
Automatically Correcting Large Language Models:
Surveying the Landscape of Diverse Automated Correction Strategies

Liangming Pan, Michael Saxon, Wenda Xu,
Deepak Nathani, Xinyi Wang, William Yang Wang

University of California, Santa Barbara, USA
{liangmingpan, saxon, wendaxu, dnathani, xinyi wang}@ucsb.edu

william@cs.ucsb.edu

Abstract

While large language models (LLMs) have
shown remarkable effectiveness in various
NLP tasks, they are still prone to issues such as
hallucination, unfaithful reasoning, and toxi-
city. A promising approach to rectify these
flaws is correcting LLMs with feedback, where
the LLM itself is prompted or guided with feed-
back to fix problems in its own output. Tech-
niques leveraging automated feedback—either
produced by the LLM itself (self-correction)
or some external system—are of particular in-
terest as they make LLM-based solutions more
practical and deployable with minimal human
intervention. This paper provides an exhaus-
tive review of the recent advances in correcting
LLMs with automated feedback, categorizing
them into training-time, generation-time, and
post-hoc approaches. We also identify poten-
tial challenges and future directions in this
emerging field.

1 Introduction

Recent years have seen striking empirical suc-
cesses of large language models (LLMs), as they
consistently obtain impressive results across a di-
verse range of NLP benchmarks (Guo et al., 2023;
Suzgun et al., 2023; Qin et al., 2023), while also
showcasing surprising abilities of language under-
standing (Wei et al., 2022a; Begus et al., 2023),
generation (Pu and Demberg, 2023; Lin and Chen,
2023; Lyu et al., 2023a), and reasoning (Wei et al.,
2022b; Kojima et al., 2022; Dasgupta et al., 2022).
However, these models are not without their flaws.
LLMs are observed to intermittently display un-
desired and inconsistent behaviors such as pro-
ducing seemingly convincing but inaccurate
‘‘hallucinations’’ (Lin et al., 2022; Zhang et al.,
2023c; Min et al., 2023), conducting unfaithful
reasoning (Golovneva et al., 2023; Lyu et al.,

2023b; Wu et al., 2023b), generating inappropri-
ate or harmful content (Gehman et al., 2020; Levy
et al., 2021, 2022; Shaikh et al., 2023), and failing
to trustfully follow rules and constraints (Zhuo
et al., 2023; Wang et al., 2023a). Such flawed be-
haviors hamper the trust in LLMs and pose hurdles
to their real-world applications (OpenAI, 2023).

A prevailing strategy to rectify these undesired
behaviors of LLMs is learning from feedback,
mirroring a typical human learning strategy where
individuals actively refine their behaviors through
a cycle of trial, error, and correction. Humans,
when making mistakes, often gather feedback ei-
ther from others or through self-reflection (Boyd
and Fales, 1983; Metcalfe, 2017; Ferretti et al.,
2019; London et al., 2023; Bellhäuser et al., 2023).
Such feedback offers valuable insights for humans
to correct mistakes and modify their behavior ac-
cordingly. Inspired by this natural learning mech-
anism, extensive research (Huang et al., 2022;
Madaan et al., 2023; Gero et al., 2023; Jiang et al.,
2023) has been undertaken to improve LLMs
through the paradigm of learning from both in-
ternal and external feedback.

One popular line of research involves the use
of human feedback to evaluate and refine models,
as encapsulated in the survey by Fernandes et al.
(2023). These methods typically involve direct
optimization of LLMs against human feedback
on their outputs (Kreutzer et al., 2018; Glaese
et al., 2022; Ouyang et al., 2022; Scheurer et al.,
2023), where human evaluations of output quality
serve as a reward signal to improve model perfor-
mance. However, this approach has two primary
drawbacks: It can be costly due to the manual
labor involved, and it lacks real-time capabilities
as humans cannot provide instant feedback.

To minimize the need for human intervention,
another strategy is correcting LLMs with auto-
mated feedback. As illustrated by the conceptual
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Figure 1: A conceptual framework for correcting LLMs with automated feedback. We identify three parties
involved in the prototypical correction pipeline that are analogous to a patient, doctor, and treatment in medicine,
respectively: A Language Model produces initial output, a Critic Model analyzes the output and provides feedback,
and a Refine Model provides treatment to either the output or the language model. We taxonomize existing works
using this conceptualization along five key aspects: the problem to be corrected, the source and format of the
feedback, and the strategy and learning method of the refine model.

framework in Figure 1, the language model (itera-
tively) learns from automatically generated feed-
back signals to understand the consequences of
its actions and adapts its behaviors. The source of
automated feedback can be multifaceted, spanning
from the LLM itself acting as the feedback model
(Madaan et al., 2023; Schick et al., 2023), a sepa-
rately trained feedback model (Yang et al., 2022b;
Paul et al., 2023), readily available external tools
(Gou et al., 2023; Chen et al., 2023e), to external
knowledge sources such as Wikipedia or the in-
ternet (Yu et al., 2023; Li et al., 2023b). Various
strategies of correction have been proposed, in-
cluding self-training (Huang et al., 2022; Bai et al.,
2022b), generate-then-rank (He et al., 2023; Weng
et al., 2023), feedback-guided decoding (Yang
et al., 2022a; Xie et al., 2023), iterative post-hoc
revision (Zhang et al., 2023a; Jiang et al., 2023),
etc. Recently, the incorporation of such strate-
gies has demonstrated their effectiveness across a
myriad of tasks, from question answering (Peng
et al., 2023) and reasoning (Pan et al., 2023) to
code generation (Zhang et al., 2023b) and toxicity
detection (Lu et al., 2022).

In light of these advancements, our paper aims
to provide a comprehensive survey. We start by
establishing the concept of correcting LLMs with
automated feedback and creating a taxonomy of
the different methods (§ 2). We then discuss the

major techniques (§ 3), categorized as training-
time, generation-time, and post-hoc correction.
Finally, we discuss the connection to earlier works
(§ 4) and five potential future directions (§ 5).

2 Conceptual Framework

For clean exposition, we first present a concep-
tual framework outlining the overall process of
correcting LLMs with feedback in Figure 1, using
an analogy of medical treatment in our daily life.
Three parties are involved in this process:

• Language Model (Patient). A language
model M : X → Y performs a specific
task by mapping an input x ∈ X to an output
text ŷ ∈ Y . This formulation encompasses
a wide range of NLP tasks, for example, in
summarization, x is a passage, ŷ is the gener-
ated summary; for question-answering, x is
a question and ŷ is the predicted answer. The
initial generation ŷ may have problems such
as hallucination and incorrect reasoning.

• Critic Model (Doctor & Diagnosis). A critic
model C : X × Y → F learns to generate
feedback x, ŷ → c where ŷ ∼ M(x) is
the output or partial output of the language
model, and c is the feedback of some format,
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e.g., scalar value, or natural language. A sim-
ple example is binary feedback of whether
the output is good or bad given the input
(C : X × Y → {0, 1}).

• Refine Model (Treatment). A refine model
R : X ×Y ×F → Y learns to repair an out-
put x, ŷ, c → ynew based on the feedback c,
where ynew is the revised output. Some re-
fine models directly repair the language
model M through fine-tuning or reinforce-
ment learning.

Based on the above formulation, the specific
model design in existing works varies along five
crucial axes, elaborated in the following sections.

2.1 What Gets Corrected?

We summarize the three major error types of
LLMs that are targeted for correction in existing
works through automated feedback.

• Hallucination. An open challenge for LLMs
is that they often hallucinate by making up
facts or citing sources that do not exist (Li
et al., 2023a; Zhang et al., 2023c). This hal-
lucinated content is often quite plausible-
sounding, making it difficult even for humans
to detect (Clark et al., 2021). To address this,
several studies have proposed the collection
of automated feedback on potential factual
inaccuracies by cross-referencing the gener-
ated output with credible knowledge sources.
The gathered feedback can then be utilized
by a subsequent refinement model to correct
hallucinations (Gao et al., 2023b; Peng et al.,
2023).

• Unfaithful Reasoning. A number of recent
studies (Ribeiro et al., 2023; Lyu et al.,
2023b; Golovneva et al., 2023) found that
LLMs occasionally make unfaithful reason-
ing, i.e., the derived conclusion does not
follow the previously generated reasoning
chain. To address this, existing works have
used automated feedback from external tools
or models for guiding the reasoning process
(Xie et al., 2023; Yao et al., 2023a), verifying
the reasoning process and rectifying errors
(He et al., 2023; Pan et al., 2023), or fine-
tuning LLMs with process-based feedback
(Huang et al., 2022; Lightman et al., 2023).

• Toxic, Biased, and Harmful Content.
LLMs have been observed to occasionally
generate content that is toxic, biased, or
harmful due to biases present in the training
data (Shaikh et al., 2023). To rectify this, re-
inforcement learning from human feedback
(RLHF) (Ouyang et al., 2022; Bai et al.,
2022a) has been extensively employed to
train LLMs to align more closely with human
values, such as being helpful, honest, and
harmless. However, RLHF is heavily depen-
dent on high-quality human feedback, the
collection of which can be resource-intensive.
To alleviate this, recent work (Lu et al., 2022;
Gou et al., 2023) has also explored collecting
automated feedback to identify and correct
potentially harmful outputs.

2.2 What Is the Source of the Feedback?

Feedback can be broadly divided into human feed-
back and automated feedback. Fernandes et al.
(2023) provided a survey on integrating human
feedback for language generation. In our survey,
we focus on the emerging research area of auto-
mated feedback, which typically originates from
two sources: self-feedback (i.e., the feedback orig-
inates from the LLM itself) and external feed-
back (i.e., the feedback is derived from external
models, tools, or knowledge sources).

• Self-Feedback. The LLM can act as its
own feedback provider by iteratively assess-
ing and refining its generated outputs until
it meets a certain standard (Madaan et al.,
2023; Shinn et al., 2023). This continuous
self-improvement strategy has proven effec-
tive in multiple studies, especially when ex-
ternal feedback is unavailable or limited (Ye
et al., 2023; Yan et al., 2023).

• External Feedback for LLMs comes
from other models (Yang et al., 2022b;
Lightman et al., 2023), tools (Gou et al., 2023;
Charalambous et al., 2023), knowledge
sources (Gao et al., 2023b; Yu et al., 2023),
and evaluation metrics (Jung et al., 2022;
Welleck et al., 2023). External feedback pro-
vides a valuable outside perspective for iden-
tifying errors that the LLM cannot recognize
on its own. For example, code interpreters
are widely used in programming tasks to pro-
vide real-time error messages; while external
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knowledge sources are used to verify the
factual accuracy.

2.3 What Is the Format of the Feedback?

The selection of the feedback format requires
considering its expressivity, ease of collection,
and its potential to improve systems (Fernandes
et al., 2023). Automated feedback is commonly
either a scalar value or in natural language.

• Scalar Value Feedback. In this scenario,
the critic model maps the input and output
to a single score (C : X × Y → N ⊆ R).
Scalar value feedback can be easily integrated
into the training/decoding process of LLMs.
For example, Xie et al. (2023) use real-value
feedback for each intermediate reasoning
step to guide the model in performing a sto-
chastic beam search for the optimal solution.
Despite its flexibility, scalar feedback is less
descriptive for detailed corrections.

• Natural Language Feedback provides
richer information that can highlight specific
errors and provide nuanced suggestions for
improvement. This is important for certain
applications such as text editing and code
generation. For example, Self-Debug (Chen
et al., 2023e) uses LLMs to generate explana-
tions for the produced code and utilize both
the explanation and the execution results as
feedback to enhance coding solutions.

2.4 When to Correct the Model?

Depending on the timing of using automated feed-
back to correct the model, existing work can be
divided into three major categories.

• Training-time Correction. The ideal sce-
nario is to rectify a flawed model during
training, prior to its deployment for use. Once
feedback has been collected, it is directly
used to optimize the model parameters. Hu-
man feedback is typically used for training-
time correction, as exemplified by the widely
adopted RLHF approach (Ouyang et al.,
2022). For leveraging automated feedback,
a common strategy is self-training (Huang
et al., 2022), where the model is trained
with its own generated high-quality output
filtered out by the critic model. However, the
practical application of training-time correc-

tion may be hindered by the infeasibility of
fine-tuning giant closed-source LLMs, such
as GPT-4 (OpenAI, 2023) and the poten-
tial unavailability of feedback during model
training.

• Generation-time Correction. It utilizes au-
tomated feedback to guide the LLM to cor-
rect errors during generation. For example,
for proof generation, several studies utilize
the automated feedback of the intermediate
reasoning steps to guide the model to recover
from incorrect generation and search for the
optimal solution in a more efficient way
(Yang et al., 2022a; Lightman et al., 2023).

• Post-hoc Correction. It refines the model
output after it has been generated, without
updating the model parameters. This typi-
cally involves an iterative process of generat-
ing output, receiving feedback, and refining
output. Post-hoc correction is more flexi-
ble as it does not require training the LLM
or accessing its parameters. Furthermore, it
facilitates the incorporation of more infor-
mative natural language feedback, offering
a more transparent and explainable self-
correction process.

2.5 How to Correct the Model
with Feedback?

Various concrete strategies have been proposed
to correct LLMs with automated feedback, which
are tailored to the different dimensions we men-
tioned in previous sections. For example, self-
training is often used for training-time correction.
Generate-then-rank often comes with scalar value
feedback. We will cover the comprehensive land-
scape of self-correction strategies in Section 3.

2.6 Summary of Existing Work
Building upon the taxonomy established in the
preceding sections, we collate existing work in
Table 1 and Table 2. We have three major selection
criteria for a work to be included in this survey:

1. Automated Feedback: Explicit feedback
is involved to assess the quality of the model
output. We focus on automated feedback that orig-
inates from external models, metrics, knowledge,
etc. However, we will cover some representative
works of human feedback for completeness.

2. Model Refinement: The feedback should
act as a directive to enhance the LLM, either by:
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Method Feedback Model Refinement Application
Source Format Strategy Learning

Training-Time Correction

RLHF (Ouyang et al., 2022) Reward Model Scalar RLHF RL Multiple Tasks
Fine-Grained RLHF (Wu et al., 2023a) Reward Model Scalar RLHF RL Detoxification, Long-form QA
HH-RLHF (Bai et al., 2022a) Reward Model Scalar RLHF SL & RL Helpfulness, Harmlessness
Moral RLHF (Ganguli et al., 2023) Reward Model Scalar RLHF RL Moral Correction
Sparrow (Glaese et al., 2022) Reward Model NL RLHF SL & RL Dialogue
ILF (Scheurer et al., 2023) Human Feedback NL Fine-tuning SL Summarization
ILF-Code (Chen et al., 2023a) Human Feedback NL Fine-tuning SL Code Generation
SLT (Yuan et al., 2023) Human Feedback NL Fine-tuning SL Response Generation
Chain-of-Hindsight (Liu et al., 2023a) Human Feedback NL Fine-tuning SL Multiple Tasks
Crystal (Liu et al., 2023b) Language Model Scalar Fine-Tuning SL & RL Commonsense Reasoning
STaR (Zelikman et al., 2022) Language Model NL Self-Training SL QA, Reasoning
RLAIF (Bai et al., 2022b) Language Model NL Self-Training SL & RL Dialogue
SIRLC (Pang et al., 2023) Language Model NL Self-Training RL Reasoning, Translation, Summary
Self-Improve (Huang et al., 2022) Language Model NL Self-Training SL QA, Reasoning, NLI
AlpacaFarm (Dubois et al., 2023) Language Model NL Self-Training SL & RL None (Intrinsic Evaluation)
ReST (Gulcehre et al., 2023) Language Model NL Self-Training RL Machine Translation

Generation-Time Correction

Self-Verification (Weng et al., 2023) Language Model Scalar Re-Ranking ICL Arithmetic Reasoning
CodeT (Chen et al., 2023b) Program Executor Scalar Re-Ranking ICL Code Generation
LEVER (Ni et al., 2023) Program Executor Scalar Re-Ranking SL Table QA, Math QA, Program
RR (He et al., 2023) External Knowledge Scalar Re-Ranking — Reasoning
InstructScore (Xu et al., 2023) Language Model NL Re-Ranking SL Generation Evaluation
MBR Decoding (Freitag et al., 2022) External Metrics Scalar Re-Ranking SL Machine Translation
DIVERSE (Li et al., 2023d) Trained Model Scalar Re-Ranking SL Arithmetic Reasoning
PRM (Lightman et al., 2023) Reward Model Scalar Feedback-guided SL Arithmetic Reasoning
DiffusionLM (Li et al., 2022) Trained Model Scalar Feedback-guided SL Controlled Text Generation
Fudge (Yang and Klein, 2021) Trained Model Scalar Feedback-guided SL Controlled Text Generation
Entailer (Tafjord et al., 2022) Trained Model Scalar Feedback-guided SL Proof Generation
NLProofS (Yang et al., 2022a) Trained Model Scalar Feedback-guided SL Proof Generation
GRACE (Khalifa et al., 2023) Trained Model Scalar Feedback-guided SL Arithmetic Reasoning
CoRe (Zhu et al., 2023) Trained Model Scalar Feedback-guided SL Arithmetic Reasoning
Varshney et al. (2023) External Knowledge NL Feedback-guided ICL Hallucination Detection
MemPrompt (Madaan et al., 2022) External Knowledge NL Feedback-guided ICL Lexical and Ethical Reasoning
Maieutic Prompting (Jung et al., 2022) External Metrics Scalar Feedback-guided ICL Commonsense Reasoning
SI (Creswell and Shanahan, 2022) Language Model Scalar Feedback-guided ICL Proof Generation
RAP (Hao et al., 2023) Language Model Scalar Feedback-guided ICL Planning, Reasoning
SelfEval-Decoding (Xie et al., 2023) Language Model Scalar Feedback-guided ICL Arithmetic / Symbolic Reasoning
SelfCheck (Miao et al., 2023) Language Model NL Feedback-guided ICL Arithmetic Reasoning
Tree of Thoughts (Yao et al., 2023a) Language Model NL / Scalar Feedback-guided ICL Games, Writing

Table 1: Representative works on Training-time Correction and Generation-Time Correction.

1) updating model parameters, or 2) altering the
model’s output during or post the generation.

3. Large Language Model: We primarily focus
on automated correction strategies in the era of
modern large language models. Given this focus,
we mainly emphasize very recent work from 2022
and 2023. However, it is important to acknowledge
that the concept of automated correction is not new
and has roots in early NLP research. To provide
a complete historical perspective, we provide a
succinct overview of these initial approaches to
automated correction in Section 4.1.

These studies are categorized based on the three
strategies introduced in Section 2.4. We also sum-
marize key features of each study, including: 1)
the source of feedback, 2) the format of feedback,
3) the strategy and learning method employed for

the refinement, 4) whether the refinement process
is iterative, and 5) the application of the method.

3 Methodologies

In this section, we delve into a detailed review of
various correction methodologies. Depending on
the time that the correction happens, we categorize
them as Training-Time Correction, Generation-
Time Correction, and Post-hoc Correction.

3.1 Training-Time Correction
Training-time correction rectifies model behavior
during the training phase. We identify three typi-
cal strategies shown in Figure 2. Each strategy uti-
lizes different forms of feedback to optimize the
model during training: human feedback (a), a re-
ward model (b), and automated feedback (c).
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Method Feedback Model Refinement Application
Source Format Strategy Learning Iter.

Post-hoc Correction

Self-Refine (Madaan et al., 2023) Language Model NL Self-Refine ICL ✓ Multiple Tasks
Clinical SV (Gero et al., 2023) Language Model NL Self-Refine ICL ✗ Information Extraction
Reflexion (Shinn et al., 2023) Language Model NL Self-Refine RL ✓ QA, Code Generation
IterRefinement (Chen et al., 2023d) Language Model NL Self-Refine ICL ✓ Machine Translation
Auto-Post-Editing (Raunak et al., 2023) Language Model NL Self-Refine ICL ✗ Machine Translation
RCI (Kim et al., 2023) Language Model NL Self-Refine ICL ✓ Computer Tasks
SelFee (Ye et al., 2023) Language Model NL Self-Refine SL ✓ Dialogue
SelfCheckGPT (Manakul et al., 2023) Language Model NL Self-Refine ICL ✗ Hallucination Detection
LLM Self Defense (Helbling et al., 2023) Language Model NL Self-Refine ICL ✗ Harmful Text Correction
Re3 (Yang et al., 2022b) Trained Model Scalar External Feedback SL & ICL ✓ Story Generation
CodeRL (Le et al., 2022) Trained Model Scalar External Feedback RL ✗ Code Generation
FLIRT (Mehrabi et al., 2023) Trained Model Scalar External Feedback ICL ✓ Adversarial Prompt Generation
REFINER (Paul et al., 2023) Trained Model NL External Feedback SL & ICL ✓ Reasoning, Moral Story
RL4F (Akyürek et al., 2023) Trained Model NL External Feedback SL & RL ✓ Planning, Summarization
Yan et al. (2023) Trained Model NL External Feedback SL ✓ Semantic Parsing
Baldur (First et al., 2023) Trained Model NL External Feedback ICL ✓ Proof Generation
CRITIC (Gou et al., 2023) External Tools NL External Feedback ICL ✓ QA, Program, Toxicity
FacTool (Chern et al., 2023) External Tools NL External Feedback ICL ✓ QA, Reasoning, Generation
MAF (Nathani et al., 2023) External Tools NL External Feedback ICL ✓ QA, Reasoning
RARR (Gao et al., 2023b) External Knowledge NL External Feedback ICL ✗ Open-Domain QA
LLM-Augmenter (Peng et al., 2023) External Knowledge NL External Feedback RL ✓ Open-Domain QA
Self-Checker (Li et al., 2023b) External Knowledge NL External Feedback ICL ✗ Fact-Checking
REFEED (Yu et al., 2023) External Knowledge NL External Feedback ICL ✗ QA, Dialogue
Olausson et al. (2023) Program Executor NL External Feedback ICL ✓ Code Generation
Self-Edit (Zhang et al., 2023a) Program Executor NL External Feedback ICL ✓ Code Generation
Self-Debug (Chen et al., 2023e) Program Executor NL External Feedback ICL ✓ Code Generation
Self-Evolve (Jiang et al., 2023) Program Executor NL External Feedback ICL ✓ Code Generation
Logic-LM (Pan et al., 2023) Symbolic Solver NL External Feedback ICL ✓ Logical Reasoning
Self-Critique (Saunders et al., 2022) LLMs + Human NL External Feedback SL ✗ Summarization
ALGO (Zhang et al., 2023b) Oracle Verifier Scalar External Feedback ICL ✓ Code Generation
Charalambous et al. (2023) BMC Tool NL External Feedback ICL ✗ Software Verification
Self-Correction (Welleck et al., 2023) External Metrics NL / Scalar External Feedback SL ✓ Reasoning, Generation, Toxicity
Multiagent Debate (Du et al., 2023) Language Model NL Model Debate ICL ✓ Reasoning, Factuality
LM vs LM (Cohen et al., 2023) Language Model NL Model Debate ICL ✓ Factual Error Detection
ICL-AIF (Fu et al., 2023) Language Model NL Model Debate ICL ✓ Bargaining Game
PRD (Li et al., 2023c) Language Model NL Model Debate ICL ✓ Open-ended QA
MADRA (Wang et al., 2023b) Language Model NL Model Debate ICL ✓ QA, Fact-Checking
ReConcile (Chen et al., 2023c) Language Model NL Model Debate ICL ✓ Reasoning

Table 2: Representative work on Post-hoc Correction.

Figure 2: Three typical strategies of training-time correction: direct optimization with human feedback (a),
training a reward model that approximates human feedback (b), and self-training with automated feedback (c).

Direct Optimization with Human Feedback.
In an ideal scenario, we would directly leverage
human feedback to optimize the model parame-
ters, following the framework in Figure 2(a): 1)
Candidate outputs are generated by LLMs, 2) Hu-
mans provide feedback or refinements on these
outputs, and 3) LLMs are then directly optimized
on the collected (outputs, feedback) to better align
with human preferences. A simple strategy is to
fine-tune the model on the outputs that receive pos-
itive feedback from human raters (Glaese et al.,

2022; Scheurer et al., 2023; Chen et al., 2023a).
However, only utilizing positive-rated data may
constrain the model’s ability to identify and cor-
rect negative attributes or errors. To address this,
Chain-of-Hindsight (Liu et al., 2023a) fine-tunes
the LLM on model outputs paired with both pos-
itive and negative feedback. Beyond fine-tuning,
other optimization methods are explored as well.
For example, Gao et al. (2023a) utilize human
feedback as the reward signal and optimize the
model with contextual bandit learning.
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Reward Modeling and RLHF. Direct opti-
mization with human feedback may not always
be practical, since collecting human feedback can
be both labor-intensive and time-consuming. An
efficient alternative is to train a reward model
that emulates human feedback. Once trained, this
reward model can provide consistent, real-time
feedback for every model output, thereby circum-
venting the need for constant human involvement.
A prominent example of this approach is RLHF
(Ouyang et al., 2022), as illustrated in Figure 2(b).
It first asks human annotators to label the prefer-
ence for different LLM outputs and then train the
reward model to predict the human preference. Af-
terward, reinforcement learning (RL) algorithms
(e.g., Proximal Policy Optimization [Schulman
et al., 2017]) are employed to optimize the model.
RLHF and its variants have proven effective in
correcting LLMs to become more beneficial and
less harmful (Bai et al., 2022a), as well as instill-
ing moral correctness (Ganguli et al., 2023).

Self-Training with Automated Feedback. Re-
ward modeling still requires the collection of
human feedback. To build a fully autonomous
self-improving agent, recent work has adopted
the self-training strategy that self-improves LLM
by bootstrapping its original outputs, as depicted
in Figure 2(c). The language model itself is used
to provide feedback for its own output. STaR
(Zelikman et al., 2022) leverages the idea of chain-
of-thought to prompt LLM to generate answers
with rationales. They found that the performance
of LLM can be improved by iteratively selecting
rationales leading to the correct answer to further
finetune LLM. Self-training has also been used
to reduce the harmful responses of LLMs. For
example, in RLAIF (Bai et al., 2022b), the ini-
tial toxic responses are criticiqued and revised by
the LLM itself following a set of human-defined
principles. Afterward, the LLM is fine-tuned on
the revised responses. AlpacaFarm (Dubois et al.,
2023) further shows that LLMs can self-improve
with RL. It designs LLM prompts to simulate hu-
man feedback in RLHF and shows that the feed-
back is effective and greatly reduces the cost.

3.2 Generation-Time Correction

Correcting LLMs at training time is ideal but
not always feasible because it can be resource-
intensive or even impractical for many LLMs,
e.g., closed-source LLMs where weights are

Figure 3: The illustrations of the two typical strategies
of generation-time correction: (a) Generate-then-Rank,
and (b) Feedback-Guided Decoding.

inaccessible, and colossal LLMs with billions
of parameters. This necessitates generation-time
correction methods that correct LLMs dur-
ing the generation time. Two main strategies
are Generate-then-Rank and Feedback-Guided
Decoding.

Generate-then-Rank. This involves sampling
a large number of candidate generations and sub-
sequently picking up the best generation based
on the feedback provided by the critic model, as
illustrated in Figure 3(a). This approach is of-
ten integrated with chain-of-thought prompting
(Wei et al., 2022b) to tackle complex reasoning
tasks, such as solving math word problems. Given
an input problem x, the LLM initially generates
multiple candidate solutions y1, · · · , yn. Each so-
lution yi = [zi, ai] comprises a reasoning path
(explanation) zi leading to the predicted answer
ai. Subsequently, the critic model C assigns a
plausibility score si to each candidate reason-
ing path zi. The best solution is selected from
the scored set (zi, ai, si)

n
i=1 via either ranking or

voting.
Various critic models have been used for LLM

output verification. DIVERSE (Li et al., 2023d)
trains a binary verifier based on DeBERTa (He
et al., 2021) to rate each reasoning path. Weng
et al. (2023) introduced a training-free critic model

490



based on the consistency between forward and
backward reasoning. In a different vein, RR (He
et al., 2023) used a critic model to assess rea-
soning path faithfulness by retrieving supporting
information from a knowledge base. In code gen-
eration, LEVER (Ni et al., 2023) uses a veri-
fier trained on program execution results. CodeT
(Chen et al., 2023b) similarly employs dual exe-
cution agreement to select the best code solution.

Feedback-Guided Decoding. Despite its effi-
ciency, the generate-then-rank strategy has several
limitations: 1) The critic model provides only
coarse-grained, output-level feedback, 2) The long
length of the output can complicate its quality as-
sessment, and 3) It requires the LLM to wait until
the entire output is generated for any corrections.

The feedback-guided decoding strategy shown
in Figure 3(b) overcomes the above limitations
by using step-level feedback for fine-grained con-
trol during generation. Each output y is split into
multiple reasoning steps y = [o1, o2, · · · , on]. A
critic model evaluates each step ot, guiding al-
gorithms like beam search to explore the output
space systematically and correct early mistakes.
This strategy also helps alleviate the reason-
ing inconsistency problem (Zelikman et al., 2022;
Creswell and Shanahan, 2022), i.e., incorrect rea-
soning leads to correct final answer. This strategy
has been adopted in recent works like Tree-of-
Thought (Yao et al., 2023a), GRACE (Khalifa
et al., 2023), and RAP (Hao et al., 2023), which
vary mainly in the critic model they employ,
categorized into methods involving human feed-
back, trained verifiers, external metrics, external
knowledge, and self-evaluation.

• Reward Model from Human Feedback: Stud-
ies like Uesato et al. (2022) and Lightman
et al. (2023) collect human-annotated step-
level feedback to train a more robust re-
ward model, which improves reasoning
faithfulness.

• Trained Verifier: To reduce the cost of hu-
man annotations, some work (Yang et al.,
2022a; Tafjord et al., 2022; Li et al., 2023d;
Khalifa et al., 2023) uses automated meth-
ods to generate training data for obtaining
a step-wise verifier. Positive examples are
derived from ground-truth reasoning paths,
while negative examples are synthesized by
proposing an alignment algorithm (Khalifa

et al., 2023) or by making text perturbations
on positive samples (Yang et al., 2022a).

• External Metric: Several studies also lever-
age external metrics to re-rank or guide text
generation without additional model training,
such as using minimum Bayes risk decod-
ing (Freitag et al., 2022), attribute classifiers
(Dathathri et al., 2020; Yang and Klein,
2021), and Gaussian denoising (Li et al.,
2022).

• External Knowledge: External knowledge
sources have also been used to provide feed-
back. Varshney et al. (2023) use Wikipedia
to validate and correct each generated sen-
tence, which is then reinserted for further gen-
eration. Alternatively, MemPrompt (Madaan
et al., 2022) utilizes a pool of prior user feed-
back to guide the text generation based on
the current query’s intent.

• Self-Evaluation: For better flexibility, meth-
ods such as Tree-of-Thought (Yao et al.,
2023a) and Guided-decoding (Xie et al.,
2023) use the LLM itself as the critic model
by prompting it to evaluate each individ-
ual reasoning step, avoiding the need for
fine-tuning task-specific verifier.

Different strategies are adopted to control the
decoding process with the help of the step-level
critic model. Tree-of-Thought uses breadth-first
and depth-first searches, while GRACE (Khalifa
et al., 2023) and Xie et al. (2023) employ beam
search. CoRe (Zhu et al., 2023) and RAP (Hao
et al., 2023) use Monte Carlo Tree Search for a
balance between exploration and exploitation.

3.3 Post-hoc Correction

The effectiveness of generation-time correction
hinges on the critic model’s ability to give precise
feedback for intermediate outputs, a challenging
task in holistic NLP evaluations like summariza-
tion. This motivates the post-hoc correction meth-
ods, where both critic and refinement models act
only after generating the complete output. Post-
hoc correction allows for more diverse natural lan-
guage feedback, ranging from specific diagnostic
reports to broader writing suggestions. As shown
in Figure 4, we categorize the key post-hoc cor-
rection strategies into Self-Correction, Correction
with External Feedback, and Multi-Agent Debate.
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Figure 4: Three post-hoc correction strategies: self-correction (a), external feedback (b), multi-agent debate (c).

Self-Correction. In ‘‘Self-Correction’’, a sin-
gle LLM both generates and refines its output.
As shown in Figure 4(a), the LLM first pro-
duces an output and then acts as its critic for
iterative refinements. This process continues un-
til the output obtains an acceptable quality or
a pre-specified number of iterations is reached.
Self-Refine (Madaan et al., 2023) introduced an
effective framework using one LLM guided
by varied prompts for the roles of generation,
critic, and refinement, respectively. Clinical Self-
Verification (Gero et al., 2023) applies this to
extract clinical data, refining by spotting missing
elements and verifying data accuracy. Reflexion
(Shinn et al., 2023) extends the method, adding
a ‘‘long-term memory’’ to recall past errors and
integrating diverse feedback forms.

Though beneficial in many text-generation
tasks, self-correction usually demands powerful,
large-scale LLMs for effectiveness, which sacri-
fices efficiency. As observed by Madaan et al.
(2023), smaller models often falter in refining,
even with correct feedback. A possible solution
involves explicitly training models for this self-
correction process. SelFee (Ye et al., 2023) pro-
poses training a model to emulate the self-correction
process by generating output, feedback, and a re-
fined solution in an auto-regressive manner. They
use more powerful LLMs to provide feedback
and refinement data, with data collection facili-
tated through ChatGPT.

Models/Tools as Feedback. In self-correction,
the quality of the feedback is constrained by the
inherent limitations of LLMs, such as the inability
to access up-to-date information, take actions, or
perform precise mathematical reasoning. To en-
hance feedback quality, recent research leverages
external tools, as shown in Figure 4(b). These

tools, including trained models, code interpreters,
and search engines, offer specialized feedback to
address LLM constraints.

• Code Interpreter. In code generation, mod-
els like Self-Edit (Zhang et al., 2023a) and
Self-Evolve employ program executors to
provide feedback from executed test cases.
Others, like Self-Debug (Chen et al., 2023e)
and ALGO (Zhang et al., 2023b), explore de-
tailed feedback mechanisms using unit tests,
program explanations, or comparison with
reference oracle programs. Charalambous
et al. (2023) use Bounded Model Checking
for software verification.

• Logic Reasoner. Logic-LM (Pan et al., 2023)
and Baldur (First et al., 2023) harness ex-
ternal logic reasoners and proof assistants to
refine LLM outputs, using error messages as
feedback for logical reasoning and theorem-
proof generation.

• External Knowledge is used to ensure factual
accuracy of the output. Models like RARR
(Gao et al., 2023b), REFEED (Yu et al.,
2023), and LLM-Augmenter (Peng et al.,
2023) prompt LLMs to question their outputs.
An external retriever then searches for rele-
vant evidence, which is used to refine out-
puts. FACTOOL (Chern et al., 2023) extends
this approach to a wider range of tasks, in-
cluding code generation, mathematical rea-
soning, and scientific literature review.

• Trained Model. Research has fine-tuned spe-
cialized critic models to provide feedback for
iterative refinement alongside more power-
ful language models. For example, CodeRL
(Le et al., 2022) treats program synthesis
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as a reinforcement learning task and trains
a critic model whose output optimizes the
main model. REFINER (Paul et al., 2023)
uses a critique model to provide feedback on
an intermediate representation, suitable for
refining larger models like ChatGPT. Simi-
larly, RL4F (Akyürek et al., 2023) trains a
critic via reinforcement learning, fine-tuning
it with policy optimization. The effectiveness
is gauged by comparing the refined output’s
accuracy to ground truth. In adversarial con-
texts, feedback from content filters can guide
the generation of better adversarial exam-
ples, like how FLIRT (Mehrabi et al., 2023)
leverages image classifier signals to guide
LLMs in creating adversarial prompts for
audit purposes.

• Integrating Multiple Tools. Broadening the
idea of tool-assisted feedback, CRITIC (Gou
et al., 2023) unifies various tools, such as
code interpreters, search engines, and LLM
feedback, offering a multifaceted feedback
approach.

3.4 Multi-Agent Debate

Besides integrating tools, recent research has also
explored the debate approach among multiple
LLMs, inspired by the idea that multiple per-
spectives can converge to an improved solution.
Multiple LLM instances debate their individ-
ual answers over several rounds, aiming for a
consensus.

Du et al. (2023) trialed this in arithmetic reason-
ing. Agents, or LLM duplicates, present individual
solutions and justifications. In the debate phase,
these responses are aggregated and used as context
for each agent to revise its original answer. After
several iterations, they typically reach a consen-
sus, showing superior performance compared to
self-correction. PRD (Li et al., 2023c) furthered
this by introducing the peer rank algorithm to
optimize the consensus process. It considers pair-
wise preferences between all possible answer pairs
from individual LLMs and uses these preferences
to generate a final ranking of models.

In addition to reasoning tasks, LM vs LM
(Cohen et al., 2023) employed this debate ap-
proach for factual error detection, where a gener-
ating LLM makes a claim and an examining LLM
checks for inaccuracies. Extending its applicabil-

ity, Fu et al. (2023) mimicked real-world human
interactions, like a buyer-seller scenario, show-
casing the versatility of multi-agent debates.

4 Discussion

4.1 Prior Research on Automated Correction

In our survey, we primarily examine the auto-
mated correction strategies in the era of modern
large language models. However, the idea of
‘‘correcting the model with automated feedback’’
has been a longstanding practice in diverse NLP
tasks. Recognizing these early works provides a
deeper historical insight into the evolution of self-
correction methods within NLP. Next, we briefly
discuss the NLP applications where automated
correction has been effectively implemented, and
we discuss how these early works link to the
automated correction strategies defined in this
survey.

Machine Translation. The concept of post-hoc
self-correction has deep roots in the field of ma-
chine translation (MT), where it is often called
Automatic Post-Editing (APE) (do Carmo et al.,
2021). A long line of prior work trains models
to fix translation errors by either learning from
human correction data (Alabau et al., 2014) or
from synthetic training data (Lee et al., 2021).
To minimize the cost of data collection, recent
work (Chen et al., 2023d; Raunak et al., 2023) has
leveraged the in-context learning ability of LLMs
for post-editing translations. As well as post-hoc
methods, training-time correction (Unanue et al.,
2021) and decoding-time correction (Freitag et al.,
2022) are also adopted by prior works.

Summarization. The idea of automated model
correction has been commonly used in summa-
rization to ensure the factuality of the generated
summary. There are two mainstream methods:
1) training-time correction that imposes factuality
constraints during training (Liu and Liu, 2021;
Wan and Bansal, 2022; Scheurer et al., 2023), and
2) post-hoc correction that post-edits generated
summaries to correct factual errors (Falke et al.,
2019; Cao et al., 2020; Saunders et al., 2022). Re-
cent work has investigated using RL to refine the
model guided by automated feedback from either
reward models (Akyürek et al., 2023) or language
models (Pang et al., 2023).
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Semantic Parsing. The use of external feed-
back in semantic parsing, particularly for Text-to-
SQL tasks, has shown significant effectiveness.
Execution-guided semantic parsing is a notable
approach where the feedback from executing par-
tial SQL queries guides the search for plausible
complete SQL programs. Additionally, earlier
works also explored training separate discrimi-
native models either to rerank the generated SQL
queries (Bogin et al., 2019; Kelkar et al., 2020)
or to predict specific SQL components (Xu et al.,
2017; Yu et al., 2018; Lee, 2019). The effective-
ness of these generation-time correction tech-
niques is largely attributable to the ease of defining
intermediate feedback in semantic parsing.

Proof Generation. Automated correction has
been well studied and implemented for proof gen-
eration (Saha et al., 2020; Tafjord et al., 2021).
External feedback from natural language infer-
ence (NLI) are commonly used to spot errors as a
heuristic for correction, and as a means to score
the quality (Yang et al., 2022a; Golovneva et al.,
2023). However, there are some open questions
regarding the quality of NLI-based feedback
(Srikanth and Rudinger, 2022; Saxon et al., 2023).

Open-Ended Generation. Post-hoc correction
is often adopted to improve the quality of open-
ended text generation (Wang et al., 2017;
Holtzman et al., 2018; Sagarkar et al., 2018),
such as correcting toxic outputs, enhancing the
narrative quality in story generation, and refining
response generation in dialogues. For example,
Holtzman et al. (2018) proposed a framework
to refine the generic, repetitive, and inconsistent
texts by composing a committee of discriminators
to provide multi-aspect feedback. Given the sub-
jectivity involved in assessing the outputs, recent
works started to use detailed, natural language
feedback and utilize LLMs for iterative post-hoc
refinement.

4.2 When Does Automated
Correction Work?

Despite the relative infancy of this emerging
field, recent studies have explored the efficacy
of automated correction in LLMs. Notably, in-
trinsic self-correction—where the model cor-
rects its initial output based solely on its inherent
capabilities—has generally shown disappointing
results (Huang et al., 2023; Stechly et al., 2023;

Hong et al., 2023; Tyen et al., 2023; Valmeekam
et al., 2023; Ke et al., 2023). Most findings in-
dicate that LLMs struggle to rectify their initial
mistakes, and their performance even worsens af-
ter self-correction. This issue arises because the
quality of the model’s self-generated feedback is
bounded by its existing knowledge and abilities.
Therefore, internal feedback may not offer any
extra advantage for improving the results; it might
even steer the model away from the correct an-
swer. Preventing such mis-guidance is crucial for
successful self-correction (Huang et al., 2023).

In contrast, the use of external feedback for
automated correction has shown more promise.
Numerous studies (Pan et al., 2023; Chen et al.,
2023a; Gou et al., 2023; Huang et al., 2023) report
positive outcomes when LLMs leverage high-
quality feedback from external sources. However,
high-quality external feedback is unavailable in
many real-world applications. This constraint nar-
rows down the scope of automated correction to
only those tasks where precise and readily obtain-
able external feedback exists, such as arithmetic
reasoning, semantic parsing, and code generation.

The empirical study by Huang et al. (2023)
highlighted multi-agent debate as an effective
method for automated correction in LLMs. How-
ever, the observed improvement primarily stems
from the model-driven voting process among dif-
ferent LLMs, rather than from self-correction.
This approach represents another successful in-
stance of learning through external feedback, as
each LLM benefits from the input provided by
other LLMs in the debate.

5 Research Gaps and Future Directions

5.1 Theoretical Justifications
First of all, whether LLMs can self-correct with-
out any external feedback is still an ongoing de-
bate, with both positive and negative outcomes
reported. Numerous studies have discovered
that self-correction often brings negative effects
(Huang et al., 2023; Tyen et al., 2023), while some
research indicates that the effectiveness of self-
repair is only seen in GPT-4 (Olausson et al.,
2023). Although these empirical studies provide
valuable insights, more fundamental theoretical
research is needed to gain a mechanistic under-
standing of self-correction. Key research ques-
tions include: Can LLMs truly recognize their
own errors without external feedback? What is
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the upper bound of intrinsic self-correction? An-
swers to those questions might closely associated
with LLMs’ capacity to exhibit metacognitive
awareness, i.e., their understanding of their own
knowledge and uncertainties (Kadavath et al.,
2022). The concept of calibration—how well a
model’s predictions match observed outcomes—
is also crucial (Lin et al., 2023).

While language models demonstrate some
capacity for self-feedback, achieving superior per-
formance often necessitates incorporating external
feedback. This ties into the alignment of lan-
guage models, an area still not fully understood.
For example, in RLHF, the choice of the metric
to minimize between the reward model output
and the final model output significantly impacts
downstream task performance (Go et al., 2023),
yet this aspect remains underexplored in many
applications. Determining the best approach to
auto-generate instructive prompts for tasks like
output evaluation is also an open challenge.

5.2 Benchmarking Automated Correction
While LLM automated correction has seen empir-
ical advancements across applications, there is a
lack of solid quantitative metrics to evaluate this
capability. Comprehensive evaluations comparing
various strategies on criteria like effectiveness,
complexity, and potential limits are still needed.
Future studies could develop evaluation frame-
works considering variables such as task com-
plexity, degree of initial error, improvement in
quality after automated correction, etc.

Setting benchmarks to diagnose automated
correction is another potential research avenue.
Diagnostic datasets would offer standardized eval-
uations of LLMs and their correction strategies,
fostering the development of more precise models.

5.3 Continual Self-Improvement
Another promising yet under-explored area of
LLM self-correction is the idea of continual,
life-long self-improvement. As LLMs are inte-
grated into varied and evolving scenarios, their
capacity for sustained adaptability becomes cru-
cial. This mirrors the notion of continual (life-
long) learning (Wang et al., 2023c), suggesting
LLMs should consistently assess outputs, rectify
mistakes, update knowledge, and adjust decision-
making.

While recent studies like Huang et al. (2022)
and Zelikman et al. (2022) indicate that LLMs

can enhance themselves through self-training on
positively evaluated outputs, they often focus on a
single, one-time correction process. The resilience
of this self-training in continuous settings is not
well-understood. Continual learning poses chal-
lenges like catastrophic forgetting (Kirkpatrick
et al., 2016), where new skills impair old ones.
It’s uncertain if such issues could plague con-
tinually self-improving LLMs, e.g., correcting
one behavior may unintentionally alter a previ-
ously corrected behavior. Combining various self-
correction techniques for continual improvement
also warrants exploration. Integrating immediate
post-hoc corrections with long-cycle training-time
corrections—using the former to gather data
and the latter to periodically address recurrent
problems—could be a promising approach.

5.4 Self-Correction with Model Editing
Recent advancements in model editing (Sinitsin
et al., 2020; Cao et al., 2021; Yao et al., 2023b)
aim to adjust the model’s behavior for examples
within the editing scope while leaving its perfor-
mance for out-of-scope examples unaltered. It has
been applied to update LLMs’ outdated knowl-
edge (Lee et al., 2022; Onoe et al., 2023) and
address false associations (Murty et al., 2022;
Tanno et al., 2022). Though effective in adjusting
LLMs’ factual knowledge, challenges like limited
generalization (Yao et al., 2023b) and unintended
side effects persist (Hoelscher-Obermaier et al.,
2023).

We believe model editing offers great poten-
tial for LLM self-correction. It enables accurate,
fine-grained corrections without full-scale re-
training. Analyzing the impact of these model
edits could yield insights into self-correction.
Techniques mitigating model editing’s side ef-
fects (Hoelscher-Obermaier et al., 2023) may
also enhance self-correction. We anticipate fu-
ture research to increasingly merge model editing
with LLM self-correction, a relatively untouched
domain.

5.5 Multi-modal Self-Correction
Self-correction strategies have been well-tested
on the textual modality, where both the model
outputs and the feedback are in textual form. The
recent surge in multi-modal data usage, including
image, audio, and video modalities, presents entic-
ing opportunities for expansion. These include the
exploration of self-correction capabilities within
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multi-modal LLMs, the incorporation of visual
feedback, and improving vision-language tasks
through self-correction.

6 Conclusion

In this paper, we present a comprehensive sur-
vey of self-correcting large language models with
automated feedback. We categorize and ana-
lyze various self-correction strategies, including
training-time, generation-time, and post-hoc cor-
rections. We also connect recent work with prior
research and discuss the applicable scenarios for
automated correction. Finally, we outline five po-
tential future directions and associated challenges
in this field. Our goal with this paper is to provide
a comprehensive and useful resource for readers
interested in the development of this rapidly
evolving domain. To aid in this effort, we create
a continually updated reading list in a GitHub
repository as follows: https://github.com
/teacherpeterpan/self-correction-llm
-papers.

Acknowledgments

This work was supported by the National Sci-
ence Foundation (award #2048122). The views
expressed are those of the authors and do not
reflect the official policy or position of the US
government. Thanks to Xinyuan Lu for assisting
with the Github reading list repo.

References
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