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Abstract

Large pretrained language models are widely
used in downstream NLP tasks via task-
specific fine-tuning, but such procedures
can be costly. Recently, Parameter-Efficient
Fine-Tuning (PEFT) methods have achieved
strong task performance while updating much
fewer parameters than full model fine-tuning
(FFT). However, it is non-trivial to make in-
formed design choices on the PEFT configu-
rations, such as their architecture, the number
of tunable parameters, and even the layers in
which the PEFT modules are inserted. Con-
sequently, it is highly likely that the current,
manually designed configurations are subop-
timal in terms of their performance-efficiency
trade-off. Inspired by advances in neural archi-
tecture search, we propose AUTOPEFT for auto-
matic PEFT configuration selection: We first
design an expressive configuration search space
with multiple representative PEFT modules as
building blocks. Using multi-objective Bayes-
ian optimization in a low-cost setup, we then
discover a Pareto-optimal set of configurations
with strong performance-cost trade-offs across
different numbers of parameters that are also
highly transferable across different tasks. Em-
pirically, on GLUE and SuperGLUE tasks, we
show that AUTOPEFT-discovered configura-
tions significantly outperform existing PEFT
methods and are on par or better than FFT
without incurring substantial training effi-
ciency costs.

1 Introduction and Motivation

Pretrained language models (PLMs) are used
in downstream tasks via the standard transfer
learning paradigm, where they get fine-tuned for
particular tasks (Devlin et al., 2019; Liu et al.,
2019b). This achieves state-of-the-art results in a

∗Equal contribution.

wide spectrum of NLP tasks, becoming a preva-
lent modeling paradigm in NLP (Raffel et al.,
2020). Fine-tuning the PLMs typically requires
a full update of their original parameters (i.e.,
the so-called full-model fine-tuning (FFT)); how-
ever, this is (i) computationally expensive and also
(ii) storage-wise expensive as it requires saving
a separate full model copy for each task-tuned
model. With the ever-growing size of the PLMs
(Brown et al., 2020; Sanh et al., 2022), the cost of
full-model FT becomes a major bottleneck, due to
its increasing demands as well as computational
(time and space) non-efficiency.

Parameter-efficient fine-tuning (PEFT) delivers
a solution for alleviating the issues with full-model
FT (Houlsby et al., 2019). By freezing the majority
of pretrained weights of PLMs, PEFT approaches
only update a small portion of parameters for
efficiently adapting the PLM to a new downstream
task. Recent studies have shown that PEFT can
achieve competitive task performance while being
modular, adaptable, and preventing catastrophic
forgetting in comparison to traditional FFT (Wang
et al., 2022; Pfeiffer et al., 2023).

Recent developments have created diverse
PEFT modules with distinctive characteristics
(Pfeiffer et al., 2020b; Li and Liang, 2021), with
one of the two main aims in focus: 1) improve
task performance over other PEFT approaches
while maintaining the same parameter budget as
the competitor PEFT methods; or 2) maintain task
performance while reducing the parameter budget
needed. Existing PEFT modules, optimizing for
one of the two aims, have been successfully ap-
plied to transfer learning tasks (Chen et al., 2022b;
Pfeiffer et al., 2022). However, different tasks,
with different complexity, show distinct sensitiv-
ity to the allocated parameter budget and even
to the chosen PEFT approach (He et al., 2022).
At the same time, most PEFT applications are
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limited to a single PEFT architecture (e.g., serial
adapters, prefix-tuning) with fixed decisions on
its components (e.g., hidden size dimensional-
ity, insertion layers) resulting in potentially sub-
optimal PEFT configurations across many tasks.
Therefore, in this work, we propose a new, ver-
satile, and unified framework that automatically
searches for improved and task-adapted PEFT con-
figurations, aiming to effectively balance between
the two (often colliding goals) of (i) improving
performance and (ii) keeping the desired low pa-
rameter budget for PEFT.

While recent research has started exploring
more dynamic PEFT configurations, prior studies
remain limited across several dimensions, includ-
ing how they define the configuration search
space. Namely, they typically focus only on a
single PEFT architecture (e.g., adapters) or their
simple combinations, or a single property (e.g.,
insertion layers—where to insert the module); see
a short overview later in §3. Here, we propose a
unified and more comprehensive framework for
improved configuration search. It covers mul-
tiple standard PEFT modules (serial adapters,
parallel adapters, and prefix-tuning) as build-
ing blocks, combined with the critical parameter
budget-related decisions: the size of each con-
stituent module and the insertion layers for the
modules.

Our defined comprehensive search space is
huge; consequently, traversing it effectively and
efficiently is extremely challenging. To enable
search over the large configuration space, we
thus propose the novel AUTOPEFT framework. It
automatically configures multiple PEFT modules
along with their efficiency-oriented design de-
cisions, relying on a high-dimensional Bayesian
optimization (BO) approach. Crucially, within the
search space, we propose a multi-objective opti-
mization which learns to balance simultaneously
between maximizing the searched configurations’
task performance and parameter efficiency.

We conduct extensive experiments on the
standard GLUE and SuperGLUE benchmarks
(Wang et al., 2018, 2019), with encoder-only and
encoder-decoder models. We first study the trans-
ferability of the AUTOPEFT-searched architecture
by running AUTOPEFT on a single task with a
low-fidelity proxy (aiming to reduce computa-
tional cost), followed by transferring the found
architecture to other tasks. Experimental results
show that this architecture can outperform existing

Figure 1: Performance of AUTOPEFT-discovered con-
figurations (AutoPEFT&AutoPEFT(per-task);
see details in Table 1) compared to other baseline PEFT
methods (markers) and full model FT that updates
100% of parameters (dashed horizontal bar), aver-
aged across 8 GLUE tasks. Our approach achieves the
best trade-off between task performance and parameter
efficiency.

PEFT baselines while achieving on-par perfor-
mance with the standard FFT. Further slight gains
can be achieved with a larger computation budget
for training, where we run AUTOPEFT per task
to find a task-adapted PEFT configuration. As
revealed in Figure 1, AUTOPEFT can find config-
urations that offer a solid trade-off between task
performance and parameter efficiency, even out-
performing FFT. We also provide ablation stud-
ies over the search space, validating that the
AUTOPEFT framework is versatile and portable
to different search spaces.

Contributions. 1) We propose the AUTOPEFT
search space containing diverse and expressive
combinations of PEFT configurations from three
representative PEFT modules as foundational
building blocks and the binary decisions con-
cerning Transformer layers for inserting these
modules as searchable dimensions. 2) To nav-
igate the vast AUTOPEFT search space and to
discover a set of transferable PEFT configura-
tions that optimally trade performance against cost
across various parameter ranges in a single run,
we further propose an effective search method
based on multi-dimensional Bayesian optimiza-
tion. 3) We demonstrate that the one-time search
cost of AUTOPEFT is low, and AUTOPEFT yields
task-shareable configurations, outperforming ex-
isting PEFT modules while being transferable
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Figure 2: Illustration of the AUTOPEFT search space which combines both layer-level (Layers) and within-layer
(Serial, Parallel, Prefix) search, and the connections within a layer (Left). We further show two
possible configurations in the search space (Right): note that some PEFT layers can be inactive altogether and the
searchable module sizes (shaded in green), i.e., the bottleneck sizes in Serial and Parallel (DSA and DPA,
respectively) and sizes of PK , PV in Prefix (LPT), are dynamic.

across tasks. The AUTOPEFT framework can also
be easily extended to other and new PEFT mod-
ules. The code is available at https://github
.com/cambridgeltl/autopeft.

2 AUTOPEFT Framework

2.1 Designing the AUTOPEFT Search Space

Inspired by the success of neural architecture
search (NAS) methodology (Ru et al., 2020), we
similarly start by designing a large and expres-
sive configuration space. We additionally provide
the motivation behind each decision to include
a particular module and its components in the
configuration space, along with a mathematical
formulation.

The search space is known to be one of the most
important factors in the performance of the config-
urations to be discovered subsequently (Ru et al.,
2020; Xie et al., 2019; Li and Talwalkar, 2019;
Dong and Yang, 2020; Yang et al., 2020). In or-
der to simultaneously maximize task performance
along with parameter efficiency, it is necessary to
first define a ‘parameter-reducible’ search space,
where each dimension within the space potentially
contributes to reducing the parameter budget.
Similarly, each dimension potentially impacts
the performance positively without introducing
redundancy in the space (Wan et al., 2022). There-
fore, we propose the following search space with
representative PEFT modules spanning a plethora

of (non-redundant) configurations as illustrated
in Figure 2:

PEFT Modules. Inspired by common practices
in NAS of using known well-performing modules
as building blocks, we include three distinctive
PEFT designs to efficiently adapt different for-
warding stages of hidden states in the PLM
layers. We combine Serial Adapters (SA), Par-
allel Adapters (PA), and Prefix-Tuning (PT) as
the three representative modules in the search
space as the building blocks, where the PT mod-
ule adapts the multi-head attention layer, and SA
and PA interact with the FFN layer (Figure 2).
Each configuration makes a decision on the PEFT
modules in the insertion layer: all of them can
be ‘turned’ on or off. We combine this binary
decision with the actual non-binary decision on
the module size (see next) so that the value of 0,
in fact, denotes the absence of the modules in the
layer(s). We note that other PEFT modules such as
LoRA (Hu et al., 2022a) are scaled variants of PA
with the same insertion form (He et al., 2022). As
we empirically validate later, the resultant search
space spanned by the selected building blocks
is extremely expressive and flexible and enables
the discovery of configurations that outscore
any of the individual building blocks and other
PEFT modules.

Size. Previous studies show that PEFT meth-
ods are highly sensitive to the number of tunable
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parameters: Adaptively setting their capacity in
accordance with the target task is, therefore, es-
sential for achieving good performance (Chen
et al., 2022a). The number of tunable parameters
depends on each particular module. The addi-
tional parameters introduced by both SA and PA
are dominated by their bottleneck dimension D.
Similarly, the size of the PT module is defined
by its prefix length LPT. Thus, we define a binary
logarithmic search scale for the respective discrete
sets DSA, DPA, and LPT, spanning the values from
0 (absence of the module) to Dh where Dh is
the dimensionality of the output embedding of the
PLM (e.g., Dh = 768 for BERTbase).

Insertion Layers. Prior work has also shown that
different layers in the PLMs store different se-
mantic information (Vulić et al., 2020), where the
higher layers produce more task-specific and con-
textualized representations (Tenney et al., 2019).
Therefore, as another configuration dimension, we
aim to search for the minimal number and the ac-
tual position of layers in which to insert the PEFT
modules. We define a binary ‘insertion’ decision
at each layer li.

Combining PEFT Modules. The SA module
and the PA module share a bottleneck architec-
ture. The SA receives hidden states from the
FFN output as its inputs, adapting it with a
down-projection matrix W down

SA ∈ RDh×DSA , fol-
lowed by a non-linear activation function, and
then an up-projection matrix W up

SA ∈ RDSA×Dh :

fSA(h) = ReLU(hW down
SA )W up

SA. (1)

PA, on the other hand, receives its inputs from
hidden states before the FFN layer with the same
formulation:

fPA(x) = ReLU(xW down
PA )W up

PA. (2)

Therefore, it is able to act in parallel with the
SA without interference. Note that the FFN hidden
states h = F (x) contain the task-specific bias
learned in its pretrained weights. Therefore, by
combining SA with PA, the following composition
of functions is achieved:

fSAPA(x) = ReLU(F (x)W down
SA )W up

SA

+ ReLU(xW down
PA )W up

PA.
(3)

The final composition should adapt effectively
to both bias-influence hidden states and the
original inputs before the pretrained FFN layer.1

Further, applying PEFT modules to interact
with FFNs and multi-head attention should posi-
tively impact task performance (Mao et al., 2022;
He et al., 2022). PT learns two prefix vectors,
Pk and Pv ∈ RLPT×Dh , that are concatenated with
the original multi-head attention’s key and value
vectors, which efficiently adapts the multi-head
attention layer to fit the target task. Thus, we
finally combine the SA and the PA (i.e., SAPA
from above) with PT.

In sum, the overview of the dimensions span-
ning the final configuration space is provided in
Figure 2. The combination of the different ‘con-
figuration dimensions’ outlined above gives rise
to a total of, e.g., 5,451,776 possible configura-
tions with BERTbase and∼ 3×1010 configurations
with RoBERTalarge (i.e. the number of configu-
rations is 2|l| × |DSA| × |DPA| × |LPT|). While
a large search space is crucial for expressiveness
and to ensure that good-performing configurations
are contained, it also increases the difficulty for
search strategies to navigate the search space well
while remaining sample- and thus computation-
ally efficient. Furthermore, in the PEFT setting, we
are also often interested in discovering a family of
configurations that trade-off between performance
and efficiency for general application in various
scenarios with different resource constraints, thus
giving rise to a multi-objective optimization prob-
lem where we simultaneously aim to maximize
performance while minimizing costs. In what fol-
lows, we propose a search framework that satisfies
all those criteria.

2.2 Pareto-Optimal Configuration Search
Multi-objective Optimization Formulation.
The ultimate goal of AUTOPEFT is to discover
promising PEFT configuration(s) from the ex-
pressive search space designed in §2.1, which is it-
self challenging. In this paper, we focus on an
even more challenging but practical goal: Instead
of aiming to find a single, best-performing PEFT
configuration, we aim to discover a family of
Pareto-optimal PEFT configurations that trade
performance against parameter-efficiency (or
parameter cost) optimally: One of the most

1The PA module also acts as the low-rank reparameteri-
sation of the learned SA and the frozen FFN layer to further
match the intrinsic dimensionality of the target task.

528



impactful use cases of PEFT is its ability to allow
fine-tuning of massive language models even
with modest computational resources, and thus
we argue that searching Pareto-optimal config-
urations is key as it allows tailored user- and
scenario-specific PEFT deployment depending
on the computational budget.

Formally, denoting the full AUTOPEFT search
space as A and a single configuration a ∈ A with
trainable weights W , without loss of generality,
assuming our objective is to maximize (i) a per-
formance metric f(a,W ) (e.g., the accuracy on
the dev set) and to (ii) minimize a cost metric g(a)
(e.g., the number of parameters in a), a search
method aims to solve the bi-level, bi-objective
optimization problem:

max
a∈A

(
f(a,W ∗(a)),−g(a)

)
;

s.t.W ∗(a) = argmin
W

Ltrain(a,W ),
(4)

where the inner loop optimization problem is
the optimization of the configuration weights
achieved by fine-tuning the configuration a itself
over the training loss Ltrain. Given the bi-objective
nature of the problem, there is, in general, no single
maximizer of Eq. (4) but a set of Pareto-optimal
configurations A∗ = {a∗1, . . . , a∗|A∗|} that are
non-dominated: We say that a configuration a
dominates another a′ (denoted f(a′) ≺ f(a)) if
Lval(a,W

∗) ≤ Lval(a
′,W ∗) and g(a) ≤ g(a′)

and either Lval(a,W
∗) < Lval(a

′,W ∗) or g(a) <
g(a′). Denoting f(a) := [Lval(a,W

∗), g(a)]	, the
set of Pareto-optimal architectures A∗ are those
that are mutually non-dominated: A∗ = {a∗i ∈
A | � a′ ∈ A s.t. f(a′) ≺ f(a∗i )}. The Pareto
front (PF) P∗ is the image of the Pareto set of
architectures: P∗ = {f(a) | a ∈ A∗}.

Bayesian Optimization (BO). To solve Eq. (4),
we adopt a BO approach, illustrated in Figure 3.
On a high level, BO consists of a surrogate
model that sequentially approximates the objec-
tive function based on the observations so far
and an acquisition function that is optimized at
each iteration to actively select the next con-
figuration to evaluate. Typically, the surrogate
model is a Gaussian process (GP), a flexible
and non-parametric model with well-principled
and closed-form uncertainty estimates: Given an
observed set of n configurations and their eval-
uated performance: Dn = {

(
ai,f(ai)

)
}ni=1, the

Figure 3: Illustration of the Pareto-optimal search
with multi-objective Bayesian optimization (BO; §2.2):
The BO agent trains on the vector representations
of the evaluated configurations as inputs and their
performance under a low-fidelity setup (e.g., accura-
cy—obtained by fine-tuning the language model with
the PEFT configuration for a small number of it-
erations) and cost (e.g., number of parameters) as
targets. The BO agent then iteratively suggests new
configurations until convergence.

GP surrogate model gives a closed form posterior
distributionP(f(a)|Dn) over the true, unobserved
function values f potentially over configurations
that have not been evaluated before. The acquisi-
tion function α : A → R, on the other hand, uses
the posterior distribution of the surrogate model
to assign a utility value to possible configuration
candidates in A, typically balancing exploitation
(i.e., querying near configurations in {ai}ni=1 that
were previously observed to be strong) and ex-
ploration (i.e., the configurations far from {ai}ni=1

and are those we do not have knowledge on and
can potentially be even better configurations).
At each step of BO, the acquisition function is
optimized (note that while evaluating f(a) is ex-
pensive, evaluating α(a|D), which only uses the
posterior distribution from the surrogate model, is
not) to select the next configuration (or batch of
configurations) an+1 = argmaxa∈A α(a|Dn) to
evaluate. For a detailed overview of BO, we refer
the readers to Garnett (2023) and Frazier (2018).

Rationales for Using BO. We argue that BO
is well-suited to the task in principle and has
various advantages over alternative, viable ap-
proaches such as those based on differentiable
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NAS (DARTS) (Liu et al., 2019a), which typically
utilize a continuous relaxation of the discrete con-
figurations, thereby allowing a to be jointly opti-
mized with the model weights W in Eq. 4 with a
supernet.

First, unlike the DARTS-based approach, by
treating the optimization problem defined in
Eq. 4 as a black box, BO decouples the opti-
mization of the weights W and the optimization
of architecture a, and solves the latter problem
with no gradient information at all (White et al.,
2021; Ru et al., 2021). This makes a BO-based
solution more parallelizable and more amenable to
a distributed setup, which modern large PLMs of-
ten rely on, as multiple configuration evaluations
may take place simultaneously in different client
machines as long as they can relay the evaluation
results f back to a central server running the BO.
This further contributes to memory efficiency, as
unlike the DARTS-based method that optimizes
a supernet (a heavily over-parameterized network
that can be deemed as a weighted superposition
of all configurations in A), each parallel evalu-
ation in BO trains a single configuration only;
we argue that this point is particularly important
for PEFT given its main promise on parameter
efficiency.

Second, as discussed, it is often desirable to
discover a family of configurations with different
trade-offs between performance and parameters
in different application scenarios. As we will
show, while BO generalizes elegantly to han-
dle vector-valued objective functions and may
generate a PF of configurations in a single run,
competing methods, such as supernet-based NAS
methods, typically require a scalar objective func-
tion and thus are limited to discovering a single
best-performing configuration (Eriksson et al.,
2021; Izquierdo et al., 2021); this means that one
typically needs to run the NAS pipeline multiple
times for different cost budgets in these methods.

Lastly, while one of the main arguments
favoring differentiable techniques is its lighter
computational expense as one only needs to train
the supernet once rather than repeatedly training
different candidate configurations, as we will
later show, the sample-efficient nature of BO and
strong transferability of the discovered configu-
rations also ensure that the computational cost
of our proposed method remains tractable. As
we will show in §4, while DARTS-based NAS is
indeed a plausible approach for PEFT configu-

Algorithm 1 Overall AUTOPEFT search pipeline.
1: Input: number of randomly initialising points N0,

maximum number of config evaluations N > N0,
AUTOPEFT search space A.

2: Output: a set of Pareto-optimal configs A∗.
3: Initialise by sampling randomly at N0 config-

urations a ∼ A and fine-tune the PLM to
obtain f(·) of the corresponding configs. Initialise
D0 ← {(ai,f(ai))}N0

i=1 and fit a SAAS-GP model
on D0.

4: for n = N0, . . . , N do
5: Select the next configuration(s) to evaluate an

by maximizing the NEHVI acquisition function
an = argmaxa∈Aα(a|Dn−1).

6: Fine-tune the PLM with candidate configura-
tion(s) a (possibly with low-fidelity estimates) to
obtain f(a) // Inner-loop optimization in Eq. 4.

7: Augment the observation data Dn ← Dn−1 ∪
(at,f(at)) and update the SAAS-GP model.

8: end for
9: Return the set of non-dominated configurations

A∗ ⊆ {ai}Ni=1.

ration search, we show that our approach per-
forms competitively to S3PET (Hu et al., 2022b),
a DARTS-based method.

Adapting BO to the AUTOPEFT Task. Adapt-
ing BO to the high-dimensional and combinato-
rial AUTOPEFT search space is non-trivial. To
address the challenges, we customize both com-
ponents of BO, and the overall pipeline is shown
in Algorithm 1. Instead of a standard GP, we
propose to use a Gaussian process with sparse
axis-aligned subspaces (SAAS-GP) (Eriksson and
Jankowiak, 2021) as the surrogate model: As an
intuitive explanation, SAAS-GP places strong,
sparsity-inducing priors on the GP hyperparame-
ters to alleviate the difficulty in modeling high-
dimensional data by assuming that despite the
high nominal dimensionality, some search dimen-
sions contribute much more significantly to the
variation of the objective function than others—
this assumption is shown to hold in related prob-
lems of NAS in computer vision (Wan et al., 2022)
and discrete prompt search in PLMs (Zhou et al.,
2023), and we expect similar findings in our par-
ticular case.

For the acquisition function, we use the noisy
expected hypervolume improvement (NEHVI)
(Daulton et al., 2021) to handle the multi-objective
setting: Unlike the commonly used scalarisation
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approach that transforms the vector-valued ob-
jective function to a scalar weighted sum (which
corresponds to a single point on the PF), NE-
HVI is capable of automatically exploring all
parts of the PF in a single run. Lastly, we ad-
ditionally use low-fidelity approximations, a pop-
ular low-cost performance estimation strategy in
NAS (Elsken et al., 2019), to manage the search
cost: At search-time, instead of fine-tuning each
candidate PEFT configuration in full, we only
fine-tune with a much smaller number of itera-
tions (5% of full)—this is possible as we are only
interested in the relative ranking (rather than the
performance itself) of the different configurations
during search. Consistent with NAS literature, we
also find the low-fidelity estimate to provide a
reliable ranking, with the best-performing con-
figurations in low fidelity also performing the
best under fine-tuning with the full number of
iterations. As we will show in §5, using the
low-fidelity search pipeline, in combination with
the strong transferability of the discovered con-
figurations, AUTOPEFT only incurs an additional
one-off, 1.9% of the total GLUE fine-tuning cost,
but delivers significant performance gains.

3 Related Work

PEFT Methods in NLP. Standard PEFT meth-
ods can be divided into two main groups (Pfeiffer
et al., 2023). 1) Some methods fine-tune a small
portion of pretrained parameters (Zhao et al.,
2020; Guo et al., 2021). For instance, Ben
Zaken et al. (2022) propose to fine-tune the PLM’s
bias terms, while Sung et al. (2021) and Ansell
et al. (2022) fine-tune sparse subnetworks withing
the original PLM for a particular task. 2) Other
methods fine-tune an additional set of parameters
(Liu et al., 2022). Since there is no interfer-
ence with the pretrained parameters, this class
of PEFT modules, besides offering strong task
performance, is arguably more modular; we thus
focus on this class of PEFT methods in this work.
The original adapter modules (Houlsby et al.,
2019; Pfeiffer et al., 2020b) have a bottleneck se-
rial architecture which can be inserted into every
Transformer layer, see Figure 2. LoRA (Hu et al.,
2022a) assumes the low-rank intrinsic dimension-
ality of the target task and performs low-rank
updates (Mahabadi et al., 2021). Li and Liang
(2021) propose the Prefix-Tuning method that ap-
pends a learnable vector to the attention heads at

each Transformer layer. Similarly, prompt-tuning
(Lester et al., 2021) only appends this vector
to the input embedding. UniPELT (Mao et al.,
2022) integrates multiple PEFT modules with
a dynamic gating mechanism. He et al. (2022)
provide a unified formulation of existing PEFT
modules and propose a parallel adapter module,
along with a combined ‘Mix-and-Match Adapter
(MAM)’ architecture that blends parallel adapters
and prefix-tuning. Wang et al. (2022) propose
the mixture-of-adaptations (AdaMix) architecture
with weight averaging for a mixture of adapters.

Optimizing Parameter Efficiency in PEFT.
Recent work further aims to optimize the param-
eter efficiency of existing PEFT modules while
maintaining task performance. The standard ap-
proach is to insert (typically serial) adapters into all
Transformer layers, which still requires a sizeable
parameter budget. Rücklé et al. (2021) address
this question by randomly dropping adapters from
lower-level layers, displaying only a small de-
crease in task performance. Adaptable Adapters
(AA) (Moosavi et al., 2022) generalize this idea
by learning gates that switch on or off adapters
in particular Transformer layers. Neural Architec-
ture Search (NAS) methods aim to automate the
design of neural net architectures themselves, and
NAS has seen great advances recently, with per-
formance often surpassing human expert-designed
architectures in various tasks (Zoph and Le, 2017;
Ren et al., 2021; Elsken et al., 2019). Concerning
NLP tasks and PEFT, Hu et al. (2022b) propose
S3PET, which adapts Differentiable Architecture
Search (DARTS) (Liu et al., 2019a) to learn the
positions for inserting the PEFT modules. This
work is closest in spirit to ours and is empirically
compared to in §4. Conceptually, however, as dis-
cussed in detail in §2, we argue that our method
offers a spectrum of advantages over S3PET and
other related PEFT work, including but not limited
to the ability to automatically discover a family
of PEFT configurations across parameter budgets
in a single run, better parallelisability and mem-
ory efficiency. Other concurrent work (Valipour
et al., 2023; Zhang et al., 2023) also approaches
the same problem by dynamic budg et allocation
mechanisms on a single PEFT module within a
limited search space. Nonetheless, this field still
lacks a compact solution for automatically con-
figuring a complex space of PEFT modules (Chen
et al., 2023).
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4 Experimental Setup

Evaluation Data. We follow prior PEFT re-
search and base our evaluation on the standard and
established GLUE and SuperGLUE benchmarks.
For GLUE, we include 4 types of text classi-
fication tasks, including linguistic acceptability:
CoLA; similarity and paraphrase: STS-B, MRPC,
QQP; sentiment analysis: SST-2; natural language
inference: RTE, QNLI, MNLI. We exclude WNLI
following previous work (Houlsby et al., 2019;
Mao et al., 2022). We also include CB, COPA,
WiC, and BoolQ from SuperGLUE to further
validate the transferability of AUTOPEFT-found
configuration across different tasks and datasets.

Baselines. We compare the performance of the
AUTOPEFT-found configurations to the standard
full model FT and each individual PEFT mod-
ule (SA, PA, PT) from the search space used in
their default setup from their respective original
work. We also compare with the LoRA module to
provide a comparison to low-rank decomposition
methods. To compare with recent methods that
also integrate multiple PEFT modules (see §3),
we further include the UniPELT and the MAM
adapter in their default settings. We reproduce
AdaMix for a comparison to a mixture of ho-
mogeneous adaptations. In ablations on insertion
layers, we also include the Adaptable Adapter
(AA) as a baseline that proposes a differentiable
gate learning method to select the insertion layer
for PEFT modules (i.e. serial adapters originally).
On T5 (Raffel et al., 2020) models, we also com-
pare against S3PET (Hu et al., 2022b), one of the
most similar works to us that use differentiable
NAS for configuration search.

Implementation Details. Following previous
work on the GLUE benchmark, we report the best
GLUE dev set performance (Ben Zaken et al.,
2022) and use 20 training epochs with an early
stopping scheme of 10 epochs for all per-task
experiments. We use AdapterHub (Pfeiffer et al.,
2020a) as the codebase and conduct extensive
experiments with the uncased BERTbase (Devlin
et al., 2019) as the main backbone model. We
report main experiments with the mean and stan-
dard deviation over 5 different random seeds.
Following Pfeiffer et al. (2020b), we use a rec-
ommended learning rate of 10−4 for all PEFT
experiments. We use the learning rate of 2× 10−5

for full model FT according to Mao et al. (2022).
We use batch sizes 32 and 16 for all BERT and
RoBERTa experiments, respectively. The opti-
mizer settings for each PEFT module follow the
default settings in AdapterHub (Pfeiffer et al.,
2020a). We implement the BO search algorithm
in BoTorch (Balandat et al., 2020) and use the rec-
ommended settings from Eriksson and Jankowiak
(2021) for the surrogate. For acquisition func-
tion optimization, we use a local search method
similar to previous literature with a similar setup
(Wan et al., 2021; Eriksson et al., 2021): At
each search iteration (after the initial randomly
sampled points), we collect the Pareto-optimal ar-
chitectures up to this point. From this collection of
Pareto-optimal architectures, we perform a local
search by evaluating the acquisition function val-
ues of their neighbors and move the current point
to a neighbor with a higher acquisition function
value, and this process is repeated until conver-
gence. Due to the relatively noisy nature of the
problem, we use 100 random initialization points
for all experiments, followed by 100 BO iterations.
We further show results using RoBERTalarge (Liu
et al., 2019b) in Table 5, which shows findings
that are consistent with the BERTbase. In experi-
ments with RoBERTalarge as the underlying PLM,
we report the RTE results with a learning rate of
2× 10−5 for AUTOPEFTMRPC and AUTOPEFTCoLA;
10−4 for AUTOPEFTRTE. We use batch size 16 and a
learning rate of 3×10−4 for T5base experiments by
AUTOPEFT with the SAPA space; 10−5 for STS-B.
We reproduce S3PET results with batch size 8 in
the same experimental setup as AUTOPEFT.

5 Results and Discussion

Discussion of Main Results. The main results
on BERT are summarized in Table 1, where
we evaluate the AUTOPEFT-found configurations
searched from RTE, the most low-resource and
challenging task, on the full GLUE suite. We
further report selected GLUE tasks on T5 in
Table 4 (where we also compare against S3PET)
and RoBERTalarge in Table 5. For simplicity,
we report a single configuration that leads to
the highest task performance in a predefined,
user-specified parameter budget from the discov-
ered Pareto-optimal set in Table 1, whereas the
full Pareto-optimal set is evaluated in Figure 4.
On BERT (Table 1, we find that using only 0.76%
of parameters, AUTOPEFTRTE outperforms all the
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Method #Param. RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI Avg.

FFT 100% 71.121.46 85.741.75 89.000.45 59.320.62 92.570.24 91.500.08 91.520.04 84.430.22 83.15
Prefix 0.17% 70.540.49 85.930.89 88.760.15 58.881.15 91.930.45 90.760.14 89.120.07 82.780.16 82.33
LoRA 0.27% 65.851.49 84.461.04 88.730.08 57.580.78 92.060.38 90.620.22 89.410.04 83.000.07 81.46
Serial 0.81% 68.011.34 84.750.45 88.610.11 59.730.62 91.930.33 91.060.12 90.520.05 84.180.22 82.35
AdaMix 0.81% 70.110.62 86.861.12 89.120.11 59.111.00 92.060.22 91.520.15 90.220.04 84.250.14 82.91
UniPELT 1.25% 67.071.82 84.220.78 88.840.11 60.130.46 92.520.24 91.090.13 90.690.11 84.280.18 82.35
Parallel 6.46% 68.523.44 86.520.96 88.900.28 58.721.69 92.130.35 90.830.22 90.740.08 73.9319.24 81.29
MAM 6.97% 69.101.76 87.160.74 89.010.48 47.8723.97 83.9416.52 90.850.22 90.760.05 83.310.17 80.25

AUTOPEFTRTE 0.76% 72.200.72 87.160.83 88.770.07 60.301.24 92.220.30 90.900.10 90.370.06 83.460.21 83.17

AUTOPEFTtask
Avg. 1.40% 72.350.94 87.450.87 89.170.24 60.921.47 92.220.30 91.120.13 90.640.05 84.010.10 83.49

Table 1: Results on the GLUE benchmark with BERTbase (tasks are ranked in ascending order of training
resources required from left to right). For AUTOPEFTRTE, we search on RTE with a low-fidelity proxy,
training for 1 epoch per iteration, only at a search cost of 1.9% (in terms of additional fine-tuning
steps required) over the full GLUE experiment. We report the average fine-tuned parameters of per-task
AUTOPEFT, where we conduct additional per-task searches on RTE, MRPC, STS-B, and CoLA, and
take best-found configurations for the remaining tasks. We report Spearman’s Correlation for STS-B,
Matthew’s Correlation for CoLA, and accuracy for all other tasks (matched accuracy for MNLI). The
percentage of parameters is the ratio of the number of additional parameters to the pretrained parameters.
We reproduce all baselines and report the mean and standard deviation of all results for 5 random seeds.
The best and second-best results are marked in bold font and underlined, respectively.

PEFT baselines (more than 2% on RTE). The
AUTOPEFT-found configuration also outperforms
the full-model FT baseline on the RTE task by
more than 1%. These results indicate the effective-
ness of the AUTOPEFT framework in optimizing
both task performance and parameter efficiency.
Transferring the RTE-based configurations to
other tasks, we find that strong performance is
maintained across the target tasks, with more bene-
fits on the medium-resource tasks (MRPC, STS-B,
CoLA), but the configuration remains competitive
also for higher-resource tasks (e.g., QQP, MNLI).
Finally, we find the strength of AUTOPEFT to per-
sist in RoBERTa and T5 as a representative of
the encoder-decoder model families. It is particu-
larly noteworthy that in addition to outperforming
the baseline PEFT methods without configuration
search, AUTOPEFT also performs competitively
compared to S3PET with configuration search un-
der a comparable parameter count, even though
S3PET was exclusively developed and tested on the
T5 search space and that the S3PET search space
was designed with meticulous hand-tuning, where
the authors manually excluded several building
blocks that did not lead to empirical gain; this
provides further empirical support to the strength
of a BO-based search strategy described in §2.2.

Table 2 specifies the composition of the found
configuration, indicating the exact task-activelayers
while allocating more parameter budget to the ef-
ficient and effective PA module. On average, the

Task %Param. Active PEFT Submodule Value
Layers li

RTE 0.76%
3, 4,

8, 9, 10

DSA (Serial) 12
DPA (Parallel) 96
LPT (Prefix) 1

Table 2: Specification of the discovered configu-
ration reported in Table 1 (AUTOPEFTRTE) using
BERTbase.

Method CB COPA WiC BoolQ Avg.

FFT 71.431.13 51.803.76 68.621.93 72.170.86 66.01
LoRA 67.142.42 55.801.47 68.561.11 69.090.42 65.15
Serial 67.861.13 54.207.68 67.340.61 70.000.85 64.86
OursRTE 71.072.86 56.406.83 68.871.06 70.860.89 66.80

Table 3: Results on SuperGLUE tasks with AUTO-
PEFT-discovered configurations searched on RTE
with BERTbase as the underlying PLM. We split
10% of the training set as the new validation set
and report the AUTOPEFTRTE-found configuration
transfer results on the evaluation set over five ran-
dom seeds.

AUTOPEFTRTE configuration shows a comparable
fine-tuning performance (83.17) to FFT (83.15)
by only updating 0.76% of parameters. With
strong transferability across similar tasks, AUTO-
PEFT provides distinct advantages in parameter
efficiency; the search algorithm itself, coupled
with the transfer, becomes more sample-efficient
within limited training resources.
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Method #Param. RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI Avg.
LoRA 0.40% 80.1 89.5 89.2 59.9 94.4 93.6 91.0 86.5 85.5
Serial 0.79% 78.0 88.2 89.1 60.6 94.6 93.1 90.7 86.4 85.1

S3PETRTE 0.30% 79.8 89.0 90.2 58.6 94.2 93.3 90.6 86.5 85.3
AUTOPEFTRTE 0.33% 82.7 89.0 89.6 61.7 94.6 93.3 90.8 86.7 86.1

Table 4: Experimental results on GLUE with T5base. We report comparisons of in-task search perfor-
mance and transfer performance between the architectures found by AUTOPEFT and the state-of-the-art
baseline S3PET in a constrained parameter budget. Consistent with Table 1, we report AUTOPEFT and
S3PET results searched on RTE in full-resource settings that are then transferred to all other included
GLUE tasks.

Method #Param. RTE MRPC STS-B CoLA SST-2 QNLI Avg.

FFT† 100% 86.6 90.9 92.4 68.0 96.4 94.7 88.2
LoRA‡ 0.22% 85.2 90.2 92.3 68.2 96.2 94.8 87.8
Serial 0.89% 84.8 90.2 92.0 66.8 96.3 94.7 87.5

AUTOPEFTRTE 0.03% 88.1 89.5 92.3 67.0 96.0 94.6 87.9
AUTOPEFTtask

Avg. 0.88% 88.1 92.2 92.4 70.6 96.8 94.6 89.1

Table 5: Experimental results on GLUE with RoBERTalarge. We report the full model fine-tuning†

results from Liu et al. (2019b) with Pearson correlation for STS-B. We include the LoRA‡ module
performance from Hu et al. (2022a). We exclude QQP and MNLI tasks due to the high computation
cost of RoBERTalarge. Consistent with Table 1, we again report AUTOPEFT results searched on RTE in
full-resource settings that are then transferred all included GLUE tasks (AUTOPEFTRTE) and per-task
AUTOPEFT (AUTOPEFTtask

Avg.) but on RoBERTalarge.

Figure 4: Pareto fronts of AUTOPEFT on four tasks compared to baselines on BERTbase, over varying parameter
budgets. We report the single-seed task score but otherwise follow the settings in Table 1.

Extending AUTOPEFT to More Tasks. We
next ‘stress-test’ the ability of AUTOPEFT-found
configuration in a more challenging scenario, ex-
perimenting on a completely new set of dissimilar
tasks. Table 3 reports the results of transferring
AUTOPEFTRTE from Table 1 to four SuperGLUE
tasks. In terms of parameter efficiency, we observe
consistent patterns as in Table 1 before, where our
plug-and-play PEFT configuration outperforms
existing PEFT baselines by a substantial margin
(2%) on average while being comparable to the

costly full-model FT.2 In terms of search cost, we
recall that through the use of low-fidelity proxy
and the strong transferability, AUTOPEFTRTE in
Table 1 only requires an additional, one-off 1.9%
in terms of training time (or equivalently the num-
ber of fine-tuning steps) of that of single-seed
training of the GLUE training sets. Furthermore,

2With the AUTOPEFT-found off-the-shelf configuration,
this requires no additional search cost and enables a more
efficient and effective tuning approach for new tasks.

534



Figure 5: Pairwise transferability study of AUTOPEFT-
discovered configurations: each row (Ours[task])
denotes the performances of the AUTOPEFT config-
uration searched from [task] (e.g., RTE) to the task
itself and 3 other GLUE tasks. The results suggest that
AUTOPEFT performance is largely robust to the choice
of which task to search on.

Figure 5 demonstrates the robustness of our frame-
work to the choice of the source task to search
on. Therefore, our framework is task-agnostic
with a cheap one-time cost but yields ‘permanent’
improvement towards all efficiency metrics for
PEFT: space, time, and memory.

Per-Task Search. We further conduct
full-resource per-task AUTOPEFT searches. While
naturally more expensive, we argue this setup
is useful if, for example, one is interested in
finding absolutely the best configurations for
that particular task and where search cost is less
of a concern. Due to computational constraints,
we search per-task on RTE, MPRC, STS-B,
and CoLA, then port the small set of best
configurations to the remaining higher-resource
tasks (SST-2, QNLI, QQP, MNLI). We observe
consistent gain in all tasks we search on over
the best-performing PEFT baselines, e.g., MRPC
(87.16% (best baseline) to 87.45% (ours)) and
CoLA (60.13% to 60.92%), and also the trans-
ferred configuration AUTOPEFTRTE in Table 1.
One interpretation is that while configurations are
highly transferable, the optimal configurations
may nonetheless differ slightly across tasks such
that while transferred AUTOPEFT configurations
(e.g., the one reported in Table 1) perform well,
searching per-task performs the best. Crucially,
we also find per-task AUTOPEFT in this setup to
even outperform FFT, despite only using 1.4% of
all parameters, except for the high-resources task
where we mostly perform on par; this is consistent

with our observations that similar to the baselines,
due to the richness of training resources, the
performance may be mostly saturated and PEFT
methods often achieve on-par performance to
FFT at most.

Analyzing the ‘Behavior’ of BO and the Dis-
covered Configurations. Figure 7 shows the
distribution of AUTOPEFT-found configurations
when we conduct its search experiment on RTE.
Recalling that the search strategy (§2.2) starts with
random initialization, we compare the behaviors
of the random explorations and the BO-suggested
configurations: Whereas the random search base-
line is purely exploratory and discovers less
parameter-efficient configurations, BO succeeds
in discovering configurations towards the regions
with improved parameter efficiency. The superi-
ority of BO over the random search baseline is
further demonstrated quantitatively by Figure 8
where we compare the evolution of the hyper-
volume, which measures the size of the space
enclosed by the Pareto front over a reference point
(set to the nadir point of the optimization trajec-
tory) (Zitzler and Thiele, 1998), discovered by
BO and random search as a function of the num-
ber of configurations evaluated; it is clear that as
optimization proceeds, BO finds a better Pareto
set with a better trade-off between performance
and cost in the end. BO eventually discovers a rich
family of PEFT configurations across a wide range
of parameters, whereas previous approaches typi-
cally fail to explore the entire PF. This is a critical
strength motivating our BO search strategy.

Figure 6, on the other hand, visualizes the dis-
covered sets in different tasks: we observe that
within the Pareto-optimal configuration set of the
same task, some layers are consistently enabled
(e.g., Layer 2 in CoLA) whereas some are consis-
tently disabled (e.g., Layer 1 across all tasks) even
under very different cost budgets; this suggests
PEFT modules in different layers are not equally
important, and by selectively enabling them, AUTO-
PEFT is capable of making better use of the pa-
rameter budgets by allocating them to the more
beneficial Transformer layers only. We observe
the unanimity of preference or disinclination to-
wards certain layers extends even across tasks that
are unlikely to stem from randomness only: For
example, we found Layers 2 and 10 are enabled
in 71.2% and 69.2% in all Pareto-optimal con-
figurations over all tasks, whereas Layers 1 and
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Figure 6: Visualisation of the BO discovered Pareto-optimal sets of configurations A∗ in different tasks (i.e., the
configurations on the PFs in Figure 4) in ascending order of parameter budget. layer i denotes the binary choice
of whether the PEFT module is active in the i-th layer of the PLM. The final 3 columns denote DSA, DPA and LPT
respectively, and feature a range of possible values from 0 to 768.

Figure 7: The distribution of the discovered con-
figurations via BO (orange), described in §2.2 and
random search (grey) using the same total number of
evaluations (200). Both searches use the same 100
random initialising points (blue) on RTE. Note that
BO-generated configurations typically have much bet-
ter parameter efficiency for configurations with similar
accuracy.

12 are enabled in only 7.7% and 13.4% of the
time, respectively. We also observe that across all
tasks, a common trend is that sequential and prefix
adapters are universally preferred in low-budget
ranges, and parallel adapters are only enabled
when we have a more lenient budg et allowance;
these commonalities in high-performing configu-
rations may, to some extent, account for the strong
transferability of the discovered configurations, as
shown in Figure 5.

Ablation of the Configuration Space. To pro-
vide a finer-grained analysis of factors that bring
positive impact to AUTOPEFT, we ablate the AUTO-
PEFT search space from the full configuration
space: 1) to the basic enumeration of the bottle-
neck size DSA of the SA only (the SA space);
2) a naı̈ve baseline where instead of searching

Figure 8: The hypervolumes of the Pareto-optimal
configurations discovered by BO (orange) and ran-
dom search (grey) as a function of the number of
configurations evaluated.

for each search dimension independently, we vary
a single, common coefficient that generates a
family of configurations of different sizes by
scaling from the largest PEFT configuration in
our search space (SA-PA-PT) over DSA, DPA and
LPT. We then include the Transformer layer and
the SA size into the search space (the SA-Layer
space) to validate the usefulness of layer se-
lection as one configuration dimension. We can
then also expand the search space by adding an-
other module (e.g., PA yields the SA-PA-Layer
space). Figure 9 plots the performance over the
ablated configuration spaces and different param-
eter budgets. Several key findings emerge. First,
combining multiple single PEFT modules has a
positive impact on AUTOPEFT in general (c.f. full
AUTOPEFT vs. SA-PA-Layer vs SA-Layer).
Second, simply scaling all search dimensions by
a common scaling factor is sub-optimal. This
is likely because not all parameters are equally
important, necessitating a configuration search.
Relying on layer selection also brings benefits
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Figure 9: The performance of AUTOPEFT with abla-
tion of search space on RTE on BERTbase. The SA
results refer to the Pfeiffer adapter (Pfeiffer et al.,
2020b) with an enumeration of its bottleneck size. The
Scaling results refer to the PF where smaller con-
figurations are obtained by simply scaling the largest
configuration in A over all search dimensions. We
report the PF of AUTOPEFT-found configurations,
where SA-PA-PT-Layer forms the search space
of AUTOPEFT.

(c.f. SA vs. SA-Layer). The comparison indi-
cates that leaving out Transformer layers while
increasing the capacity of the PEFT module is a
straightforward method to improve the parameter
efficiency and task performance of the PEFT mod-
ule within a fixed parameter budget. The ablation
results also demonstrate that AUTOPEFT is search
space-agnostic, capable of effectively operating
over configuration spaces of different granularity.

Layer Selection. The ability to disable some
PEFT layers altogether is a key novelty of the
AUTOPEFT search space, and to further compare
different layer selection approaches, we conduct
a controlled experiment with the SA module on
BERTlarge (24 Transformer layers) under a prede-
fined parameter budget. In Table 6, we compare
against AdapterDrop, which simply drops the
adapters for the first 11 layers while doubling
their bottleneck sizes, and, within the same ar-
chitecture, we also include the Adaptable Adapter
with selected layers from switch learning (3 and 10
layers from the first 12 and the other 12 layers, re-
spectively). We show that AUTOPEFT outperforms
existing layer selection baselines activating fewer
PEFT layers, leading to better parameter effi-
ciency (12.5% fewer parameters in relative terms)
yet achieving better performance. It indicates that
selecting the best insertion layer is non-trivial, and
AUTOPEFT can efficiently learn the correlation
between layers.

Method #Layers Size DSA RTE

Serial 24 64 72.560.76
Adaptable Adapter 13 128 73.360.80
AdapterDrop 13 128 73.501.40

AUTOPEFTSA
Layer 10 128 73.860.94

Table 6: Comparing AUTOPEFT to layer selec-
tion baselines with the same parameter budget
on BERTlarge. We report the Pfeiffer adapter for
all 24 layers (Serial), specialised Adapter-
Drop (Rücklé et al., 2021) that inserts SA for the
last 13 layers, and AAuni (Moosavi et al., 2022)
without its rational activation function with 13 se-
lected layers (Adaptable Adapter). We run
our AUTOPEFT under the comparable search space
of 24 layers and approximately match the size of
Serial.

6 Conclusion

We proposed AUTOPEFT, a novel search
framework for automatically configuring
parameter-efficient fine-tuning (PEFT) modules
of pretrained language models. AUTOPEFT
features both a large and expressive, newly
designed configuration search space and an
effective search method featuring Bayesian
optimization that discovers a Pareto-optimal set
of novel PEFT configurations with promising
performance-efficiency trade-offs. Empirically,
we demonstrated that AUTOPEFT-discovered
configurations transfer strongly across different
GLUE and SuperGLUE tasks, outperforming var-
ious strong PEFT baselines and being competitive
to full model fine-tuning.

Limitations and Future Work

AUTOPEFT search inevitably incurs a search cost
since it requires iterative optimization at search
time. However, we mitigate this by (i) using a
low-fidelity proxy of 1-epoch training and (ii)
leveraging strong transferability by generalising
from low-resource and, thus, quick-to-train tasks.
While the search itself can be seen as a one-time
cost yielding a permanent well-performing and
shareable configuration for particular tasks, we
plan to delve deeper into further optimizing the
search cost in future work.

Furthermore, while we conduct extensive ex-
periments on the search space that contains three
existing PEFT modules as building blocks, novel
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PEFT modules may emerge. However, AUTOPEFT
framework is general, so we may easily inte-
grate these forthcoming new modules. We defer
thorough investigations to future work.
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