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Abstract

We present Text-to-OverpassQL, a task de-
signed to facilitate a natural language interface
for querying geodata from OpenStreetMap
(OSM). The Overpass Query Language (Over-
passQL) allows users to formulate complex
database queries and is widely adopted in the
OSM ecosystem. Generating Overpass queries
from natural language input serves multiple
use-cases. It enables novice users to utilize
OverpassQL without prior knowledge, assists
experienced users with crafting advanced que-
ries, and enables tool-augmented large lan-
guage models to access information stored in
the OSM database. In order to assess the per-
formance of current sequence generation mod-
els on this task, we propose OverpassNL,1

a dataset of 8,352 queries with corresponding
natural language inputs. We further introduce
task specific evaluation metrics and ground
the evaluation of the Text-to-OverpassQL
task by executing the queries against the OSM
database. We establish strong baselines by
finetuning sequence-to-sequence models and
adapting large language models with in-context
examples. The detailed evaluation reveals
strengths and weaknesses of the considered
learning strategies, laying the foundations for
further research into the Text-to-OverpassQL
task.

1 Introduction

The OpenStreetMap (OSM) database stores vast
amounts of structured knowledge about our world.
Users mainly access it via applications that render
a visual map of inquired areas. A more advanced
and systematic way to examine the stored infor-
mation is to query the underlying geodata using

∗Equal contribution.
♦Work done while at Computational Linguistics,

Heidelberg University.
1https://github.com/raphael-sch/OverpassNL.

the Overpass Query Language (OverpassQL).
OverpassQL is a feature-rich query language that
is widely adopted in the OSM ecosystem by con-
tributors, analysts, and applications. In order to
make this empowering query language accessi-
ble via natural language, we propose the Text-
to-OverpassQL task. The objective is to take a
complex data request in natural language and
translate it to OverpassQL in order to execute it
against the OSM database. Several groups of us-
ers can benefit from such a natural language inter-
face. Inexperienced users are spared from learning
the OverpassQL syntax. Expert users can use it
to draft Overpass queries and then manually re-
fine them, saving time and mental load in com-
parison to writing the full query from scratch.
Another use-case is to incorporate the interface
as an API tool (Schick et al., 2023) for large lan-
guage models (LLMs).

In this work, we introduce the three components
that enable the Text-to-OverpassQL task. First,
we present OverpassNL, a dataset of 8.5k natu-
ral language inputs and corresponding Overpass
queries. The queries were collected from an OSM
community website where they were written by
OSM users to fulfill legitimate information needs.
We then hired and trained students to write natu-
ral language descriptions of the queries. Second,
we introduce a systematic evaluation protocol
that assesses the prediction quality of a candidate
system. To this end, we propose a task-specific
metric that takes the similarity of the system out-
put to Overpass queries on the levels of surface
string, semantics, and syntax into account. More-
over, we ground the evaluation by executing the
generated query against the OSM database and
compare the returned elements with those re-
turned by the gold query. Third, we explore sev-
eral models and learning strategies to establish a
base performance for the problem of generating
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Figure 1: Natural language input and the correspond-
ing Overpass query. The query is executed against the
OpenStreetMap database and returns the requested el-
ements in a structured response. The Overpass query
language is highly expressive and allows one to for-
mulate complex queries to extract information from
OpenStreetMap. Blue tokens in the query are syntax
keywords, orange tokens are variable names, and bold
tokens define semantic properties of the requested el-
ements. The green token in curly brackets geolocates
an area called ‘‘Troms’’.

Overpass queries from natural language. We fine-
tuned sequence-to-sequence models and found
that explicitly pretraining on code is not helpful
for the task. We further explored in-context learn-
ing strategies for black-box LLMs and found that
GPT-4 (OpenAI, 2023) with few-shot examples,
retrieved by sentence similarity, yields best re-
sults, outperforming the finetuned sequence-to-
sequence models.

The proposed Text-to-OverpassQL task, de-
picted in Figure 1, is a novel semantic parsing
problem that is well motivated in real-world ap-
plications. While it shares characteristics with the
Text-to-SQL task and its accompanying datasets,
there are several key differences. The Text-to-
OverpassQL task is grounded in a database that
is genuinely in use and of global scale. The data-
base is not divided into sub-databases or tables,
and each Overpass query can retrieve any of the
billions of stored elements in OSM. The desired
elements have to be queried by a geographical
specification and additional semantic tags. The
tags are composed of key-value pairs that follow
established community guidelines and conven-

tions, but can also be open-vocabulary. Overall,
the proposed task builds on a decades-long ef-
fort to structure and store the geographical world
around us to make it computationally accessi-
ble. With this work, we offer all components to
benchmark future semantic parsing systems on a
challenging real-world task.

Our main contributions are as follows: (i) We
present OverpassNL, a dataset of 8.5k natural
language inputs paired with real-world Overpass
queries. (ii) We define task-specific evaluation
metrics that take the OverpassQL syntax into ac-
count and are grounded in database execution.
(iii) We train and evaluate several state-of-the-art
sequence generation models to establish base per-
formance and to identify specific properties of the
proposed Text-to-OverpassQL task.

2 Background

2.1 OpenStreetMap

OpenStreetMap (OSM) is a free and open ge-
ographic database that has been created and is
maintained by a global community of voluntary
contributors. The ever-growing community has
over 10M registered members who have collec-
tively contributed to the creation of the existing
9B elements in the database (OpenStreetMap
Wiki, 2022). Elements are either nodes, ways, or
relations. Nodes are annotated with geospatial co-
ordinates. Ways are composed of multiple nodes
and represent roads, building outlines, or area
boundaries. Relations describe the relationships
of elements, e.g., forming a municipal or major
highway. Elements can be tagged with key-value
pairs that assign semantic meaning and meta in-
formation. The OSM database is widely used in
geodata analysis, scientific research, route plan-
ning applications, humanitarian aid projects, or
augmented reality games. It also serves as a data
source for geospatial services of companies like
Facebook, Amazon, or Apple (OpenStreetMap
Foundation, 2019).

2.2 Overpass Query Language

The Overpass Query Language (OverpassQL) is
a ‘‘procedural, imperative programming language
written with a C style syntax’’ (Open-StreetMap
Wiki, 2023). It is used to query the OpenStreet-
Map database for geographic data and features.
OverpassQL allows for detailed queries that are
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capable of extracting elements based on specific
criteria, such as certain types of buildings, streets,
or natural features within a defined area. Users
can specify the types of elements they are inter-
ested in, and filter them by their associated key-
value pairs.

Query Syntax We briefly explain the Over-
passQL syntax based on the query depicted in
Figure 1 and refer to the official language guide
for more information.2 The keyword geocodeArea
in the first line triggers a geolocation service3 to
find an area named ‘‘Troms’’. The retrieved area
is then assigned to a variable named searchArea.
The third line queries for nodes that are tagged
with the natural=peak key-value pair. The search
is limited to nodes that are geographically within
the previously defined searchArea. The nodes that
fullfill these criteria are stored into the peaks vari-
able. Line 5 queries for ways within the same area
that are tagged with highway=cycleway and are
within a radius of 500 meters around a node stored
in peaks. Finally, the query requests a return of
the specified ways.

3 Related Work

Natural Language Interfaces for Geodata
One of the first attempts to build a natural lan-
guage interface for geographical data is GEOQUERY

(Zelle and Mooney, 1996; Kate et al., 2005a). It is
a system based on Prolog, later adapted to SQL,
and is tailored for a small database of U.S. geo-
graphical facts. Following work proposed meth-
ods to map the text input to the structured query
language (Zettlemoyer and Collins, 2005; Kate
et al., 2005b). A more recent attempt is NLmaps
(Haas and Riezler, 2016; Lawrence and Riezler,
2016), which aimed to build a natural language
interface for OpenStreetMap. For querying the
database, they designed a machine readable lan-
guage (MRL). The MRL is an abstraction of the
Overpass Query Language, but it supports only
a limited number of its features. To facilitate
building more potent neural sequence-to-sequence
parsers, they later released NLmaps v2 (Lawrence
and Riezler, 2018) with augmented text and query
pairs. Our work aims to support the Overpass
Query Language without simplifications or ab-

2https://wiki.openstreetmap.org/wiki
/Overpass_API/Language_Guide.

3https://nominatim.org/.

stractions, allowing to fully leverage the effort of
the OpenStreetMap community that developed a
query language that is optimally suited for the
large-scale geospatial information in the OSM
database.

Text-to-SQL The Text-to-SQL task (Tang and
Mooney, 2001; Iyer et al., 2017; Li and Jagadish,
2014; Yaghmazadeh et al., 2017; Zhong et al.,
2017) is closely related to the proposed Text-to-
OverpassQL task and aims to provide a natural
language interface to relational databases. While
most of the work in this area focuses on a spe-
cific domain and database, the Spider (Yu et al.,
2018) dataset provides text and queries for mul-
tiple databases spanning different domains. They
emphasize the hurdles of collecting real databases
with complex schemas and sufficient data records,
and circumvent this problem by mainly sourcing
the databases from educational material and popu-
late them with synthetic data. In contrast, the OSM
database is of global scale and is used in real-world
applications. We highlight more differences be-
tween the datasets and underlying databases in
Section 4.4. The Text-to-SQL task is commonly
treated as a sequence-to-sequence problem (Lin
et al., 2020; Yu et al., 2021). Some methods ex-
plicitly encode the database schema (Zhang et al.,
2019), while Scholak et al. (2021) show that
finetuning a pretrained T5 model (Raffel et al.,
2019) matches the performance of more special-
ized systems. They further introduced PICARD,
a constraint decoding method that is SQL spe-
cific and enforces syntactic correctness. With the
advent of large language models and in-context
learning, more recent work focuses on prompt en-
gineering the task (Sun et al., 2023; Chen et al.,
2023; Pourreza and Rafiei, 2023).

4 OverpassNL Dataset

In order to facilitate the Text-to-OverpassQL task,
we constructed a parallel dataset of natural lan-
guage inputs and Overpass queries. This was done
by collecting queries written and shared by users
of Overpass Turbo,4 a web tool that allows users
to develop and execute Overpass queries within
a graphical interface. We presented the queries to

4The shared queries constitute an unrestricted collection
that is publicly available on https://overpass-turbo
.eu/. The website is maintained by Martin Raifer, who
helped us to acquire queries shared between 2014–2022.
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Figure 2: Dataset statistics. Number of elements returned when executing the queries in the development set
against OpenStreetMap. Each query returns at least one element and often several orders of magnitude more.

trained annotators who were tasked with writing
natural language descriptions for them.

Initiating the dataset creation process with
Overpass queries authored by real users and devel-
opers has several advantages: Firstly, the queries
were created to satisfy legitimate information
needs and, as such, cover a wide range of Over-
passQL features. Also, the geographical coverage
is high, as is shown in Figure 3 by the location
distribution of elements returned by executing the
queries in our dataset. Another advantage is that
it is easier to teach annotators how to interpret
Overpass queries than how to write them from
scratch.

4.1 Query Annotation
For the annotation task, we recruited university
students with proficient English skills and ex-
perience in database query languages like SQL.
They had to complete a tutorial about OverpassQL
and were subsequently tested on their knowledge.
The test consisted of multiple choice questions
and assignments to write text descriptions of pre-
selected Overpass queries. Only the 15 students
who passed this test were selected to participate
in our annotation task. We built a graphical in-
terface that showed them an Overpass query, the
raw execution results, and the results rendered on
a map. The task of the annotators was to write a
natural language description that best represents
the query. To ensure quality, we encouraged the
annotators to use the Overpass documentation,
continuously conducted spot tests on the submit-
ted inputs, and required the annotators to validate
the inputs written by other annotators. We paid
100e per 250 annotations, resulting in a wage of
around 20e/hour.

4.2 Dataset Statistics
In total we obtained 8,352 queries annotated with
natural language inputs. We split these into 6,352

Figure 3: Location distribution of results returned by
Overpass queries in our dataset. The queries cover
locations on all continents. Europe is a traditional
hotspot of the OpenStreetMap community and also has
the best mapping coverage.

instances for training, 1,000 for development, and
1,000 test instances. We constructed the splits such
that there are no (near) duplicates on the input side
or query side between training and evaluation in-
stances. Figure 2 gives some statistics illustrating
important dataset properties. There are a total of
11,259 distinct words in the natural language in-
puts, the mean input length is 59.7 characters, the
mean query length is 199.8 characters, and each
query has an average of 11.9 syntactic units. A
syntactic unit is a subtree in the XML representa-
tion of an Overpass query. The rightmost plot in
Figure 2 shows the number of elements returned
by executing the development set queries.

4.3 Complexity & Coverage

There are a total of 41 major syntax features5

in the Overpass Query Language. Thirty-one of
these 41 features occur in at least 20 queries of
our dataset, resulting in a feature coverage rate
of 76%. See Figure 4 for a partial list of syntax
features. Our queries utilize 1,046 unique keys to

5https://wiki.openstreetmap.org/wiki/Overpass
API/Overpass QL.
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Figure 4: Partial list of Overpass Query Language
syntax features with absolute and relative occurence
in the 8,352 dataset queries.

specify tagged elements. These keys cover 91%
of all key usage in OpenStreetMap. The cover-
age of corresponding values is harder to estimate
because of open-class keys like name, source, or
operator. There are also keys that have recom-
mended sets of values, e.g., the key leisure is
commonly paired with swimming pool, skatepark,
or pitch. In total, we count 3,879 unique values
and 4,880 unique key-value pairs in our dataset
queries.

4.4 Comparison to Other Datasets

Because we are the first to present a dataset for
the Text-to-OverpassQL task, we compare it to
datasets of related tasks (see Table 1). GEOQUERY

(Zelle and Mooney, 1996) is a small-scale dataset
with 880 instances that allow one to query 937 dif-
ferent geographical facts about the United States.
NLmaps (Haas and Riezler, 2016) and NLmap v2
(Lawrence and Riezler, 2018) provide queries for
OpenStreetMap paired with natural language in-
puts, however, the queries are written in their own
restricted query language called MRL. In contrast,

we generate queries in the well-established Over-
passQL language that has more features and is
widely used by the OpenStreetMap community.
Additionally, the NLmaps datasets only include
up to 347 distinct keys in key-value pairs, limiting
the semantic expressiveness of generated queries.
Furthermore, NLmaps was built for an older ver-
sion of the OSM database comprising one third of
the size of the current version used in our work.
WikiSQL (Zhong et al., 2017) converts single ta-
bles from Wikipedia articles to SQL databases and
annotates queries with natural language inputs for
them. While the dataset is of large scale, it con-
tains only simple SQL queries and unconnected
tables. The Spider dataset (Yu et al., 2018) in-
cludes 166 distinct databases of different domains
and was collected for the Text-to-SQL task. Each
natural language input in the dataset is intended
for a specific database that is known a priori. This
significantly reduces the number of relevant table
names and column names per query, and simpli-
fies the task by allowing to append known table
and column names together with the database
schema to the input. This stands in stark con-
trast to our Text-to-OverpassQL task where each
query can utilize any key-value pair and retrieve
elements from the entire OSM database, making
it harder to predict the correct named identifiers
for the desired elements. Also, the number of re-
turned elements per query is orders of magnitude
larger than in SQL related datasets. This makes
the grounded evaluation harder by minimizing
the likelihood of false positive matches in execu-
tion accuracy.

5 Task & Evaluation

The Text-to-OverpassQL task requires a user to
generate an Overpass query q, given a natural
language input x. A model for this task aims to
accurately translate the request, formulated in nat-
ural language, into code, written in the Over-
pass Query Language, that returns the correct
elements when executed against the OpenStreet-
Map database. In order to evaluate such a system,
we propose to use different evaluation metrics.
These include metrics that compare the gener-
ated query with the reference query, and metrics
that compare the results returned by executing the
queries against the OSM database. In order to
make the execution results reproducible, we re-
lease the evaluation script and a Docker container
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Dataset
Query Number of Query Named Identifiers Extractable Elements Results

Language Instances Templates total per database total per database per query

GEOQUERY SQL 880 234 31 & 7 31 & 7 937 51 5

NLmaps MRL 2,380 379 107 107 3.4B 3.4B –

NLmaps v2 MRL 28,609 360 347 347 3.4B 3.4B –

WikiSQL SQL 81,654 – 168k 6.38 460k 11 1

Spider SQL 10,181 5,693 4,669 & 876 58 & 5 1.6M 9.6k 30

OverpassNL OverpassQL 8,352 3,890 1,046 1,046 9B 9B 10k

Table 1: Comparison of Text-to-Query datasets. Templates are normalized queries, i.e., removing
named identifiers, variable names and digits. Named identifiers are tag keys in OpenStreetMap related
datasets and table & column names in SQL related datasets. The Spider dataset includes 166 unconnected
databases and the task is to generate a query for a specific database that is known a priori. Thus, the
average number of relevant named identifiers and extractable elements is much smaller per query than
for the whole dataset.

with the exact snapshot of the OSM database we
used. We further describe the metrics in detail.

5.1 Overpass Query Similarity Evaluation

We propose a language-specific metric called
Overpass Query Similarity (OQS) to quantify the
compatibility of a generated query and the refer-
ence query. The metric is composed of three parts.
First, we use character F-score (chrF), which mea-
sures the overlap of character n-grams between
two strings (Popović, 2015). Because chrF op-
erates on the character-level, it is well suited
for Overpass queries which consist of words and
special characters alike. Next, we calculate the
overlap of keys and values between the generated
query qG and reference query qR. We define the
Key Value Similarity (KVS) as follows:

KVS(qG, qR) =
|KV(qG) ∩ KV(qR)|

max(|KV(qG)|, |KV(qR)|)
, (1)

where the operator KV(·) returns all key-value
pairs as well as all individual keys and individual
values. This metric captures the semantic related-
ness of two queries. Complementarily, the third
part of the OQS metric compares queries on the
syntactic level. We compute the Tree Similarity
metric (TreeS) by comparing the XML tree rep-
resentation of the queries. We remove all key-
value pairs and variable names from the trees and
recursively compute the number of matching sub-
trees of the generated and reference query. Anal-
ogous to Equation 1, we normalize the number of

matching subtrees by the maximum number of
subtrees in either tree. Finally, the proposed Over-
pass Query Similarity metric is the mean of chrF,
KVS and TreeS. The metric captures similarity of
system outputs and reference queries on the lev-
els of surface string, semantics, and syntax.

5.2 Grounded Evaluation

The nature of the Text-to-OverpassQL task allows
us to perform a grounded evaluation of gener-
ated queries by executing them against the OSM
database. We quantify the correctness of the da-
tabase execution by Execution Accuracy (EX),
which measures the exact match of all elements
returned by executing the generated query and
the reference query. Each returned element has
an identifier number that is unique within OSM.
We use this identifier number to determine ex-
act matching of results. The plot on the right in
Figure 2 shows that there are up to 107 elements
returned by a query. The matching by unique iden-
tifier and large number of returned elements make
EX an inherently hard metric to satisfy.

Because OpenStreetMap is a community driven
database that has grown over decades with chang-
ing annotation guidelines, there can be ambigui-
ties in the tags of elements. For example,
filtering all bridges can mean node[‘‘bridge’’]
or node[‘‘bridge’’=‘‘yes’’]. Both are correct ac-
cording to current annotation guidelines, but do
return slightly different sets of nodes. Another
example is filtering for radar towers:

node[‘‘man made’’=‘‘tower’’][‘‘tower:type’’=‘‘radar’’].
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The first filter is redundant according to tag-
ging guidelines, but cannot be omitted in queries
because the guidelines are not consistently fol-
lowed throughout the whole database. To account
for this, we also report Soft Execution Accuracy
(EXSOFT). It is computed as the overlap of returned
elements, normalized by the maximum number
of elements returned by either the generated or
reference query. The metric ranges from 0, which
means no overlap, to 1, which is equivalent to
exact match of results. We report the metric as
percent in the results tables.

6 Experiments

In the following, we present experiments that
showcase the opportunities to train machine
learning models on the OverpassNL dataset and
establish base performance of commonly used
techniques. We finetuned sequence-to-sequence
models of different sizes and pretraining settings.
Additionally, we adapted black-box large lan-
guage models with different in-context learning
strategies. All models are evaluated with the pro-
posed similarity and grounded metrics, as well as
exact string match (EM).

6.1 Finetuning

The task of generating Overpass queries from text
is a sequence-to-sequence problem and can be
addressed by a model with encoder-decoder ar-
chitecture. The encoder processes the input text
and the decoder autoregressively generates the
Overpass query. In order to choose a suitable pre-
trained model, we focused on the T5 family of
models because of their strong performance in
a variety of sequence-to-sequence tasks (Raffel
et al., 2019), in particular Text-to-SQL (Scholak
et al., 2021). Besides the vanilla T5 model,6 the
family also includes models specifically trained
for code generation (CodeT5; Wang et al., 2021)
and models with byte-level tokenization (ByT5;
Xue et al., 2022). Because neither model has been
trained on data covering OverpassQL syntax, we
ran experiments to compare the finetuning of
CodeT5 and ByT5 on the training portion of our
dataset. To expand the training set, we addition-
ally created instances from comments that query

6The vanilla T5 model is not suited for code or Overpass
because it lacks tokens for ‘{’ or ‘[’ (Wang et al., 2021).

authors to put in some lines with the intention
to describe the line’s purpose and functionality.
We extracted the comments and used them as the
natural language input for the respective query.
This produced 6,000 additional training instances.
We finetune all parameters (full finetuning) for 30
epochs using the Adam (Kingma and Ba, 2015)
optimizer with weight decay of 0.1. The maximum
learning rate is 4 × 10−4 with warmup for 10%
of the steps and a linear decay schedule. Training
batch size is 16 and we decode with four search
beams.

The upper half of Table 2 shows the results
for combinations of model type, model size, and
training data, evaluated on the development set.
In general, the base variant of the models is better
than the small variant. We did not gain further
improvements by finetuning even larger variants
of the models. The results also show that the
ByT5 models are better suited for our task than
the CodeT5 models. Although the instances de-
rived from developer comments are of low quality,
they contribute to consistent improvements in ex-
ecution accuracy for all models. The best model
for our task is ByT5-base with 582M parameters,
finetuned on the enhanced training set. We further
refer to this model as OverpassT5.

6.2 In-Context Learning

We furthermore explore the use of in-context
learning for the Text-to-OverpassQL task. We
prompt large language models to generate an
Overpass query for the given text input while pro-
viding five example pairs as context. The example
pairs are selected from the training set, either ran-
domly or by input similarity (Liu et al., 2022).
We compare BLEU (Papineni et al., 2002) and
sentence-BERT embedding similarity (Reimers
and Gurevych, 2019) as metrics to retrieve the
most similar examples.

Figure 5 shows that the quality of queries
generated by LLaMa (Touvron et al., 2023) in-
creases with the model size. The lower half of
Table 2 shows results for the even bigger GPT-3
(text-davinci-003; Brown et al., 2020) and GPT-4
(gpt-4-0314; OpenAI, 2023) models. We see a
similar trend of improved results with increas-
ing model size. Furthermore, retrieving similar
instances from the training set as in-context ex-
amples is consistently better than a random selec-
tion. We also see that retrieval by sentence-BERT
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Overpass Query Similarity Execution Accuracy

Model Setting chrF KVS TreeS OQS EM EX EXSOFT

Finetuning

CodeT5-small 74.0 ±0.2 61.2 ±0.6 72.2 ±0.1 69.1 ±0.2 18.5 ±0.1 31.9 ±0.9 41.9 ±0.6

CodeT5-small +comments 74.1 ±0.2 62.4 ±0.7 72.7 ±0.3 69.8 ±0.2 18.9 ±0.4 32.7 ±0.6 43.9 ±0.5

CodeT5-base 74.6 ±0.0 63.2 ±0.4 73.0 ±0.1 70.3 ±0.2 19.8 ±0.4 33.3 ±0.3 44.3 ±0.1

CodeT5-base +comments 74.9 ±0.1 63.6 ±0.5 73.5 ±0.1 70.7 ±0.2 20.3 ±0.2 34.5 ±0.4 46.2 ±0.4

ByT5-small 74.8 ±0.2 64.4 ±0.2 73.1 ±0.2 70.8 ±0.2 20.4 ±0.1 35.4 ±0.3 46.8 ±0.3

ByT5-small +comments 75.0 ±0.0 64.6 ±0.2 73.4 ±0.2 71.0 ±0.1 21.0 ±0.3 36.0 ±0.4 46.2 ±0.5

ByT5-base 75.5 ±0.0 65.0 ±0.2 73.8 ±0.2 71.4 ±0.0 21.9 ±0.4 36.2 ±0.0 46.7 ±0.4

ByT5-base +comments 75.5 ±0.1 66.0 ±0.2 73.7 ±0.4 71.7 ±0.1 22.0 ±0.1 36.7 ±0.6 47.0 ±1.0

5-Shot In-Context Learning

GPT-3 random 58.8 48.8 57.5 55.0 4.1 16.9 28.0
GPT-3 retrieval-BLEU 67.4 55.5 66.8 63.3 18.0 28.7 37.7
GPT-3 retrieval-sBERT 72.1 63.3 69.9 68.4 19.5 34.1 44.2

GPT-4 random 63.8 57.5 61.1 60.8 5.1 25.4 39.5
GPT-4 retrieval-BLEU 74.3 66.1 72.4 71.0 22.9 38.5 50.7
GPT-4 retrieval-sBERT 75.7 69.9 74.0 73.2 23.4 40.4 53.0

Table 2: Results on the development set of OverpassNL. The proposed Overpass Query Similarity
(OQS) metric is the mean of Character F-score (chrF), Key-Value similarity (KVS), and XML-tree
similarity (TreeS). EM denotes exact string match. Execution accuracy (EX) is the exact match of all
results returned by executing the generated query and reference query against OpenStreetMap. Soft
Execution Accuracy (EXSOFT) is the normalized overlap of returned results. Results in bold are best for
the respective learning setup. Finetuning experiments are repeated three times with different random
seeds and mean/standard deviation are reported.

Figure 5: Development set results of LLaMa mod-
els with increasing number of parameters, prompted
with five in-context examples.

embedding similarity is better than retrieval by
BLEU score. Best results are obtained for GPT-4
with sBERT retrieval, which will simply be
referred to as GPT-4 in the following.

6.3 Comparison between Finetuning and
In-Context Learning

In the previous sections, we selected the best
models for finetuning and for in-context learning,
based on development set performance. In order
to compare the two models, we present results on
the test set in Table 3 (top). While the surface
metrics OQS and EM are nearly identical for both
models, GPT-4 significantly outperforms Over-
passT5 in the execution based metrics. It is also
interesting that the queries generated by GPT-4
are more likely to raise syntax errors (#Errors),
despite achieving higher execution accuracy. In-
specting the individual components of OQS re-
veals that GPT-4 is better at generating correct
key-value pairs, indicating that they are more
important for correct execution results than faith-
fulness to the syntax of the reference query. We
conjecture that the reason is that GPT-4 has likely
seen a larger amount of OSM key-value pairs
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Overpass Query Similarity Execution Accuracy

Model chrF KVS TreeS OQS EM #Errors EX EXSOFT

Full Test Set (1,000 Instances)

OverpassT5 74.9 ±0.1 66.1 ±0.3 72.7 ±0.2 71.2 ±0.2 20.7 ±0.2 23 ±5.6 33.9 ±0.1 46.3 ±0.3

GPT-4 73.6 68.6 72.0 71.4 20.7 34 38.9 53.0

Hard Partition (333 Instances)

OverpassT5 62.8 ±0.4 57.7 ±0.4 56.6 ±0.3 59.1 ±0.3 8.8 ±0.3 15 ±4.5 18.7 ±0.1 29.7 ±0.5

GPT-4 61.4 59.6 56.3 59.1 9.0 25 22.2 35.3

Table 3: Results on the test set of our OverpassNL dataset. The proposed Overpass Query Similarity
(OQS) metric is the mean of Character F-score (chrF), Key-Value Similarity (KVS), and XML-tree
Similarity (TreeS). Exact match (EM) is query string match. #Errors are number of raised syntax errors
when trying to execute the query. Execution accuracy (EX) is the exact match of all results returned
by executing the model generated query and reference query against OpenStreetMap. Soft Execution
Accuracy (EXSOFT) is the normalized overlap of returned results. Bold results are best on the test set and
underlined results are best on the hard partition.

during pretraining than the finetuned models that
are limited to OSM knowledge acquired from our
training set. Table 3 (bottom) shows the results
on the hard partition of the test set (defined in
Section 7.1). All performance metrics decrease
significantly, without affecting the relative im-
provement of GPT-4 over OverpassT5. Notably,
the majority of syntax errors stem from this par-
tition of the test set.

In sum, while GPT-4 is better at generating
queries that return correct results, the OverpassT5
model is better at producing faithful OverpassQL
syntax. However, GPT-4’s advantage in execution
accuracy comes at a computational cost. Over-
passT5 is orders of magnitude smaller, resulting
in faster inference speed and likely lower mon-
etary cost per query. Also, GPT-4 is a 3rd-party
API and does not allow for self-hosting, imply-
ing privacy concerns.

7 Analysis

7.1 Instance Difficulty

To better assess the performance of our proposed
models, we aim to divide the evaluation instances
into three difficulty partitions. Figure 6 displays
EXSOFT results for the easy, medium, and hard
partitions according to different difficulty crite-
ria. A straightforward difficulty metric like the
length of the input text has little influence on the

Figure 6: Instance difficulty on the development set
using OverpassT5. Dividing the evaluation instances
by highest similarity to any training query allows
to measure performance on instances with different
difficulties.

accuracy. Using the length or complexity of the
query (measured as the number of syntactic units)
as difficulty metric leads to a clearer partition
into easy, medium, and hard instances. Surpris-
ingly, partitioning the instances based on their
maximum input text similarity to any training in-
stance leads to an undesired negative correlation
of EXSOFT and difficulty where the instances with
the lowest similarity to training inputs achieve
best EXSOFT results. Finally, the clearest partition
into instances of different difficulty is achieved by
using the maximum similarity of a query to any
query in the training set, where query similarity
is measured by the OQS metric. A partitioning
based on similarity to training queries can be seen
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Figure 7: Human expert evaluation for 100 hard in-
stances of the test set. Dot size indicates the number
of human evaluators (up to 5 per instance). Gray bars
depict the standard deviation.

as out-of-distribution testing since it measures
the performance for instances that are less likely
to be memorized from the training set. We thus
use this criterion to select instances constituting
the hard partition in the experiments in Section 6.

7.2 Human Expert Evaluation

One motivation of the Text-to-OverpassQL task is
to facilitate a system that assists expert users with
crafting queries. While the surface and execution
metrics allow us to compare different models, it is
difficult to estimate how helpful imperfect queries
are to human developers. To this end, we con-
ducted an evaluation of the OverpassT5 outputs
by human experts. They are Overpass develop-
ers that were acquired by postings in Overpass
communities and they participated voluntarily in
our experiment. They had to rate the helpful-
ness of a query given the input text on a scale
from ‘‘very unhelpful’’ to ‘‘very helpful’’. There
were seven experts casting a total of 228 votes
across 100 instances of the hard partition. The
results in Figure 7 show that the majority of gen-
erated queries were rated helpful, and less than
a third were deemed unhelpful. This shows that
even for the hardest test instances, the OverpassT5
model generates queries that are mostly helpful
for developers when crafting a new query.

7.3 Self-Refinement from
Execution Feedback

Recently, studies have shown that LLMs are able
to self-refine their own outputs (Madaan et al.,
2023). The generated hypothesis is appended to
the context and the LLM is prompted to gener-
ate an improved version. We conduct self-refine
experiments for GPT-4 by appending the gener-
ated query and by additionally providing feedback

Model OQS EM #Errors EX EXSOFT

GPT-4 73.2 23.4 24 40.4 53.0

Refine Syntax Errors Only

no feedback 73.2 23.4 19 40.4 53.1
with feedback 73.2 23.4 7 40.7 53.7

Refine All Instances

no feedback 73.1 21.9 31 39.6 52.9
with feedback 73.1 23.4 26 41.4 54.5

Table 4: Self-Refinement of hypotheses gener-
ated by GPT-4 on the development set. Feedback
is either the error message during execution or
the returned results.

Figure 8: Prompt for 5-shot refine with feedback.

from the query execution. If the query cannot be
executed, we use the error message as feedback,
otherwise we append a sample of the returned
elements to the prompt. Table 4 shows results
for self-refinement in two scenarios where ei-
ther self-refinement is applied to all queries, or
only to queries that raised a syntax error during
execution. The results show that only refining
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syntax errors reduces the error count from 24 to
7 if an explicit error message is appended to the
prompt, compared to a reduction to 19 errors if
only the generated query is appended. However,
this only leads to a slight increase in execution
accuracy. On the other hand, refining all instances
leads to an increase in errors, but also improves
EXSOFT by 1.5 points when providing explicit feed-
back. These experiments show that there is still
room for improving query generation with clever
prompting techniques. Figure 8 shows the prompt
incorporating hypothesis and execution feedback.
The feedback is either an error if raised during
execution, the returned results, or ‘‘No results
found’’.

8 Conclusion

We introduced a novel semantic parsing task,
called Text-to-OverpassQL. The objective of this
task is to generate Overpass queries from natu-
ral language inputs. We highlighted its relevance
within the OpenStreetMap ecosystem and related
it to similar tasks. We identified key differences to
the Text-to-SQL that pose unique challenges. To
facilitate research on the task, we proposed Over-
passNL, a dataset of real-world Overpass queries
and corresponding annotations with natural lan-
guage inputs. We used this dataset to train several
state-of-the-art models and establish a base perfor-
mance of the task. In order to measure prediction
performance, we proposed task-specific metrics
that take the OverpassQL syntax into account and
are grounded in database execution. We presented
a detailed evaluation of results that reveals the
strengths and weaknesses of the considered learn-
ing strategies. We hope that our work serves as a
foundation for further research on the challenging
task of semantic parsing of geographical informa-
tion needs grounded in the large and widely used
OpenStreetMap database.
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