors unless
it made an inference nonsensical. Furthermore,
decomposing inference quality into two charac-
teristics allows for their independent evaluation.
We verified through pilots that this approach re-
sulted in reliable and reasonable annotations from
our annotators for both tasks.

3.3 Results

Following Hwang et al. (2021), the two met-
rics in Section 3.2 are converted into binary
representations. Thus, labels [always/likely, some-
times/possible] are categorized as positive and
[never/farfetched, invalid/nonsense] are consid-
ered negative reasonability. Similarly, [new &
detailed, new & simple] are designated as positive,
and [purely repetitive] is classified as negative
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Type Question Answer Template

Subsequent What might happen after what Speaker just said? After this, . . .

Antecedent What events happened before the situation that Speaker just shared? Before this, . . .

Cause What could have caused the last thing said to happen? This was caused by. . .

Prerequisite What prerequisites are required for the last thing said to occur? For this to happen, it must be true that. . .

Motivation What is an emotion or human drive that motivates Speaker based on what they just said? Speaker is motivated. . .

Attribute What is a likely characteristic of Speaker based on what they just said? Speaker is. . .

Reaction How is Speaker feeling after what they just said? Speaker feels. . .

Reactiono How does Listener feel because of what Speaker just said? Listener feels. . .

Desire What does Speaker want to do next? As a result, Speaker wants. . .

Desireo What will Listener want to do next based on what Speaker just said? As a result, Listener wants. . .

Constituents What is a breakdown of the last thing said into a series of required subevents? This involves. . .

Obstacle What would cause the last thing said to be untrue or unsuccessful? This is untrue or unsuccessful if. . .

Effect What does the last thing said cause to happen? This causes. . .

Effects How does the last thing said affect Speaker? This causes Speaker to. . .

Effecto How does the last thing said affect Listener? This causes Listener to. . .

Table 3: Question and answer prefixes used for generating each inference type from GPT for dialogue
contexts. The ten inference types used in our work are represented in gray shading.

novelty. This setup, with 300+ annotated samples
per dataset, allows us to detect differences of at
least 10% between GPT- and human-generated da-
tasets using McNemar’s binary matched-pairs test
at 80% power and a significance level of 0.05, as-
suming discordance probabilities of 0.24 or lower
(compatible with pilots).2 In cases of annotator
disagreement, one of the annotators’ decisions is
randomly selected. To mitigate the potential noise
introduced by this random selection, we repeat
the process 100 times and report the average re-
sult, only confirming statistical significance when
every selection yields a significant result.

Considering the reported quality of the exist-
ing datasets and our preliminary assessments of
GPT-generated inferences, we expect much higher
rates of positive classes than negative ones, re-
sulting in a class imbalance. To overcome the
vulnerability to prevalence skew exhibited by
other agreement metrics like Cohen’s kappa (Jeni
et al., 2013; Wongpakaran et al., 2013; Quarfoot
and Levine, 2016), Gwet’s AC1 inter-annotator
agreement metric is chosen (Gwet, 2002).3 Our
annotators obtain AC1 values of 0.8 and 0.6 for
reasonability and novelty, respectively, implying
substantial agreement.

Table 4 demonstrates that GPT can attain com-
parable reasonability in its generated inferences
as those derived from humans, even exceeding
the reasonability of the inferences in ComFact

2https://homepage.univie.ac.at/robin.ristl
/samplesize.php.

3We observe Cohen’s kappa of 0.19 and 0.15 for rea-
sonability and novelty, respectively.

Dataset R N #
GPT 93 (0.17)* 91 (0.21)*

390
ComFact 81 (0.05) 73 (0.04)

GPT 93 (0.10) 80 (0.16)*
300

Cicero 88 (0.05) 70 (0.06)

GPT 89 (0.08) 86 (0.08)
300

Reflect 91 (0.09) 82 (0.04)

Table 4: The average % (σ < 2%) of total sam-
ples (#) tested as reasonable (R) and novel (N),
with discordance probabilities in parentheses. *:
statistical significance (McNemar’s, α = 0.05).
90 more samples are used for ComFact due to its
greater number of inference types.

with statistical significance. Notably, the results
also indicate that GPT surpasses the novelty of
the human-generated inferences for the major-
ity of the existing datasets. Furthermore, GPT
outputs achieve higher detail than that observed
from human-generated inferences. Figure 2 shows
the percentage of new & detailed inferences out
of all positive novelty inferences for each data
source, clearly demonstrating the superiority of
GPT inferences in terms of their expressed detail.
Example inferences from GPT and humans are
shown in Figure 1.

4 ConvoSense Dataset

Given our assessment of high-quality, novel, and
detailed GPT-generated commonsense inferences
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Figure 1: Cause and Attribute inferences written by humans (top, green) and generated by GPT (bottom, blue).

Figure 2: Average % of new & detailed inferences out
of all positive novelty inferences for each data source.

across various dialogue contexts and inference
types (Section 3), we construct a substantial
conversational commonsense dataset using GPT,
termed ConvoSense.

4.1 HumanGen: Human-generated Datasets

For fair comparisons to our work, we combine the
three human-generated datasets (Section 2) into
a solitary dataset, termed HumanGen.4 Specifi-
cally, their train/validation/test sets are integrated
independently. For ComFact and Cicero, this in-
tegration follows the provided splits, while for
Reflect, data is sampled following an 80/10/10
distribution. To standardize HumanGen into a

4Many commonsense types have a sparsity of training
data when the human-generated datasets are viewed in isola-
tion, which would impede the training of a neural model to
adequately capture the commonsense type.

cohesive format, we perform the following pre-
processing steps.

First, we leverage the mapping outlined in
Table 1 along with the specifications from Table 3
to identify relevant commonsense inference ques-
tions for each instance. Then, we combine consec-
utive utterances from the same speaker to ensure
every dialogue turn represents a distinct speaker.
Lastly, we apply Speaker and Listener tags in a
similar manner to ConvoSense (Figure 3). Since
human-generated inferences often contain nomi-
nal references to specific target entities, we addi-
tionally incorporate the names of conversational
participants into the tags, as exemplified by
‘‘Speaker (A)’’.

The naming conventions vary across the differ-
ent human-generated datasets. To maintain uni-
formity, we adopt the naming conventions used in
Cicero for both ComFact and Reflect, as Cicero
constitutes nearly 90% of HumanGen. In Cicero,
participants are denoted as A and B. For ComFact,
originally lacking speaker designations, we ran-
domly assign A/B tags to each conversation. On
the other hand, Reflect includes original speaker
names; thus, we replace them with A/B tags
accordingly. Since the speaker name frequently
appears in Reflect’s inferences, we uniformly re-
place it with ‘‘the speaker’’, aligning with the
prevalent format in Cicero.

4.2 ConvoSense: New
GPT-generated Dataset

Constructing a practical dataset of commonsense
inferences for dialogue benefits from covering
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Listener:
Speaker:
Listener:
Speaker:
Listener:
Speaker:

1. to ask the listener if she knows any shortcuts or tricks to find the 
perimeter quickly.

2. to learn the different types of shapes and their respective perimeters 
to improve her math skills.

3. to know the formula for calculating the perimeter so that she can 
apply it to the given shape.

4. to explore practical applications of finding perimeters in daily 
life, such as measuring the perimeter of her backyard.

5. to document the process of finding the perimeter step by step so 
that she can later revise it as a reference guide.

Desire
Hi, Taraji. How are you doing today?

I'm doing fine, thank you. Just working on my math homework.

Do you need any help with that?

Yeah, I could use some help. Thank you.

Let's take a look. What are you working on?

I'm working on this problem where I have to find the perimeter of 

this shape.

Speaker:
Listener:
Speaker:

1. to know if speaker has any recommendations for better 
books.

2. to discuss specific examples of two-dimensional 
characters and plot holes in the book with speaker.

3. to ask speaker if they have read any other books by the 
same author.

4. to leave a negative review of the book online.
5. to stop reading the book and find something else 

to read.

This book is terrible!

What's wrong with it?

The author doesn't know how to tell a story! 

All the characters are two-dimensional and 

the plot is full of holes!

Desireo

Figure 3: Desire and Desireo inferences in the ConvoSense dataset.

a wide variety of dialogue situations. To this
end, our construction process of ConvoSense first
carefully selects the dialogues to include based
on their topical diversity, trims the dialogue con-
texts to optimize utterance diversity, and finally
generates the inferences for each context.

Dialogue Selection We choose to sample the
dialogues for ConvoSense as a subset of those di-
alogues in the high-quality and large-scale SODA
dataset. SODA contains over a million dyadic
dialogues generated by GPT covering situations
based on ATOMIC commonsense tuples (Kim
et al., 2023). For cost practicality, ConvoSense
is constructed to contain 10,000 training dia-
logues, 1,000 validation dialogues, and 1,000 test
dialogues.

To encourage diversity in ConvoSense, we
employ BERTopic (Grootendorst, 2022), which
clusters the dialogues selected from SODA
into groups using dimension reduction technique
UMAP (McInnes et al., 2020) and HDBSCAN
clustering algorithm (McInnes et al., 2017) on the
BERT embeddings of the dialogues.5 We con-
figure the hyperparameters6 to effectively group
dialogues while maintaining a well-balanced dis-
tribution of group lengths based on manual ver-
ifications. As a result, we obtain 100K dialogue
groups, where each group consists of 6.3 dia-
logues on average. These groupings represent
100K unique dialogue topics, thus enabling the
construction of ConvoSense to span a variety of

5The all-mpnet-base-v2 model is used for BERT.
6neighbors: 5, components: 5, min cluster size: 2.

topics by sampling dialogues from a subset of
these groupings.

Next, we randomly select one dialogue from the
n groupings, where each dialogue contains at least
5 utterances and has a BERTopic score of at least
0.95 to its group. To maintain distinct dialogue
scenarios in each split, each grouping can only be
selected for one split. Through this procedure, we
set n values as [10K, 1K, 1K] for assembling the
training, validation, and test splits, respectively.

Utterance Selection For each selected dialogue,
we determine which utterance to perform infer-
ence generation on. We use the topic keywords
identified for each group during the BERTopic
grouping to pinpoint the most topically salient
utterance in each dialogue and ensure that the
diversity afforded by the grouping is maintained.
This is achieved by selecting the utterance whose
embedding yields the highest cosine similarity
with the embedding of the four-word topic string
assigned to the dialogue’s respective group by
BERTopic. Subsequently, we trim the dialogue’s
utterances such that the conversation ends at this
selected utterance. This trimmed version becomes
the final dialogue context used for commonsense
inference generation, where the inferences are
derived for the last utterance.

Because commonsense inferences often relate
to a central figure in a conversation, either the
speaker or the listener, we introduce nominal tags
for the two participants. The terminal utterance is
labeled as Speaker, and its preceding utterance is
labeled as Listener. These nominal tags are then
assigned in alternating order to the remainder.
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All Poly
Examples Words Inferences U1(#) U2(#) Examples U1(%) U2(%) UL(%)

ConvoSense 120,000 14.6 5.1 (2–13) 16,666 199,087 120,000 92.8 98.9 98.8
ComFact 3,909 3.2 1.4 (2–12) 295 315 1,401 86.7 97.3 60.3

Cicero 52,644 11.6 1.3 (2–11) 7,598 44,234 9,911 84.4 97.2 98.7

Reflect 3,000 6.4 1.1 (2–4) 835 1,407 216 85.1 95.2 82.2
HumanGen 59,553 6.6 1.3 (1–12) 2,886 15,420 11,528 86.7 97.0 78.3

Table 5: Statistics of the ConvoSense and HumanGen datasets. Poly: polymorphic examples (multiple
inferences). Examples: # of examples, Words: average # of words per inference, Inferences:
average # of inferences per example with range shown in parentheses, U1/2(#): average # of unique
unigrams/bigrams across all inferences, U1/2(%): average % of unique unigrams/bigrams between
inferences within a single example, UL(%): average % of unique inferences across all examples.
Averages are calculated at the macro level across all inference types.

Inference Types For each preprocessed dia-
logue, GPT generates inferences for all included
commonsense types following the procedure in
Section 3. Specifically, ten commonsense types
are included: Subsequent, Cause, Prerequisite,
Motivation, Attribute, Reaction, Reactiono, De-
sire, Desireo, and Constituents (highlighted in
Table 3). These types are selected based on their
usage frequency in existing datasets and their lack
of semantic overlap.

Data Statistics Table 5 presents data statistics
for ConvoSense and HumanGen. ConvoSense
significantly surpasses HumanGen for data vol-
ume, particularly regarding instances with poly-
morphic outputs, where multiple inferences can
be derived per instance. Moreover, ConvoSense
boasts greater vocabulary diversity and reduced re-
dundancy among inferences. Illustrative examples
from ConvoSense are shown in Figure 3.

Data Quality The results in Section 3.3 demon-
strate that GPT is generally capable of producing
high-quality commonsense inferences regardless
of the underlying dialogue source. Consequently,
applying GPT to generate commonsense infer-
ences for the SODA dialogues is expected to per-
form with similar high quality. To explicitly verify
this, we conduct an evaluation of the ConvoSense
dataset. An external conversational AI expert, un-
affiliated with this study, evaluates the generated
inferences for 100 ConvoSense examples (508
total inferences; average 5.08 inferences per ex-
ample), with all ten inference types uniformly
represented across examples. The human judge
completes two evaluation tasks: grading reason-

ConvoSense

Reasonable 91

Novel 97

Detailed 63

Clusters 4.82 (95%)

Table 6: Human evaluation results on 100 exam-
ples of ConvoSense data, including the % of total
inferences judged to be reasonable and novel, the
% of positive novelty inferences judged to be
detailed (vs. simple), and the average number of
unique inference clusters per example, with the
average % of unique inferences per example in
parentheses.

ability and novelty of an inference (Section 3.2)
and performing inference clustering to mea-
sure per-example output diversity (Section 6.2).
Table 6 presents the results, confirming the high
reasonability, novelty, detailedness, and diversity
of the inferences in the ConvoSense dataset.

Error Analysis We next perform an error anal-
ysis on the unreasonable inferences identified by
the human judge. We observe that most unreason-
able inferences are explained by being too niche
to be likely given only the provided information
in the dialogue context (26%; Desire examples
#4-5 in Figure 3), or by their attribution to the
wrong conversational participant (26%; Desireo
examples #4-5 in Figure 3). Relatively speaking,
only a small percentage of unreasonable infer-
ences are explained by a violation of common
knowledge of human experiences (10%), a lack
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of relevance to the dialogue context (10%), or a
contradiction of the dialogue context (7%). This
suggests that ConvoSense inferences are predom-
inately accurate representations of commonsense
understanding, although they can suffer from lack
of precision regarding situational nuances and
speaker roles.

5 Generative Commonsense Models

5.1 Training and Decoding Strategies

With the rich and diverse multi-inference ex-
amples provided in ConvoSense, we are well-
positioned for training commonsense generation
models that produce versatile outputs. Yet, a key
query remains: How can we induce this versatil-
ity into the model?

A common method of enhancing diversity in
generative outputs is to modify the decoding strat-
egy (Gimpel et al., 2013; Vijayakumar et al.,
2018; Ippolito et al., 2019). Through preliminary
testing, we observe that diverse beam search de-
coding with Hamming distance reward following
Vijayakumar et al. (2018) improves the output di-
versity with less impact on accuracy compared to
other methods.

On the other hand, Cao and Wan (2020) propose
modifying the model architecture by introducing
latent variables to guide output variety. How-
ever, these approaches only approximate learning
varied responses by relying on conditioning on
random latent variables. In contrast, ConvoSense
provides direct access to numerous inferences per
input, enabling direct training of generative mod-
els that produce multiple inferences per example,
with the set of inferences treated as target outputs
during training. Therefore, we explore the perfor-
mance of three strategies for diverse generation of
commonsense inferences.

Monomorphic Beam Search (M) This model
receives as input a dialogue context C consisting
of the previous six utterances delimited by their
corresponding speaker tags, the current response
r for which to generate inferences, and a com-
monsense question q pertaining to one of the ten
inference types (Table 3) in the following format:

C\nr\n\n[Question]q\n[Answer]

It is trained to output a single inference i. During
training, instances with multiple correct infer-

ences I generate several training examples, one
for each target inference i ∈ I . During inference,
standard beam search decoding is used to generate
k outputs.

Monomorphic Diverse Beam Search (M*)
This model adheres to the same design as the M
model, except during inference, it uses Hamming-
distance diverse beam search decoding instead to
generate k outputs, following Vijayakumar et al.
(2018).

Polymorphic (P) Using the same input as the
M model, this model is trained to output a se-
ries of inferences as a sequence. To do this, the
ground-truth inferences for each training example
are concatenated into a list-like sequence, delim-
ited by semicolons and prefixed by an integer
representing their position in the list as follows:

(1)i1; (2)i2; (3)i3; . . .

The order of the answers in the list are shuffled
between each training epoch. During inference,
standard beam search decoding is used to generate
the top-1 output. A single output from this model
is intended to represent the set of multiple diverse
inferences for the input, without the need for any
post-hoc decoding strategies, which other studies
have observed to negatively impact the accuracy
of the output generations (Ippolito et al., 2019).

5.2 Model Configuration

We develop six generative models: Convo-
SenseM, ConvoSenseM*, ConvoSenseP, Human-
GenM, HumanGenM*, and HumanGenP. Each
model name denotes the training dataset with the
terminal letter indicating the model strategy. All
of them use T5-3b (Raffel et al., 2020) as the base
model, which is then finetuned on the correspond-
ing dataset following the indicated model strat-
egy. The ConvoSense* and HumanGen* models
are finetuned for 5 or 10 epochs, respectively. The
best-performing models and hyperparameters7 are

7The Adafactor optimizer is used with a weight decay of
5e-3 and a learning rate of 5e-6, except for ConvoSenseP with
1e-6. The max source length is set to 768. The max target
length is set to 400 for P models and 128 for other models.
All models are trained using bf16 for memory efficiency. P
models use a prefix of ‘‘provide several reasonable answers
to the question based on the dialogue: \n’’ and other models
use a prefix of ‘‘provide a reasonable answer to the question
based on the dialogue: \n’’.
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selected through grid-search based on their results
on the validation sets.

For all models, decoding is performed with 10
beams. For ConvoSenseM* and HumanGenM*,
the number of beam groups is 10, and the diversity
penalty is 0.5 and 1.0, respectively. For P models,
decoding also uses a repetition penalty of 5.0 to
reduce output token repetition.

It is worth noting that only 16% of Human-
Gen examples feature multiple ground-truth infer-
ences. Training a P model on the complete dataset
yields a single-inference model, which defeats the
purpose of the polymorphic model strategy. In-
stead, we develop the HumanGenP model exclu-
sively on multi-inference instances to facilitate
learning of polymorphic outputs.

6 Generative Model Evaluation

We evaluate the six generative models (Sec-
tion 5.2) on the ten commonsense inference
types (Table 3) that exist in both the HumanGen
(Section 4.1) and ConvoSense (Section 4.2) da-
tasets. The model performance is evaluated us-
ing automatic reference metrics (Section 6.1),
automatic diversity metrics (Section 6.2), and
human evaluations of reasonability and novelty
(Section 6.3).

6.1 Automatic Reference Metrics

Conventional evaluations of generative models
against ground-truth references often overlook the
diverse nature of the outputs. They typically as-
sess individual model outputs against a single
reference, focusing on best-case performance due
to dataset constraints. However, such assessments
are inadequate for our multi-inference dialogue
generation objective. To address this, we struc-
ture our automated evaluation method to account
for the concept of output diversity. This method,
referred to as PolyAgg, serves as an aggrega-
tion function compatible with standard evaluation
metrics. Its purpose is to gauge the model’s capac-
ity to encompass the complete set of ground-truth
references in its generated outputs.

Algorithm 1 demonstrates the PolyAgg ag-
gregation function. It computes a score matrix
for each example, where rows represent model
outputs and columns represent ground-truth refer-
ences, and finds the maximal assignment of rows
to columns following the linear sum assignment
problem (Burkard and Cela, 1999), which seeks to

Algorithm 1 Metric Aggregation
1: procedure POLYAGG(outputs, references)
2: matrix ← []
3: for o ∈ outputs do
4: row ← []
5: for r ∈ references do
6: score ← METRIC(o, r)
7: APPEND(score, row)

8: APPEND(row,matrix)

9: a ← LINEARSUMASSIGNMENT(matrix)
10: return MEAN(a)

find the optimal bijective mapping between rows
and columns in a cost matrix. By mandating a
one-to-one mapping from model outputs to ref-
erences, we can accurately measure reference set
coverage and prevent models that generate mere
surface-level variations from scoring highly on
datasets with diverse references. We use SciPy’s
linear sum assignment solver, then calculate the
mean of the assigned scores for the final metric
value. Dou et al. (2021) utilize a similar aggre-
gation for evaluating a diverse dialogue response
generation model.

One consideration for PolyAgg is that it can
only match up to the number of generated out-
puts. If a model generates fewer outputs than
there are references, PolyAgg will not measure
against all references. However, this is a reflec-
tion of the model’s coverage capability, which
is valuable information. To capture this, we in-
troduce a coverage moderator for the PolyAgg
score. Using cardinality notation | · |, where outse
denotes the model outputs and refse denotes
the ground-truth references for a single example
e ∈ E, the coverage moderator C is defined as:

C =
|outse|
|refse|

(1)

Furthermore, different dialogue contexts can vary
in the amount of diversity to their inferences,
due to the nature of the described situations or
shared information within the dialogue. A model
achieving a high PolyAgg score on a diverse ex-
ample should receive greater reward compared to a
low-diversity case. Thus, not all examples should
be treated equally when computing the overall
model score; rather, each score should be pro-
portionally weighted based on the corresponding
number of ground-truth references.
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HumanGen Test Split (n = 11, 494) ConvoSense Test Split (n = 10, 000)
Top-1 Top-5 Top-1 Top-5

BLEU BS Embed BLEU BS Embed BLEU BS Embed BLEU BS Embed
ConvoSenseM 5.407 0.641 0.422† 6.282 0.650 0.462 19.019 0.777 0.730† 11.119 0.700 0.603

ConvoSenseM* 5.131 0.637 0.416 6.710 0.658† 0.496 17.923 0.773 0.725 11.933 0.709 0.627

ConvoSenseP 4.922 0.635 0.422 6.026 0.645 0.482 15.163 0.758 0.703 9.725 0.644 0.564
HumanGenM 10.724 0.711 0.538 12.701 0.721 0.576 5.095 0.633 0.501 3.574 0.588 0.413

HumanGenM* 9.473 0.697 0.511 12.056 0.724† 0.591 4.263 0.617 0.481 3.045 0.571 0.393

HumanGenP 9.524 0.700 0.523 9.658 0.645 0.504 6.358 0.655 0.528 2.330 0.256 0.201

Table 7: Reference metric results on test splits. Columns BS denote Bertscore. Underline indicates best
metric with statistical significance under Bonferonni multi-test correction, except where indicated by
† (t-test, α = 0.05).

Combining the PolyAgg aggregation, cov-
erage moderator C, and diversity weighting, the
final score for a model is calculated as:

∑

e∈E
PolyAgg(outse, refse) ∗ C ∗ |refse|

∑

e∈E
|refse|

(2)

We use this evaluation scheme with three au-
tomatic metrics to measure the performance of
the models. We include the traditional ngram-
matching BLEU metric with n ∈ [1, 4] (Papineni
et al., 2002), the embedding-based metrics Bert
Score8 (Zhang et al., 2019), and sentence co-
sine similarity using SentenceBert9 (Reimers and
Gurevych, 2019).

Results We evaluate each model in terms of
both its best-case performance (Top-1 output) and
its multi-inference performance (Top-5 outputs).
In the Top-1 setting, the maximum score achieved
by the top-1 output against all of the ground-truth
references for an example is taken and averaged
across the test data. In the Top-5 setting, the top-5
outputs from the models are taken and scores
are calculated using Equation 2, before being
averaged across the test data. For M(*) models,
the top one or five beams are taken as the outputs
for each setting. For P models, the first one or five
inferences in the outputted sequence are taken as
the outputs for each setting. The results are shown
in Table 7 for each model on the HumanGen and
ConvoSense test splits, respectively.

Overall, it is evident that using diversity-
promoting decoding (M*) outperforms the direct
generation of multiple inferences (P). This ap-

8BertScore: microsoft/deberta-xlarge-mnli.
9SentenceBert: all-mpnet-base-v2.

proach achieves the highest BLEU, BertScore, and
sentence similarity scores in the Top-5 assessment
setting. This trend is particularly pronounced in
the case of the ConvoSense-trained model, hold-
ing true for both the ConvoSense and Human
Gen test splits. Enhancing training inference di-
versity as seen in ConvoSense appears to support
the adoption of diversity-focused decoding strate-
gies, yielding more contextually relevant outputs
aligned with ground-truth references, even when
applied to test examples from different datasets.

In the Top-1 setting, monomorphic models with
standard beam search demonstrate superior per-
formance for both HumanGen- and ConvoSense-
trained models. However, the difference compared
to diverse beam search is relatively minor, particu-
larly when considering embedding-based metrics.
Interestingly, the HumanGenP model displays the
strongest ability to generalize to the ConvoSense
test split among all HumanGen-trained models
in the Top-1 scenario. Upon manual comparison
of HumanGenP outputs against other HumanGen-
trained models, we observe that HumanGenP is
more inclined to specify a focal person in the
inference (e.g., ‘‘the speaker/listener’’). This of-
ten aligns better with ConvoSense references, al-
though in a superficial manner with little impact
on the underlying semantics.

It is also observed that the models produce low
scores when evaluated against the test examples
that are out-of-distribution with respect to their
training data. This may not reflect the true under-
lying reasonability of the generated inferences, but
rather a difference in inference content between
the datasets, which is supported by evidence in
Section 3.3 showing that human-written genera-
tions are more often repetitive with the dialogue
context than GPT generations. To obtain a direct
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Clusters Words
ConvoSenseM 2.680 (54%) 12.179
ConvoSenseM* 3.509 (70%) 12.928
ConvoSenseP 3.262 (74%) 13.292
HumanGenM 3.031 (61%) 6.492
HumanGenM* 3.452 (69%) 5.544
HumanGenP 1.348 (69%) 7.744

Table 8: Diversity metric results. Clusters: av-
erage inference clusters identified per example
(with average % of unique inferences per exam-
ple in parentheses). Underline indicates statistical
significance in number of clusters within-block
(t-test, α = 0.05). Cross-block (ConvoSenseM*
vs HumanGenM*) significance is not achieved.
Words: average number of inference words.

measure of the quality of the generated model
inferences, we perform a human evaluation in
Section 6.3.

6.2 Automatic Diversity Metrics
To assess the ability of each model in generating
diverse inferences for a given dialogue context,
we employ a clustering approach under the Top-5
evaluation scheme. This involves grouping the
model generations for each example into clusters
of inferences with similar meanings. The aver-
age number of inference clusters across examples
serves as a measure of output diversity.

For each of the ten inference types, we draw
50 examples from the test splits of ConvoSense
and HumanGen, except for the Constituents
type in HumanGen due to its smaller test split (22
examples). We instruct GPT410 to create groups
of semantically similar inferences given a dia-
logue context, question, and a list of inferences.
GPT4 demonstrates its proficiency by achieving
an average B-cubed F1-score (Bagga and Baldwin,
1998) of 0.872 against clusters identified by one
of the authors for 20 examples, where B-cubed is
a common clustering evaluation metric that mea-
sures the precision and recall of each element’s
neighbors within the same cluster. This outper-
forms Amazon Mechanical Turk crowdworkers
who only achieved a score of 0.581.11

Results Table 8 displays diversity outcomes per
model. For both HumanGen and ConvoSense-

10gpt-4-0613 with a temperature setting of 0.
11The self-serve SurgeAI crowdsourcing platform previ-

ously used in Section 3.2 was discontinued during this work.

Top-1 Top-5
R N R N Clusters

ConvoSenseM* 90 98 93 98 3.42 (68%)
HumanGenM 75 57 81 56 2.25 (45%)
HumanGenM* 75 70 81 70 3.17 (63%)

Table 9: Percentage of reasonable (R) and novel
(N) inferences from each model. Underline de-
notes a statistically significant result against both
HumanGen models (chi-square proportions test,
α = 0.05). The average number of inference clus-
ters is also shown, along with the average %
of unique inferences per example in parentheses
(Clusters).

trained models, the monomorphic model with
diverse beam search generates the most unique
outputs.12 While ConvoSenseM* slightly outper-
forms HumanGenM* in terms of inference diver-
sity, both models exhibit similar unique inference
cluster counts. Compared to the ConvoSense in-
ferences themselves (Table 6), it is clear that none
of the trained models are able to replicate the high
inference diversity. Nonetheless, there is a large
discrepancy in inference detail, which is revealed
through human assessments in the next section.

6.3 Human Evaluations

We also evaluate the models through human as-
sessment, in both the Top-1 and Top-5 setting.
Based on automated evaluation outcomes, we
compare ConvoSenseM* to both HumanGenM
and HumanGenM*. An external conversational
AI expert, unaffiliated with this study, evaluates
the top five inferences for 60 examples per model
in a blinded design, with all ten inference types
and both datasets being uniformly represented.
The human judge completes two evaluation tasks:
grading reasonability and novelty of an inference
(Section 3.2) and performing inference cluster-
ing (Section 6.2).

Results Table 9 demonstrates ConvoSenseM*’s
superior performance compared to the HumanGen
models. ConvoSenseM* achieves a remarkable
93% reasonability and 98% novelty, averaging
3.4 unique inferences per example. Indeed, simi-
lar results hold even when considering the Top-1

12High unique percentages for P models are due to low-
count inference output (average of 4.4 and 2.0 outputted in-
ferences for ConvoSenseP and HumanGenP, respectively).
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output per model, showing that ConvoSenseM*
exhibits strong performance regardless of whether
a single-best inference is desired or a diverse set
of inferences are desired. Moreover, when consid-
ering the positive novelty inferences in the Top-5
setting, we observe that 75% are annotated as de-
tailed for ConvoSenseM* whereas only 7% are
indicated as such for HumanGenM*. This reveals
a substantial improvement in the amount of de-
tail present in the inferences produced by Convo-
Sense models as compared to HumanGen models,
which results in richer information being provided
by the model.

7 Limitations and Ethical Considerations

This work does not intend to present an exhaus-
tive set of commonsense inferences for dialogue.
While we adhere to established inference types
relevant to dialogue from existing literature, there
could be overlooked types or unique challenges
within specific dialogue domains that remain to
be explored.

Furthermore, it is important to recognize that
some social commonsense inference types may
be associated with stereotypes and biases. When
employing a model that produces commonsense
inferences in a setting that impacts human users,
caution must be exercised to prevent unjust or
prejudiced decisions. Although exploration of the
prevalence of harmful biases is out of the scope
of the current work, we welcome future inves-
tigations into quantifying these aspects of our
resources.

Finally, we adhered to OpenAI’s terms of ser-
vice and related policies when utilizing GPT, and
we acknowledge that any subsequent utilization of
our models and data should refer to these policies.

8 Future Work

Although ConvoSense is composed of diverse
multi-inference dialogue data (Table 6), it is clear
from our experiments (Tables 8 and 9) that our
trained models do not quite achieve the same
degree of inference diversity. Further work is
needed on improving the ability of distilled models
to better capture the diversity present in the data.

In addition, the integration of commonsense un-
derstanding into dialogue applications has shown
promising results in improving performance on
tasks such as response generation, summarization,
and reading comprehension in previous works. In

light of this, our work on improving commonsense
resources and models presents an opportunity for
further advancements in these dialogue applica-
tions. In particular, future work exploring how
to capitalize on our commonsense model for di-
alogue response generation is highly compelling,
since commonsense errors are one of the most
common issues for modern dialogue agents (Finch
et al., 2023). However, previous works have re-
vealed that naive integration of commonsense in-
ferences into neural models do not necessarily
produce improvements (Zhou et al., 2022a). As a
result, we leave the integration of our common-
sense model to future work to allow for thorough
investigation of its impact on response generation,
covering aspects such as the impact of different
commonsense inference types, the filtering of rel-
evant inference types per dialogue context, and
the effect of synthesizing multiple inferences into
dialogue responses.

9 Conclusion

In this work, we present ConvoSense, an automat-
ically constructed dataset of multi-output com-
monsense inferences for dialogue. ConvoSense
surpasses existing datasets in size, advances infer-
ence detail and novelty, and attains comparable
(if not superior) reasonability when compared to
existing datasets. Our investigation into various
techniques for generating multiple inferences re-
veals that diverse beam search on single-output
generative models yields the best outcomes. By
publicly releasing our trained models, we enable
other works to benefit from the remarkable im-
provements in commonsense reasonability and
novelty achieved by this work.
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